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The MIT Linear Electrostatic Ion Accelerator (LEIA) generates DD and D3He fusion

products for the development of nuclear diagnostics for Omega, Z and the National

Ignition Facility (NIF). Significant improvements to the system in recent years are

presented. Fusion reaction rates, as high as 107 s−1 and 106 s−1 for DD and D3He,

respectively are now well regulated with a new ion source and electronic gas control

system. Charged fusion products are more accurately characterized, which allows for

better calibration of existing nuclear diagnostics. In addition, in-situ measurements

of the on-target beam profile, made with a CCD camera, is used to determine the

metrology of the fusion-product source for particle-counting applications. Finally,

neutron diagnostics development has been facilitated by detailed MCNP modeling

of neutrons in the accelerator target chamber, which is used to correct for scattering

within the system. These recent improvements have resulted in a versatile platform,

which continues to support the existing nuclear diagnostics while simultaneously facil-

itating the development of new diagnostics in aid of the National Ignition Campaign

at the National Ignition Facility.
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I. INTRODUCTION

The National Ignition Campaign (NIC) seeks to achieve thermonuclear ignition and en-

ergy gain of a laser-compressed DT fuel pellet at the National Ignition Facility (NIF).1,2

Essential to this effort is the availability of robust nuclear diagnostics for the measurement

of key parameters, including the neutron yield (Yn), areal density of the fuel (ρR) and the

ion temperature (Tion). Such measurements allow fine-tuning of target and laser parameters

in addition to assuring the experimental community that positive progress is being made

towards ignition.

Nuclear diagnostics development at national laboratories and national user laser facilities

such as Omega3,4 can be costly in terms of the potential time and money spent in debugging

and developing an instrument. In this vein, smaller facilities such as the MIT Linear Electro-

static Ion Accelerator (LEIA), shown in Fig. 1, allow tests of new ideas, development of new

diagnostics and calibration of existing nuclear diagnostics on a continual basis at a fraction

of the cost. Valuable time at laser facilities is thus available for target physics and exper-

iment validation rather than diagnostic development. It is important that small facilities

such as LEIA are accurately calibrated with the precision required for inertial confinement

fusion (ICF) diagnostics development applications.

In this context, the LEIA5–7 has been significantly improved through a series of hardware

and software upgrades over the last three years. In addition, LEIA has been better char-

acterized through experimental calibrations and simulations, which has provided greater

accuracy and precision required for advanced diagnostics development for Omega, Z and

the NIF. The implementation of a new ion source and gas control system has allowed for

better control of the spatial and temporal characteristics of the fusion-product source, which

is essential for the calibration of a number of nuclear diagnostics. In addition, the devel-

opment of a CCD-camera based target viewing system (TVS), combined with modeling

of neutron scattering within the target chamber, has allowed for detailed characterization

of the fusion-product source; this has further facilitated the development of neutron yield

diagnostics. Finally, a newly-implemented multi-channel analyzer (MCA) with advanced

signal-processing algorithms has been used to measure charged-fusion products more accu-

rately and with greater precision; these benefits directly propogate to the energy calibration

of charged-particle spectrometers and have opened the door for new physics studies. In addi-
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FIG. 1. The MIT Linear Electrostatic Ion Accelerator (LEIA). Shown, from left to right, are the

cylindrical target chamber, beam line with in-situ beam diagnostics, including a faraday cup and

a beam profiler, and ion source, enclosed in the blue shroud at the right.

tion to the added diagnostic development capabilities, the facility has provided very valuable

hands-on training for a number of graduate and undergraduate students; these students are

the main contributors to this work.

This paper is organized as follows: Section II gives the reader an overview of the various

hardware components of the accelerator, along with a discussion of recent improvements;

section III discusses the software development undertaken for both data acquistion, control

and simulation capability; section IV discusses some recent development work on diagnostics

currently in use at Omega and the NIF; section V describes the future direction of LEIA.

II. LEIA OVERVIEW AND HARDWARE DEVELOPMENT

A complete schematic of the upgraded LEIA is shown in Fig. 2. The upgrades include a

new radio-frequency (RF) driven positive ion source, an open-air high voltage deck, recon-

figured beamline, and target chamber. The newly implemented ion source, manufactured by

National Electrostatics Corp.(NEC),8 is capable of producing 200 µA deuteron beams and

170 µA 3He ion beams. A terminal voltage of 150 kV, generated using a Cockroft-Walton

Multiplier (not shown in the schematic), accelerates these ions onto a target downstream.
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The target, composed of a copper substrate with a thin film of ErD2, is loaded with either

D or 3He to allow production of either DD or D3He fusion products.

