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The hierarchical equations of motion technique has found widespread success as a tool to generate
the numerically exact dynamics of non-Markovian open quantum systems. However, its application
to low temperature environments remains a serious challenge due to the need for a deep hierarchy
that arises from the Matsubara expansion of the bath correlation function. Here we present a hy-
brid stochastic hierarchical equation of motion (sHEOM) approach that alleviates this bottleneck
and leads to a numerical cost that is nearly independent of temperature. Additionally, the sHEOM
method generally converges with fewer hierarchy tiers allowing for the treatment of larger systems.
Benchmark calculations are presented on the dynamics of two level systems at both high and low
temperatures to demonstrate the efficacy of the approach. Then the hybrid method is used to generate
the exact dynamics of systems that are nearly impossible to treat by the standard hierarchy. First,
exact energy transfer rates are calculated across a broad range of temperatures revealing the devi-
ations from the Förster rates. This is followed by computations of the entanglement dynamics in a
system of two qubits at low temperature spanning the weak to strong system-bath coupling regimes.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4822043]

I. INTRODUCTION

Despite a long history and intense interest, there are still
relatively few methods capable of generating the numerically
exact dynamics of open quantum systems across a wide range
of system parameters. Among the most successful numeri-
cal methods are those derived from the path integral formal-
ism, such as the hierarchical equations of motion (HEOM),1, 2

the quasi-adiabatic path integral (QUAPI) approach,3, 4 or di-
rect integration of the path integral expression through Monte
Carlo methods.5, 6 The widespread success of the path integral
formalism in open quantum systems lies in the ability to an-
alytically integrate out the (Gaussian) environmental degrees
of freedom. This procedure leads to the Feynman-Vernon in-
fluence functional which accounts for all of the effects of
the bath on the system.7, 8 The price to be paid for this sim-
plification, however, is that the influence functional is non-
local in time, with a correlation time that depends on the in-
trinsic relaxation time of the bath, the temperature, and the
system-bath coupling strength. The key insight in develop-
ing the QUAPI formalism was that, in many cases, the bath
correlation function, and hence the influence functional it-
self, decays relatively quickly so that the propagation may
be obtained through a small number of deterministic tensor
multiplications. Alternatively the HEOM replaces the influ-
ence functional by a set of auxiliary density matrices that
account for the non-Markovian effects of the bath, provided
that the spectral density may be represented in Drude-Lorentz
form. Essentially, both the HEOM and QUAPI represent ex-
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pansions of the influence functional in terms of the memory
time of the environment, and as a result they often become
prohibitively expensive for strong system-bath interactions,
highly non-Markovian environments, or low temperatures.

The main result of this work is a numerical algorithm
that significantly extends the parameter regimes accessible to
the HEOM, although the general approach outlined here is
equally applicable to QUAPI. As is well known, the quantum
bath correlation function that appears in the influence func-
tional is a complex function with real and imaginary parts.
The real part is responsible for the fluctuations from the en-
vironment with a magnitude that increases with temperature,
whereas the imaginary part is temperature independent and
accounts for the dissipative effects of the environment. All of
the methods mentioned above treat these two components on
the same footing, but this restriction is not necessary or in-
deed desirable. Here we show that it can be advantageous to
treat the real and imaginary parts of the correlation function
by different methods. The central idea is to perform a stochas-
tic unraveling of the real part of the bath correlation function
appearing in the influence functional. The remaining imagi-
nary term will then be treated by the HEOM.

The stochastic unraveling of the influence functional has
recently formed the basis of a new approach for computing
the exact dynamics of open quantum systems.9–12 The unrav-
eling is achieved through a series of Hubbard-Stratonovich
transformations that ultimately result in two coupled lin-
ear stochastic differential equations describing the respec-
tive forward- and backward-time propagators. As a Monte
Carlo, wavefunction-based approach, this scheme appears
quite promising for computing the exact dynamics of large
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systems. Performing a Hubbard-Stratonovich transformation
only on the real part of the bath correlation function in the
influence functional generates an auxiliary field that is purely
real. If one stops at this point and ignores the remaining imag-
inary part of the bath correlation function, then this proce-
dure leads to an evolution equation identical to that of the
Haken-Strobl model, except that the Gaussian noise is col-
ored instead of white. In fact, numerical simulations in this
case are no more difficult than the Haken-Strobl model it-
self, and can be readily applied to very large systems.13, 14

However, due to the neglect of the dissipative aspects of the
environment, detailed balance is recovered only at infinite
temperature.