A. Implementation of a New Ion Source

A new ion source, schematically shown in Fig. 2, was acquired and implemented to

enhance beam control and stability. The D2 (or 3He) plasma discharge is generated within

the source using a capacitively-coupled 300 watt RF oscillator operating at 100 MHz. The

source also includes permanent magnets and an Einzel lens assembly. The plasma is first

compressed by magnetic fields at the entrance to an aluminum canal (1 or 2 mm diameter)

where it is electro-statically extracted and focused to a downstream target. The source may

be biased using up to three power supplies for operation, excluding the RF oscillator power

supply: one each for the focus, the extractor and the probe electrodes; these supplies are

referenced to the terminal voltage (deck bias). Note the probe and extractor electrodes,

shown in Fig. 3, located upstream and downstream of the plasma bottle, respectively. In

these types of sources, the purpose of the probe power supply is to drive ions out of the

source by maintaining a potential difference between the extractor and the probe electrodes;

for this reason it is typically referenced to the extractor bias using an isolation transformer.

This approach was not taken as it does not allow a single digital electronic controller to

readily control and monitor the supplies because they have large (several kV) DC offsets

between them. The approach taken here was to reference all three supplies to the terminal

voltage and to compensate for this by adding an offset voltage to the probe output equal

to the instantaneous extractor bias. This output tracking between supplies was achieved

in software. Nevertheless, any reference to the probe bias in this work refers to a potential

difference between the extractor and probe electrodes. Three supplies were obtained from

Glassman HV Inc.9 for this application: two MK-series supplies, with 15 kV and 20 kV

outputs for the focus and probe, respectively, and an MJ-series power supply with an output

of 5 kV for the extractor. These supplies are housed in the source supply box shown in

Fig. 2. That box also incorporates an Acromag ES215210 fiber-optic-coupled controller,

which drives and monitors the analog interfaces of the supplies while providing a single

digital, fiber-isolated interface to the control computer. The bias conditions depend strongly

on the electrostatic optics of the entire system. For this system, an extractor bias of 0-5 kV,

4



[!t]

Beam Profiler
LINAC Tube

Target Camera

High Voltage

Standoff

Turbopump

Target Chamber

Gate Valve

Target

Turbopump

Scroll

Pump

Residual

Gas

Analyzer

Target Positioner

User

Ports

Beam

Dump

Access Port

Gas 

Manifold

High Voltage

 Deck

NEC RF Ion

Source

Focus 

(Einzel Lens)

Ion Source

Power Supplies

Gas Control

System

Beamline

Gate Valve

Scroll

Pump

Gate

Valve

Faraday Cup

SIDE VIEW

TOP VIEW

4 m

1 m
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accelerating tube. Beam diagnostics include a faraday cup, beam profiler and a residual gas

analyzer. The vacuum system is comprised of two turbopumps and three dry vacuum (scroll)
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a focus of ∼ 3-10 kV and a probe of ∼ 3-10 kV proved to be sufficient for extracting and

focusing a beam of ions down to a diameter of 3 mm approximately 2.5 m downstream of the

ion source. It was found that the optimal probe and focus values depend on the extractor

bias. The extractor, despite its name, does not actually drive ions out of the source. It biases

the entire source relative to the terminal voltage, and thus provides an extra potential drop

for ions after they exit the source. The terminal voltage drops across a linear accelerating

(LINAC) tube, composed of a series of polished metallic rings insulated by ceramic (the

LINAC is shown in Fig. 2). It is an adiabatic focusing lens since the large voltage gradient

(3 kV-cm−1) is opposite the direction of beam propagation. In order to focus a beam farther

downstream, it is necessary to introduce some de-focusing in the optics, upstream of the

accelerating tube; this leads to the requirement of a several kV potential increase from the

extractor to the focus electrodes. The defocusing occurs within the Einzel lens, which has

an effective bias equal to the difference between the focus and extractor. Consequently, as

the extractor is varied, this difference must be maintained for a given focal point. Since the

LINAC tube is located just downstream of the ion source (∼ 20 cm), it was found that a

grounded extractor (hence the probe bias alone) was sufficient to drive ions out of the source

and into the LINAC tube. For a grounded extractor, probe and focus voltages of ∼4 kV

and ∼3 kV were required for proper focusing.

The stability of the fusion reaction rate depends strongly on the stability of the ion beam

current; the latter is a function of the ion source bottle pressure. The nominal flow rate of

gas into the source is approximately 0.02 sccm/s with a nominal fill pressure in the range

of 10− 30 mTorr.8 It was found that momentary fill pressures greater than 50 mTorr were

often required for proper startup of the plasma and that the optimal fill pressure during

operation range extended out to approximately 40 − 60 mTorr. These required flow rates

of D are quite low for modern thermal mass-flow controllers. Thus, ion sources of this type

often utilize manual or motor-driven variable-leak valves8 for gas pressure control, whereby

the valve orifice is manually set to a fixed position (and adjusted manually as required).

Since some diagnostic applications require reliable and steady beam currents over extended

periods of time (as discussed in Sec. IV), a fast-response feedback-controlled gas-control

system was designed and implemented.

The gas control system consists of a Horiba STEC piezo-electric flow control valve11 and

an MKS 626-series Baratron Capacitance Manometer12 for direct measurement of the ion
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source fill pressure. The same fiber-optic-coupled controller was used to readout the fill

pressure and drive the piezo-electric valve based on commands it received from a software

implemented proportional-integral-differential (PID) control loop. The loop allows control of

the pressure to within 0.5 mTorr. With proper tuning of the loop, the step response time of

the system is < 2 seconds. Since the maximum piezo-valve orifice leads to over-pressurization

of the source, the software package implements a valve calibration feature to prevent the

valve from being opened too far. This feature is essential since over-pressurization of the

source slows down the response time of the gas control system.

The new gas control system has helped to stabilize the beam current and hence the

fusion reaction rate. The fusion reaction rate, as inferred by a fixed detector with a finite

solid angle, is a function of beam current, beam energy, on-target beam position and the

extent to which the target is loaded. We observe, as shown in Fig. 4, small variations in

the DD fusion reaction rate over fine timescales. These variations are within the statistical

uncertainty of the count-rate measurement (σ = ± 2%). More importantly, no significant

long-term (of order 10 - 20 minute) trends are seen in the data when feedback control of

the gas pressure is utilized. Various parts of the system, including the ion source canal and
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FIG. 4. Stability of the DD-p count rate (normalized to the average count rate for manual control

and the max. count rate for feedback control) as a function of time. Variations in the count rate

over fine timescales (∼ 60 s) are within the statistical uncertainty of the measurement (σ = ±

0.02). Long-time-scale (∼ 20 min) drifts of the count rate are observed when the gas control valve

orifice is manually fixed. These drifts were stabilized with the use of feedback gas pressure control.

target, undergo thermal expansion as the source and beam are operated for long duration;

any long-term changes in the count-rate associated with system components reaching steady-

state operating parameters are mitigated with the use of feedback. For these data, the ion

source was allowed to warm-up for several hours per NEC’s standard operating procedure;

a residual gas analyzer (RGA) was used to verify that the beam predominantly consisted of

deuterium. Characterization and control of the fusion reaction rate for long time scales is

particularly important for development of neutron yield diagnostics based on activation of

materials, as discussed in Sec. IV.

B. Targets and Target Viewing System

The targets used for LEIA were manufactured by Sandia National Laboratories.13 The

active layer of the targets consists of Erbium-Deuteride (ErD2) with a diameter of 1 cm and

a nominal thickness of 5 µm, corresponding to the range of a 150 keV 2H+ ion. Although the

thickness is sufficient for stopping 150 keV deuterons, it was found that these thin targets

deteriorate after approximately 20 hours of beam-on-target time for ion beam powers in the

range of 15-20 Watts. The thin layer of ErD2 is ablated off, exposing the copper substrate.

Future targets will incorporate thicker active layers for increased lifetime and durability.
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FIG. 5. Images of a 140 keV deuteron beam incident on an ErD2 target (a) with ambient lighting

and (b) without ambient lighting. Shown in these images are the water-cooled target holder

(constructed of copper) and the circular target itself (approx. diameter of 1.1 cm). The ion source

was biased with a probe voltage of 8.7 kV, extractor of 5 kV and focus of 9 kV to achieve a focal

spot size of approximately 3 mm (dashed circle) on a target 2.5 meters downstream of the ion

source.

Other target materials have also been tested, such as titanium and it was found that these

targets produced DD fusion rates significantly lower than ErD2.

A new target viewing system (TVS) diagnostic was implemented for in-situ measurements

of the on-target beam profile. The target camera, shown in Fig. 2, is a CCD-based network

camera (Axis Communications Model 22114), which provides a more accurate measurement

of the fusion product source size relative to that of the beam profiler. The beam profiler

samples the beam cross-section and position well upstream of the target (see Fig. 2) where

it is typically broader as it is converging onto the target. The visible light self-emission of

energetic deuterons exciting the target medium is sufficient to generate an image without

the need for background lighting. The camera utilizes a CCD with a sensitivity of 0.65

lux, which provides sufficient sensitivity for this low-light application. Images of a 140 keV

deuteron beam incident on target were taken with the TVS, with and without ambient

lighting as shown in Figs. 5a-b. These images were taken during a single run where the

beam was focused to a diameter of 3 mm; the source was operated at a fill pressure of