Correctly treating the imaginary part of the correlation
function appearing in the influence functional by a stochastic
unraveling is more complicated. It requires a complex auxil-
iary field that introduces a corresponding complex noise term
into the stochastic evolution equations.15 Consequently the
norm of the individual realizations of the wavefunction is not
conserved during the propagation. Of course the ensemble av-
erage is perfectly normalized, but this norm loss at the realiza-
tion level greatly degrades the convergence properties of the
Monte Carlo procedure. In principle, these difficulties may
be circumvented through the use of a Girsanov transforma-
tion and other numerical schemes, but the resulting stochastic
Schrödinger equations are generally nonlinear.9, 10

Here, we present an approach that essentially combines
the strengths of the stochastic and deterministic methods,
while mitigating their respective difficulties. The central idea
is to perform a stochastic unraveling only of the real part of
the bath correlation function appearing in the influence func-
tional. The remaining imaginary term can then be treated by
QUAPI or the HEOM. In fact, similar ideas have been previ-
ously proposed, although generally coupled with further ap-
proximations. For example, Stockburger and Mak have ap-
plied this approach in the context of QUAPI, although the
numerical implementation was restricted to an environment
that was nearly Markovian.16 In subsequent work, they treated
the real part of the influence functional exactly through a
Hubbard-Stratonovich transformation, as is also used here,
but a Markovian approximation was made for the dissipative
term.17 Although approximate, this approach leads to a single,
closed equation of motion for the reduced density matrix that
resembles Kubo’s stochastic Liouville equation. Additionally,
Tanimura outlined such an approach within the HEOM for-
malism in Ref. 1 which was referred to as the Fokker-Planck
equation with Langevin forces, but the proposed algorithm
and preliminary numerical results were only valid in the high
temperature limit. A similar result was also derived from a
purely stochastic perspective in Ref. 18. While the formal
results in Refs. 1 and 18 are exact in principle, the simple
description of the real and imaginary parts of the correla-
tion function by stochastic and deterministic schemes, respec-
tively, leads to an unstable numerical algorithm which has
limited their practical application. Through the introduction
of a reference temperature, here we propose an improved de-
composition scheme that leads to a substantial improvement
over the previous methods. It is shown that a suitable choice
of the reference temperature can provide an optimal balance

between the stochastic sampling and deterministic evolution.
We make no approximations and treat the non-Markovian
characteristics of the bath exactly, demonstrating that the hy-
brid stochastic hierarchy approach is widely applicable across
a broad range of system parameters including, in particular,
the low temperature, strong coupling regime.

As with the standard HEOM, the spectral density of the
bath is restricted to be of Drude-Lorentz form. However, this
restriction offers many advantages. In this case, the imagi-
nary part of the bath correlation function consists of a single,
temperature-independent exponential term. Thus, the only
convergence parameter with respect to the depth of hierar-
chy is determined by the reorganization energy and the time
scale of the bath—the infinite summation over the Matsub-
ara frequencies is performed exactly through a Monte Carlo
sampling of the auxiliary stochastic field. The real power of
this approach over the standard HEOM is that it is valid for
arbitrary temperatures with a numerical cost that is nearly in-
dependent of temperature. In addition, because the imaginary
part of the bath correlation function is generally of smaller
magnitude than the real part and also decays more rapidly,
the stochastic hierarchy can typically be truncated at a much
lower tier than with the standard approach. Thus, in principle,
one can treat larger systems with the hybrid approach. The
only drawback is that a stochastic average over the indepen-
dent HEOM evolutions is required. However, our calculations
so far have indicated that the stochastic average generally con-
verges rapidly, and of course, Monte Carlo algorithms can be
trivially parallelized.

In Sec. II, the hybrid stochastic hierarchy equations of
motion (sHEOM) are formalized. Following this, benchmark
calculations of two-level systems are presented in Sec. III for
which standard hierarchy results can be obtained. Then en-
ergy transfer rates in a model donor-acceptor system are com-
puted across a broad range of temperatures. Finally, the en-
tanglement dynamics in a system of two qubits are presented
at near zero temperature spanning the weak to strong system-
bath coupling regimes.