40 mTorr and biased with an extractor of 5 kV, focus of 9 kV and probe of 8.7 kV. Such

in-situ measurements of the beam profile allow the operator to point and focus the beam for

each run with greater accuracy than one might achieve with a beam profiler alone. Precise

knowledge of the fusion source size and position with respect to target chamber center (TCC)

is also essential for the calibration of several diagnostics, as discussed in Sec. IV.
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III. SOFTWARE AND SIMULATION DEVELOPMENT

A. Control, Monitoring and Logging

The upgrades and modifications to accelerator hardware require a software-based control

solution, which is scalable and modular, allowing components of the control software to

be re-used, modified or removed entirely in response to hardware changes. To this end, a

novel modular and extensible toolkit was developed for control of the various accelerator

subsystems. This Modular Control Toolkit (MCT)15 was written in C++ and uses open-

source libraries16 for its graphical user interface; it currently supports both 32-bit and 64-bit

UNIX-like systems. The toolkit itself consists of a central console, a module manager, an

interlock engine and a shared library with templates for building modules. The shared library

implements the base code which is common to all modules and is hence shared between all

running modules. Using the toolkit, one only needs to write a module with the minimal

code required to communicate with hardware specific to a given experiment.

Several new modules were written to control the accelerator, including the ion source

controller, the vacuum valve controller, the turbopumps, ion gauge controller and other

system-level components. Full electronic control, monitoring and logging of the system

parameters (e.g. voltages, currents, pressures and temperatures) is now possible.

Improvements were also made to the way system and run parameters are logged. An

SQL-based17 database was implemented to hold run data along with useful information

about charged-particle detectors, targets and other system-wide parameters. The terminal

voltage, source bias, fusion count rates, fill pressures and charged-particle data are stored

for each shot and may be queried over a web interface using any number of fields. This new

capability is extremely useful for quickly retrieving run data. The database also serves as

an essential aid when debugging the system or resolving anomalies in data, as one has a

reference of pertinent system parameters for each experimental run.

B. Charged-Particle Diagnostics Suite

The primary data-acquisition system consists of a newly implemented NIM-based setup

with four signal chains for the measurement of charged-particle spectra. Surface barrier de-

tectors (SBDs) are routinely used for direct measurements of the energy spectra of charged
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fusion products. This data acquisition system consists of a model N1728B multichannel-

analyzer, obtained from C.A.E.N.,18 a four-channel pre-amplifier, and custom software de-

veloped in-house, hereon referred to as the C.A.E.N. MCA Application (CMA). The open

hardware specifications and implementation details provided by C.A.E.N. have enabled us

to acquire charged-particle spectra with greater accuracy and better precision. All aspects

of the signal processing chain, from initial analog-to-digital conversion to post-processing

and deconvolution of the pre-amplifier impulse response function (IRF) are controlled using

custom sofware written in Java. Deconvolution of the pre-amplifier response is done in real-

time in hardware (as originally implemented by C.A.E.N.) using a well-known algorithm.19

The MIT-developed software package allows the user to specify parameters for the algo-

rithm, trigger and acquisition; simultaneous acquisition of energy spectra and oscillograms

of single-particle events are also possible. Furthermore, one may use the CMA to record

count rates over time (i.e. software scaler mode), to perform in-situ analysis, including data

fitting, and to calibrate and store channel-to-energy mapping data; the stock open-source

Java-based software furnished by C.A.E.N. does not implement these latter features, though

it was helpful in developing this software suite.

Of particular importance in the new system is the deconvolution of the preamplifier

IRF. Ideally, the SBD-preamplifier combination will have a fast-rising “impulse” with an

amplitude that is linearly proportional to the energy of the incident particle; the SBD

depletion depth (∼ 2000µm) is sufficient to stop the charged-particle. In practice, the SBD

takes a finite amount of time to sweep out the charge (the electron-hole pairs) generated

by the incident particle. The charge sweep-out time increases with incident particle energy,

leading to an impulse amplitude that is systematically lower for higher energy particles.

Thus, the incident particle energy is underestimated for more energetic particles. This is

problematic for 14.7 MeV D3He protons in the laboratory since calibration of the SBD itself

is typically accomplished using low-energy α-particles from the decay of heavy isotopes, such

as 226Ra.

The energy calibration of the MCA is defined by a linear mapping between channel and

incident particle energy. Four α-particles from a 226Ra source, with energies in the range of

4 - 8 MeV20, are measured using the MCA. The energies of these particles as a function of

measured channel, as shown in Fig. 6, are then fit to the form
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EM = a1 + a2 ×NC (1)

where NC is the MCA channel, EM is the energy of a particle as measured by the MCA, and
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a1 and a2 are the fit coefficients. This calibration fit is extrapolated to both lower energies

(e.g. 3 MeV DD-p) and higher energies (e.g. 14 MeV D3He-p). The linearity of the MCA

is quantified by computing the residual of the fit, defined as

R ≡ EI − EM (2)

where EI is the known energy of the α-particle and EM is the energy of the particle as

measured by the calibrated MCA. The residual is thus a measure of how much a measured

particle energy deviates from the expected particle energy.

These residuals, along with residuals of the 14 MeV and 3 MeV fusion products, are shown

in Fig. 7 for two cases: (a) the old MCA system, which does not deconvolve the preamplifier

IRF, and (b) the new MCA, which performs hardware deconvolution in real-time. The de-

convolution algorithm essentially linearizes the impulse height ouput of the SBD with respect

to incident particle energy, resulting in more accurate measurements (lower residuals). The

residuals of the fusion products at 3 MeV and 14.7 MeV are computed using the difference

between simulated and measured values of the proton energies at 90◦ with respect to the ion

beam, as shown in Fig. 8. For such charged-particle measurements, a thin aluminum filter
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(6 µm) is used to block SBD from the large flux of low-energy (< 140 keV) scattered beam

ions to prevent the SBD from damage. The measured energy spectra are corrected for the

charged-particle ranging through this filter. One significant component of the residuals at

3 MeV, and to a lesser extent, at 14.7 MeV, are the uncertainties of the expected energy

of fusion products incident on the SBD (at 90◦). These energies are computed by adjusting

the birth energies of the fusion products for beam kinematics (discussed in the next section)

and ranging down the particle from its birth energy through several microns of the target

material, ErD2. The latter correction is complicated by the fact that one must know where

reactions occur within the target. This depth is computed in a simulation in which particles

are ranged through the appropriate amount of ErD2 as they leave the target at a given

angle. The energies are simulated to within an accuracy of 10-20 keV. These simulations

are discussed in the following section. Another component that adds to the residuals of the

fusion products is the precision of the energy measurement, which depends on experimental

factors (e.g. how well the SBD position is known); these factors lead to a measurement pre-

cision of 20 keV. The major component of the residuals of the 3 MeV and 14.7 MeV fusion

products are attributed to these two components, and the total systematic uncertainty of

charged-particle energy measurements with this system is ±50 keV.

C. Beam-Target Physics Simulation

Predictive capability of the energy and fluence of fusion products is important for ver-

ifying the calibration of the charged-particle diagnostics suite and the associated-particle

technique,21 where one relies on in-situ measurements of the fluence of 3 MeV protons to

determine the fluence of the associated 2.45 MeV neutrons from the DD fusion reaction.

To this end, a code was developed to simulate beam-target physics, including the slowing

down of charged-particle reactants and products, relativistic reaction kinematics, and the

differential angular cross-section for the fusion reactions of interest. The simulation takes

beam energy, current, species and cross-sectional area as inputs. The beam cross-sectional

area may be approximated using either the beam profiler or more accurate CCD data (from

the TVS) of beam area on target for a given run. The beam current and area are used to

determine fusion reaction rates; the former may be measured using the faraday cup. Note

that in lieu of a beam velocity selector, a residual gas analyzer is used to verify that the
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FIG. 9. Simulated results for a beam of deuterons (with four different energies) incident on an

ErD2 target. The target forms an angle of 45◦ with respect to the beam, consistent with the

lab setup shown in Fig. 8. Shown are (a) normalized DD-p counts per steradian as a function of

laboratory angle (b) normalized DD-n counts per steradian as a function of laboratory angle (c)

the DD-n/DD-p count ratio as a function of laboratory angle (d) normalized DD fusion reaction

rate per µm as a function of depth into target and (e) Orientation of the beam and target inside

the target chamber for these simulations.
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FIG. 10. Measured energy spectra for (a) an Americium-241 source (b) the LEIA DD proton source

and (c) the LEIA D3He proton source. The LEIA proton data were acquired with a 6 µm Al filter

placed in front of the SBD. The amount of line broadening due to this filter is small (∼ 20 keV) but

the downshift is significant and must be taken into account for characterization of the mean proton

energies. The americium source is used to infer the broadening due to the SBD, preamplifier and

MCA. This instrument linewidth is then deconvolved from the measured linewidth of the fusion

protons, shown here, in order to determine the linewidth of the fusion products source itself.

15



measured beam current is dominated by the ions of interest (typically 3He+ or D). Outputs

of the simulation for practical cases are shown in Fig. 9. These simulations were made for

100 keV, 120 keV, 140 keV and 170 keV deuteron beams incident on an ErD2 target. The

outputs are normalized to the total number of fusion counts per second to illustrate relative

differences between beam energies.