II. FORMALISM

A. Preliminaries

For clarity we consider only one-dimensional systems
with continuous degrees of freedom. For the case of discrete
systems, the path integral formalism is most readily developed
either through the use of Grassmann variables2 or in the map-
ping representation.19 However, our final working expressions
are valid for either continuous or discrete systems and numeri-
cal results will be presented for the latter. We consider generic
system-bath Hamiltonians of the form, Ĥ = Ĥ0 + Ĥsb,
where

Ĥsb = 1

2

∑
j

⎡
⎣p̂2

j + ω2
j

(
x̂2

j − cj

ω2
j

V̂ (Q̂)

)2
⎤
⎦ . (1)

The specific form of the system Hamiltonian, Ĥ0, is irrelevant
at this point and need not be specified. The thermal bath is
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composed of independent harmonic oscillators characterized
by their respective mass-weighted coordinates, x̂j , and mo-
menta, p̂j , with frequencies ωj and coupling constants cj to
the system degrees of freedom through the interaction poten-
tial V̂ (Q̂), where Q̂ denotes a system coordinate.

Assuming that the bath remains in thermal equilibrium
and that the initial state of the composite system factorizes
such that ρ(0) = ρs(0)ρb(0), then the environmental degrees
of freedom may be integrated out analytically.7, 8 As a result
the path integral expression for the forward-backward prop-
agation of the reduced density matrix is succinctly given by

U (xf , yf , t ; x0, y0, 0)

=
∫ x(t)=xf

x(0)=x0

D[x]
∫ y(t)=yf

y(0)=y0

D[y] exp

(
i

¯
(S0[x] − S0[y])

)

×F [x, y] , (2)

where S0[x] denotes the classical action function associated
with the bare system Hamiltonian, H0, computed along the
path starting at x0 at t = 0 and ending at xf at time t.
All of the effects of the environment on the system dy-
namics are accounted for by the Feynman-Vernon influence
functional,7 which, for future convenience, is decomposed as
F[x, y] = Fr[x, y]Fi[x, y]Fb[x, y] where the respective terms
are associated with the real part of the bath correlation func-
tion (Fr[x, y]), the imaginary part (Fi[x, y]), and the static bath
renormalization (Fb[x, y]). Each term is given explicitly as

Fr [x, y] = exp

(
− 1

¯

∫ t

0
dt ′

∫ t ′

0
dt ′′V ×(t ′)Kr (t ′− t ′′)V ×(t ′′)

)
,

Fi[x, y] = exp

(
− i

¯

∫ t

0
dt ′

∫ t ′

0
dt ′′V ×(t ′)Ki(t

′ − t ′′)V ◦(t ′′)

)
,

Fb[x, y] = exp

(
− i

¯

∫ t

0
dt ′ λV ×(t ′)V ◦(t ′)

)
, (3)

where the notation V ×(t) = V (x(t)) − V (y(t)) and V ◦(t)
= V (x(t)) + V (y(t)) has been introduced, along with the de-
composition of the bath correlation function into its real, Kr,
and imaginary, Ki, parts:

K(t) = Kr (t) + iKi(t) (4)

=
∫ ∞

0

dω

π
J (ω)

[
coth

(
¯βω

2

)
cos(ωt) − i sin(ωt)

]
. (5)

The spectral density function,

J (ω) = π

2

∑
j=1

c2
j

ωj

δ(ω − ωj ), (6)

contains all of the relevant features in terms of the system
dynamics.

The HEOM requires that the bath is described by the
Drude-Lorentz spectral density,

JD(ω) = 2λωc

ω

ω2 + ω2
c

, (7)

where ωc is the cutoff frequency of the bath and the reorgani-
zation energy λ is defined as

λ = 1

2

∑
j=1

c2
j

ω2
j

= 1

π

∫ ∞

0
dω

J (ω)

ω
, (8)

where the second equality is obtained in the continuum limit.
For the Drude spectrum, the corresponding bath correlation
function may be computed analytically and the time depen-
dence is of multi-exponential form,

Kr (t) = λωc cot(¯βωc/2)e−ωct + 4λωc

¯β

∞∑
j=1

νj

ν2
j − ω2

c

e−νj t ,

(9)
Ki(t) = −λωce

−ωct ,

where the Matsubara frequencies are defined as νj = 2πj

¯β
.