As shown in Fig. 9a-c, the fluence of DD protons and neutrons peak towards the forward

beam direction (0◦ laboratory angle). The forward peaks in these plots are the result of

the forward momentum introduced into the system by the deuteron beam. The ratio of

DD-n to DD-p is essential for any associated-particle measurements. For these types of

measurements, the DD neutron fluence at a given location in the target chamber is inferred

by measurement of DD protons using an adjacent SBD. Correction factors must be applied

between different laboratory angles to infer neutron yields properly. Corrections must also

be applied for neutron scattering in the target chamber, as discussed in the next section.

This technique has been used for neutron diagnostic development, as discussed in Sec. IV.

Fig. 9d shows the normalized DD reaction rate as a function of target depth; as expected,

reactions occur within a few microns corresponding to the range of the deutrons in ErD2.

The beam-target physics code has also been used to obtain the expected energies of

the charged fusion products at a given location in the target chamber and to understand

the sources of line broadening for the 3 MeV and 14.7 MeV fusion-protons. The former is

used to verify the MCA calibration, discussed in the previous section, while the latter is

important for characterization of the instrumental linewidth of diagnostics being developed.

The linewidth as measured by the SBD is due in part to the instrument response of the

charged-particle diagnostics suite (SBD + preamp + MCA combination) and also due to

beam-target physics. These two components must be quantified to determine what the actual

incident linewidth is. This has been achieved by exposing the SBD to α-particles from a

241Am source, as shown in as shown in Fig. 10a. The amount of broadening introduced by

the charged-particle suite is ∼70 keV (FWHM). Shown in Figs. 10b-c are the energy spectra

of DD and D3He protons, respectively, as measured by the SBD at a distance of 14.5 cm

from the fusion product source and an angle of 90◦ with respect to the 140 keV deuteron

beam.

The mean energies of DD and D3He protons, after they exit the target at 90◦ with respect

to the beam, have been measured to be 3.06 ± 0.04 MeV and 14.58 ± 0.04 MeV, respectively.
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This was achieved by fitting the measured spectra shown in Figs. 10b-c and then up-shifting

the mean energies from the fit through the 6 µm Al filter (placed in front of the SBD for

these measurements). The mean values predicted by the beam-target simulation are 3.04

MeV and 14.67 MeV, which are within the statistical and systematic uncertainties associated

with the measurement and calibration of the charged-particle suite. The actual linewidth

of the fusion product source is the measured linewidth (Figs. 10b-c) after the instrumental

linewidth has been deconvolved (Fig. 10a). After correcting for the instrumental width of

∼ 70 keV (FWHM), the linewidths of the DD and D3He fusion-products source are∼150 keV

and ∼140 keV (FWHM). The beam-target simulation is able to account for approximately

half of the source linewidth. Though it simulates kinematics and ranging of beam ions

and fusion products in the target, the simulation does not include energy straggling or finite

source size effects. We attribute the remainder of the unaccounted linewidth to these effects.

D. MCNP Simulations

The development of neutron diagnostics, in particular yield diagnostics, requires a thor-

ough characterization of scattering effects in the target chamber. The Monte-Carlo simu-

lation code MCNP22 was used for this purpose. An accurate model of the target chamber

itself, including all significant sources of scattering within the chamber, was used for this

simulation; materials and geometry were specified from solid models. Simulations were con-

ducted assuming an isotropic point source of DD neutrons with a birth energy of 2.45 MeV

in the target. Figures 11a-b show a top and side view of the target chamber, with contours

of normalized neutron fluence scaled by 4πR2; deviations from unity thus represent a di-

vergence from a 1/r2 scaling. The black lines shown in the figure indicate the position of

the water-cooled target holder and the target chamber walls. For the top view, shown in

Fig. 11a, the D beam enters from the bottom, striking the target at a 45 angle. Similarly,

in the side view, shown in Fig. 11b, the D beam enters normal to the figure into the page.

It is clear from these simulations that scattering corrections are significant, even for a

large cylindrical target chamber (60 cm × 15 cm). The target, which is angled at 45◦, casts a

shadow along the entire chamber where the neutron fluence is significantly lower; the fluence

generally increases as one approaches the target chamber wall, where it is enhanced by nearly

50%. On the non-shadow side, where neutron diagnostics are typically placed for calibration,
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FIG. 11. MCNP simulation of neutron scattering within the LEIA target chamber showing (a) top

view and (b) side view of the chamber. Shown are contours of normalized neutron fluence scaled by

4 π r2; deviations from unity represent a divergence from a 1/r2 scaling. The black lines indicate

the water-cooled target. Significant correction factors must be applied to neutron yields inferred

from diagnostics. At a distance of 10 cm from the target a correction factor of approximately

0.80 needs to be applied to the measured fluence to correctly infer the neutron yield from a local

measurement.

significant corrections still need to be applied to experiments. Even at a distance of 10 cm

from the source, the neutron fluence is enhanced by 20%. Neutron diagnostics are calibrated

a few centimeters from the source. This choice minimizes the scattering correction, but is

sufficiently far from the source that uncertainties in the absolute source position, typically

2 mm, are insignificant.

These detailed simulations of neutron scattering have been essential for the development

and calibration of a CR-39-based neutron yield diagnostic used at both Omega and the NIF,

as well as an indium activation-based yield diagnostic21,23 developed by Sandia National

Laboratories for use at Omega, Z and the NIF.
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of protons, each with well-known mean energies. The WRF is then calibrated using this data.

IV. DIAGNOSTICS DEVELOPMENT

A number of nuclear diagnostics have been developed, tested and calibrated using LEIA.

In the past, LEIA has been primarily utilized for characterization of CR-39 solid-state

nuclear track detectors, which form the basis for many nuclear diagnostics; these works

have led to a number of publications on the CR-39 response to charged-particles24–26 and

coincidence counting with CR-39.27 Over the last several years, an increasing amount of

time has been spent calibrating diagnostics to better precision and developing other types

of diagnostics; each of the diagnostics are briefly outlined in what follows.

A. Wedge-Range-Filter Spectrometers

Wedge-Range-Filter (WRF)28 proton spectrometers are composed of an aluminum wedge

positioned onto a piece of CR-39. The WRF spectrometers, capable of measuring proton

spectra in the energy range of 4 MeV - 20 MeV, have been in use at Omega29,30 for a number

of years and have more recently been used on the NIF.31 These spectrometers are routinely

used to measure primary and secondary fusion yields, shell ρR from the downshift of charged

fusion products and fuel ρR from scattered fuel ions (“knock-ons”).

After manufacture, the WRFs are calibrated and performance tested using the acceler-

ator before they are sent out for use at Omega and the NIF. WRF proton energy spectra

acquired on LEIA is shown in Fig. 12. WRFs are also periodically tested for surface de-
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gredation between shots on the NIF. The aforementioned upgrades to the charged-particle

diagnostics suite have recently allowed for more precise calibrations of the WRFs. Uncertain-

ties in the energy calibration of WRFs are in the range of ±150 keV and this has enabled

new physics studies. For example, using multiple WRFs, it is now possible to study the

P2/P0 ρR asymmetry mode in ICF implosions, in-flight, to a precision in P2/P0 of ± 0.07.

Techniques are also being developed to measure the fuel ion temperature (Ti) using the

line-width of charged-fusion products. The line width, as measured by the WRF, consists of

several components, one of which is the doppler broadening due to finite Ti. To extract this

component from the WRF data, the instrumental broadening due to the WRF itself must

be well characterized. These studies are being carried out on LEIA.

B. CR-39-based DD-n Yield Diagnostic

A novel, CR-39-based DD-neutron yield diagnostic, developed on LEIA and tested on

OMEGA, measures absolute DD yields as well as the fraction of neutron backscatter at a

given location32. The diagnostic (Fig. 13a) consists of a piece of CR-39 partially covered by

a foil of 100 µm thick polyethylene (C2H4), which serves to enhance the neutron-induced

proton signal on the CR-39 directly behind the foil. The uncovered CR-39 serves as a

background region for subtraction of both intrinsic background and recoil protons produced

in the CR-39 itself. The background-subtracted signal from the polyethylene-covered re-

gion of the CR-39 therefore measures only recoil protons generated in the polyethylene,

and is directly proportional to the absolute neutron fluence. Furthermore, because only

polyethylene-generated protons are detected, the detector is sensitive only to DD neutrons

incident from the front, a distinct advantage over other neutron detectors that are sus-

ceptible to backscatter. By placing polyethylene behind as well as in front of the CR-39,

it is possible to measure the relative amount of neutron backscatter (by comparing the

polyethylene-produced signal on the back side to the polyethylene-produced signal on the

front side).

The neutron detection efficiency and background subtraction methods used for this diag-

nostic were developed on LEIA using the associated particle technique, whereby the absolute

DD-neutron fluence at the detector is inferred from the measured DD-proton fluence at an

adjacent SBD. Sample data taken on LEIA is shown in Fig. 13b. In the top right cor-
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FIG. 13. (a) CR-39-based DD-n yield diagnostic components, including a 5 cm diameter aluminum

housing, 3 mm thick stainless steel proton filter, 100 µm polyethylene (C2H4) neutron multiplier

and the CR-39 detector (b) Image of CR-39 from a DD-n detector (top right corner), exposed to a

known fluence of 2.45 MeV DD-n’s on LEIA. In this image, darker pixels indicate regions of higher

recoil protons; the four dark spots in the image are alignment fiducials. The detector was fielded

with the left side of the CR-39 covered with 100 µm of polyethylene (C2H4). A horizontal lineout

across the center of the detector is shown in the plot. Note the enhancement of recoil protons due

to the polyethylene.