With these preliminaries, the formulation of the sHEOM
is rather straightforward. In Sec. II B, a Hubbard-Stratonovich
transformation is first performed on Fr[x, y], the influence
functional containing the real part of the bath correlation
function.12, 17, 20 Then in Sec. II C, the remaining imaginary
part is developed in a hierarchical expansion. Ultimately the
expressions for the time evolution of the reduced density ma-
trix are formally identical to those of the standard HEOM,
except that here the Hamiltonian is stochastic.1, 18

B. Partial stochastic unraveling

The Hubbard-Stratonovich transformation is a Gaussian
integral identity. Physically, it allows for the decomposition of
an interacting system into separate, non-interacting systems
but subject to the influence of a common auxiliary field.21 We
have recently employed such an approach in the case of the
equilibrium reduced density matrix which led to a highly effi-
cient numerical algorithm.12, 22, 23 For real time dynamics, this
transformation was applied to the entire influence functional
in Ref. 9 leading to a set of stochastic Schrödinger equa-
tions. Here we apply the transformation only to the real part
of the correlation function in the influence functional as in
Refs. 1 and 17, which introduces the corresponding real, aux-
iliary field, ξ (t). As such, the term Fr[x, y] is equivalently rep-
resented as

Fr [x, y] =
∫

D[ξ ] Nξ exp

(
− 1

2¯

∫ t

0
dt ′

∫ t

0
dt ′′ ξ (t ′)

×K−1
r (t ′ − t ′′)ξ (t ′′) + i

¯

∫ t

0
dt ′ξ (t ′)V ×(t ′)

)

=
∫

D[ξ ] P [ξ ] exp

(
i

¯

∫ t

0
dt ′ξ (t ′)V ×(t ′)

)

=
〈
exp

(
i

¯

∫ t

0
dt ′ξ (t ′)V ×(t ′)

)〉
ξ

, (10)

where Nξ denotes the normalization of the Gaussian func-
tional integral. The Hubbard-Stratonovich transformation is
valid provided that Kr(t) is positive semi-definite, which is
ensured in this case since it is defined by a covariance func-
tion of the bath. Performing the Gaussian integration over ξ (t)
clearly leads back to the original expression for Fr[x, y] in
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Eq. (3). The normalization of the functional integral implies
that the Gaussian term in Eq. (10) can serve as a true probabil-
ity measure, P[ξ ], which leads to the subsequent equalities in
Eq. (10). These features allow for the interpretation of ξ (t) as
a colored noise driving the dynamics with one- and two-time
correlation functions that obey the relations

〈ξ (t)〉 = 0,
(11)

〈ξ (t)ξ (t ′)〉 = ¯Kr (t − t ′).

Since the unraveled influence functional in Eq. (10) and
the bath renormalization in Eq. (3) are both local in time, they
can be written as additional action terms such that the partially
unraveled propagator is given by

U (xf , yf , t ; x0, y0, 0)

=
〈∫ x(t)=xf

x(0)=x0

D[x]
∫ y(t)=yf

y(0)=y0

D[y] exp

(
i

¯
(S0[x] − S0[y])

)

× exp

(
i

¯
(S1[x] − S1[y])

)
Fi[x, y]

〉
ξ

, (12)

where S0 is the classical action function associated with the
bare system Hamiltonian H0. The noise and potential renor-
malization are included in the additional action term,

S1[x] =
∫ t

0
dt ′ ξ (t ′)V (x(t ′)) − λV (x(t ′))2 . (13)

Alternatively, it is also apparent that a modified action
S̃[x] = S0[x] + S1[x] can be defined that is generated from
the corresponding time-dependent (stochastic) Hamiltonian,

H̃ (ξ ; t) = Ĥ0 − ξ (t)V̂ (x̂) + λV̂ (x̂)2 . (14)

This interpretation will be used in the ensuing developments.
In a similar manner one may perform an additional

Hubbard-Stratonovich transformation on the remaining por-
tion of the influence functional, Fi[x, y], that ultimately leads
to the stochastic Schrödinger equations of Ref. 9. However,
in this case the auxiliary stochastic fields are required to be
complex which leads to serious numerical difficulties due to
the associated loss of norm of the individual wavefunction
realizations.15 Therefore, we stop here while the auxiliary
field is well behaved and develop Fi[x, y] in a hierarchical ex-
pansion following Ref. 1. It should be mentioned, however,
that the QUAPI formalism could be equally applied to the
imaginary part of the bath correlation as proposed in Ref. 16.

C. Hierarchical expansion

Specifying to the Drude-Lorentz spectral density, then
the time dependence of the bath correlation function is of a
purely exponential form (see Eq. (9)). For such correlation
functions, the hierarchical equations of motion have proved
to be a highly efficient numerical approach to compute the
exact dynamics of open quantum systems at moderately high
temperature. The standard approach, however, becomes ex-
tremely costly at low temperature. The source of this difficulty
is that the temperature dependence of the real part of the bath

correlation is expressed as an infinite summation over Mat-
subara terms. At low temperatures, many terms of the series
must be retained which gives rise to a very deep hierarchy
of equations before truncation is acceptable, although some
progress has been made recently by utilizing a Padé decom-
position of the bath correlation function.24, 35 The stochastic
approach developed in Sec. II B circumvents this difficulty
entirely by replacing the temperature-dependent terms in the
influence functional by a noise sampling procedure that is in-
dependent of the number of Matsubara frequencies. The re-
maining imaginary part of the correlation function appearing
in Fi[x, y] consists of only a single exponential term and is
independent of temperature.

At this point, one may follow the standard derivations of
the hierarchy expansion, leading to nearly identical results for
the equations of motion of the auxiliary density matrices.1, 2

For conciseness, this procedure will not be reproduced here
and we only present the final result. For a given realization of
the stochastic noise, ξ (t), the hierarchy equations of motion
are given by

∂

∂t
ρ̂n(ξ ; t) = −

(
i

¯
H̃ (ξ ; t)× + nωc

)
ρ̂n(ξ ; t)

− i

¯
V̂ ×ρ̂n+1(ξ ; t) − n

λωc

¯
V̂ ◦ρ̂n−1(ξ ; t), (15)

where the hyper-operator notations V̂ ×Ô = V̂ Ô − ÔV̂

and V̂ ◦Ô = V̂ Ô + ÔV̂ denote commutators and anti-
commutators, respectively. The stochastic Hamiltonian is
given in Eq. (14), and the associated noise statistics are
given in Eq. (11). The numerically exact reduced density ma-
trix is obtained after preforming the stochastic average, ρ(t)
= 〈ρ0(ξ ; t)〉ξ . The generalization to systems containing mul-
tiple independent baths is identical to those in Refs. 1 and
2 except that the stochastic Hamiltonians must also include
multiple independent noise terms. Equation (15) has been pre-
viously derived by Tanimura in Ref. 1 (cf. Eq. (6.35) therein),
and referred to as the Fokker-Planck equation with Langevin
forces. Similarly it was also derived from a purely stochastic
approach in Ref. 18 and used to study the low temperature dy-
namics of the spin-boson model. The closed stochastic equa-
tion for the density matrix obtained by Stockburger and Mak
is recovered when a Markovian approximation is made to the
imaginary part of the influence functional, in which case the
hierarchy truncates at the lowest level.17

D. Reference temperature

Unfortunately there is a formidable numerical instabil-
ity associated with the hierarchy as given in Eq. (15) that has
limited its practical application. If one considers the noiseless
case with ξ (t) = 0, then the resulting deterministic hierar-
chy equations of motion describe a purely dissipative quan-
tum bath. There is no physical limit in which such a case
occurs since thermal fluctuations are always present, even at
zero temperature. As a result the reduced density matrix ob-
tained from the noiseless version of Eq. (15) is not necessar-
ily positive semi-definite, although it is both Hermitian and
norm-preserving. This divergence is shown in the inset of
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FIG. 1. The convergence properties of the sHEOM as a function of the refer-
ence temperature T ′ in an unbiased two level system coupled to two indepen-
dent, identical baths at T = 300 K with electronic coupling, reorganization
energy, and cutoff frequency of J = 100 cm−1, λ = 2J, and ωc = J, re-
spectively. The axis labels NL and Ns refer to the number of hierarchy levels
and Monte Carlo samples required for convergence, respectively. The green
square symbols denote the choice β ′ = 2/ωc used here. The inset displays
the loss of positivity in the noiseless dynamics of Eq. (15) (T ′/T = 0), which
causes the sharp increase in the required number of Monte Carlo samples.