ner of the figure is an image of the CR-39 detector, with the left side covered with 100

µm polyethylene. In this image, darker pixels represent a greater number of recoil proton

tracks. Alongside the image is a lineout of proton fluence across the detector, which shows

the enhancement of recoil protons due to the polyethylene. The neutron yield corresponding

to this data is inferred from the adjacent SBD measurement, which must be corrected for

neutron scattering, finite source size and kinematic differences in the DD-p and DD-n yields.
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Thus, precise characterization of the fusion products source, as determined by the beam-

target physics simulations, MCNP characterization of neutron scatter in the target chamber

and the TVS diagnostic are central to development of this diagnostic. Several aspects of the

diagnostic are still being developed,33 including directionality of incident neutrons, effects

of prolonged exposure to vacuum, and variability of CR-39 response to protons.

C. Indium Activation Neutron Yield Diagnostic

The indium activation neutron yield diagnostic21,23 relies on the activation and subsequent

decay of the activated material to infer neutron yield at Z and the NIF. Indium “slugs” are

activated during experiments by an unknown number of DD or DT neutrons through the re-

action 115In(n,n’)115mIn. The meta-stable 115In will then decay by emitting 336 keV gammas

(the threshold energy for activation), which are measured using a high-purity germenium

(HPGe) detector. A calibration factor, known as the F factor, relates the measured gamma

yield to the total neutron yield.

The F factor is generally obtained through experimental calibration and encompasses

detector efficiencies. Note that on Z, one must also consider the competing reaction,34 which

stems from the strong x-ray background: 115In(γ,γ’)115mIn. Calibration of this diagnostic

on LEIA is thus unique since F factors may be obtained for an x-ray free environment.

Preliminary experiments on LEIA were used to determine the F factors for a number of

indium samples. Samples of various sizes were activated within approximately 30 minutes

at DD reaction rates of about 106. The samples were then removed from the target chamber

within minutes of after the shot; the gammas were then counted using the HPGe. As in

the case of the CR-39-based DD-n Yield Diagnostic, and as discussed in Secs. II B and

IIID, the target viewing system and simulation of neutron scattering were essential for

precise determination of the F factor. In addition, stability of the fusion reaction rate is

particularly important over these timescales. This is because the indium is continuously

bombarded with neutrons for extended periods of time on LEIA. If the neutron flux is not

stable, it is difficult to assign an F factor to the diagnostic. As discussed in Sec. IIA, recent

improvements to the gas control system have stabilized the reaction rate significantly and

will benefit future F factor experiments.
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D. Particle Time-of-Flight (pTOF) Diagnostic

The particle time-of-flight diagnostic (pTOF) is used at OMEGA and the NIF to mea-

sure the D-3He shock-bang and DD compression-bang time by resolving fusion protons and

neutrons to an accuracy of ±150 ps. The diagnostic consists of a chemical-vapor-deposited

(CVD) diamond, biased to several hundred volts, and a filter in the front of the diamond to

reduce the large x-ray background present in indirect-drive implosions at both OMEGA and

the NIF. These measurements, when combined with the shock ρR as measured by WRFs,

strongly constrain implosion models. Improvements to the overall accuracy of the diagnostic

are therefore essential to the ignition effort.

One improvement that will be implemented at the NIF is to increase the bias voltage

on the detector. In addition to improving the response-time of the diagnostic, saturation

effects that may be caused by the large hohlraum x-ray signal will be reduced. Various bias

voltages are being tested on the accelerator before such a capability is implemented at the

NIF.

Critical to the interpretation of the pTOF data is a thorough understanding of the in-

strument response function and sensitivity to protons. Single-particle and integrated charge

studies are being conducted on the accelerator by ranging down 14.7 MeV protons to ener-

gies of interest. The charged-particle diagnostics suite is essential in calibrating pTOF to

the SBD during integrated charge studies. Moreover, the accelerator does not generate hard

x-rays, allowing these studies to be carried out without an x-ray background.

V. CONCLUSION

The MIT Linear Ion Accelerator (LEIA) has undergone several upgrades, which have

improved our capability to develop advanced diagnostics for Omega, Z and the NIF. Imple-

mentation of a new ion source and custom gas control system now provides better regulation

and improved stability of the fusion-product source. The addition of a new charged-particle

data acquisition system has allowed for more precise energy characterization of the fusion

products and therefore better calibration of charged-particle diagnostics. In-situ measure-

ments of the on-target beam profile, made with a CCD camera, together with simulations of

neutron scattering within the target chamber, have facilitated the development of neutron
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yield diagnostics. These improvements, implemented largely by graduate and undergraduate

students, allow better support of existing diagnostics and the development of new diagnostics

in aid of the national program.
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