Fig. 1. Upon including the stochastic terms, positivity is
recovered on average, but the numerical convergence of the
Monte Carlo calculations is greatly retarded, particularly for
long-time simulations. Here we demonstrate that this prob-
lem can be largely mitigated by including a classical portion
of the real part of the influence functional in the hierarchy.17

Then the reduced density matrix is described by the standard
high-temperature hierarchy equations,

∂

∂t
ρ̂n(ξ ; t) = −

(
i

¯
H̃ (ξ ; t)× +nωc

)
ρ̂n(ξ ; t)− i

¯
V̂ ×ρ̂n+1(ξ ; t)

−nλ

¯

(
ωcV̂

◦ + i
2

β ′ V̂
×
)

ρ̂n−1(ξ ; t), (16)

and the weakened noise obeys the modified autocorrelation,

〈ξ (t)〉 = 0,
(17)

〈ξ (t)ξ (t ′)〉 = ¯[Kr (t − t ′) − γ (t − t ′)],

where the classical friction function is defined by

γ (t) = 2

π¯β ′

∫ ∞

0
dω

J (ω)

ω
cos(ωt) = 2λ

¯β ′ e
−ωct . (18)

In this approach, the temperature of the classical bath,
β ′ = 1/(kbT ′), is a free parameter that can take on any value
in the physically allowable range of 0 ≤ T ′ ≤ T. Outside of
this range the noise becomes complex, which is highly un-
desirable from a numerical standpoint. The general scheme
is depicted in Fig. 2 illustrating that one may tune the ref-
erence temperature, T ′, in the sHEOM method to combine
the strengths of the deterministic and stochastic approaches
in order to achieve optimal numerical convergence. Setting
T ′ = 0 recovers the original Eq. (15) proposed in Refs. 1 and
18 where the entire real part of the bath correlation function is
described by the noise. In the opposite limit, when T ′ = T then
only the quantum corrections to the correlation function are

FIG. 2. In the sHEOM scheme, the propagation to a fictitious temperature
T ′ is accomplished deterministically by the standard hierarchy, while the re-
maining portion of the real part of the bath correlation function is described
by the noise. The standard hierarchy describes the entire bath correlation
function deterministically and the original proposal in Eq. (15) describes the
entire real part stochastically.

treated stochastically. At sufficiently high temperature where
Kr(t) = γ (t), this case reduces to the standard deterministic
HEOM. Equations (16) and (17) constitute the central formal
developments of this work.

The impact of the choice of reference temperature on the
convergence properties of the sHEOM is shown in more de-
tail in Fig. 1 for an unbiased two level system coupled to two
independent, identical baths at 300 K. For T ′/T = 1, the tem-
perature dependent term in the deterministic hierarchy (last
term of Eq. (16)) accounts for almost all of Kr(t) so that con-
vergence requires many levels of the hierarchy, but only few
samples of the noise. As the reference temperature is low-
ered, the temperature-dependent deterministic component of
the hierarchy carries less weight as more of the bath corre-
lation function is described by the stochastic sampling. The
numerical convergence steadily requires more Monte Carlo
samples, but fewer hierarchy tiers. This behavior continues
until the temperature dependent, deterministic term becomes
negligible compared with the dissipative term such that the
required number hierarchy tiers is constant for T ′/T � 0.4.
However, near T ′ = 0 (Eq. (15)) the noiseless hierarchy be-
comes unstable as seen in the inset of Fig. 1 and the required
number of Monte Carlo samples increases rapidly. We have
found that the choice β ′ = 2/ωc (provided, of course, that
T ′ ≤ T), which equates the prefactors in the last term of
Eq. (16), generally preserves the positivity of the reduced den-
sity matrix and allows for quite stable simulations over long
timescales, while also keeping the depth of the hierarchy to
a minimum. For example, this choice allows for converged
results with nearly two orders of magnitude fewer Monte
Carlo samples than in Eq. (15) without increasing the required
number of hierarchy levels. The quantitative behavior seen in
Fig. 1 is somewhat system dependent, but we have found a
similar qualitative trend for all cases studied so far. We will
use the value β ′ = 2/ωc in all of the computations presented
below.

The numerical integration of the sHEOM requires only
a minor modification to the standard numerical approach to
the HEOM. First a realization of the stochastic noise trajec-
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tory is generated that is consistent with the autocorrelation
function given in Eq. (17). The numerical generation of Gaus-
sian noise with an arbitrary correlation function is discussed
in the Appendix. Following this, the stochastic Hamiltonian
(Eq. (14)) is formed and the integration of the hierarchy equa-
tions proceeds as usual. This procedure is then repeated until
the dynamics of the reduced density matrix is converged to
acceptable accuracy. Typically this is reached within 104–106

realizations of the noise.

III. NUMERICAL RESULTS

A. Two level systems

In order to demonstrate the efficacy of the sHEOM ap-
proach, we first present benchmark studies of two level sys-
tems for which results from the standard hierarchy can be in-
dependently computed.25 We consider the population dynam-
ics in the biased two level system studied in Ref. 26, where
each of the sites is coupled to an independent, identical bath.
The system Hamiltonian is given by Ĥ0 = �σ̂z + J σ̂x , where
� = 50 cm−1 and J = λ = 100 cm−1, with the cutoff fre-
quency ωc = 53 cm−1. Fig. 3(a) displays the standard hi-
erarchy dynamics at 300 K where the high temperature ap-
proximation is completely valid and no Matsubara terms are
required. The sHEOM results in Fig. 3(b) are very well be-
haved, and already at L = 0 most of the short time dynamics
are accurately captured. At this level, the dynamics are simi-
lar to the Haken-Strobl model except that the noise is colored
and constructed so as to correctly describe the real part of the
bath correlation function. Since the dissipative effects of the
bath are completely neglected at L = 0, the sites are equally
populated at equilibrium. Nevertheless, this approach has re-
cently been used to study diffusion processes in large unbi-
ased systems containing hundreds of sites,13, 14 and is valid as
long as the temperature is larger than the bandwidth of the
system. In Fig. 3, it is readily seen that the L = 2 results in the
stochastic approach are almost completely converged while
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FIG. 3. The convergence of the standard (a) and stochastic (b) HEOM with
respect to the number of tiers, L, at a temperature of T = 300 K. The bias,
electronic coupling, and system-bath coupling are 100 cm−1 while the cut-
off frequency is 53 cm−1. The sHEOM results are computed with N = 104

trajectories at each tier.
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FIG. 4. The convergence of the standard (a) and stochastic (b) HEOM at a
temperature of T = 10 K with respect to the number of tiers and Matsub-
ara terms (in (a)). The remaining parameters are the same as in Fig. 3. The
stochastic calculations required 105 Monte Carlo samples for convergence.
The cross-symbols on the ordinate denote the exact equilibrium values.

the corresponding standard HEOM results display highly er-
ratic behavior. At least L = 6 is required for the standard hier-
archy to obtain results of comparable accuracy to the sHEOM
approach at L = 3. Indeed, small differences are seen in the
standard hierarchy results up to L = 10. It should be noted
that even for L = 10, the standard HEOM is more efficient
than the stochastic approach at any level, but this advantage
is quickly lost as the system size increases or the tempera-
ture is lowered. Additionally, one could set the temperature
of the classical bath to the physical temperature (T ′ = T in
Eq. (16)) in which case the standard hierarchy is recovered
since the low temperature corrections are nearly negligible for
these parameters.

A more interesting benchmark case is displayed in
Fig. 4 for the same system as in Fig. 3 except with the tem-
perature lowered from 300 K to 10 K. Fully converged results
for the standard HEOM with respect to the number of Mat-
subara terms were possible for 4 and 6 hierarchy tiers, but
memory requirements limited convergence at level L = 8 to
8 Matsubara terms, and at L = 10 to only 4 Matsubara terms.
As can be seen by comparing the long-time behavior of the
dynamics to the exact equilibrium value obtained from imag-
inary time path integral calculations,12 most of these results
are not fully converged. The closest result to the exact limit
for the standard hierarchy is L = 6 with 12 Matsubara terms,
although without being able to converge the L = 8 calcula-
tions it is impossible to know a priori if this is an acceptable
result. In contrast, the sHEOM approach is completely free of
such demands. Fully converged results are readily obtained as
shown in Fig. 4(b). In addition as seen previously in Fig. 3,
the sHEOM calculations are nearly converged at a lower tier
than in the standard approach. In this case, the computa-
tional cost of the standard hierarchy with Matsubara terms at
L = 6 becomes comparable to that of the hybrid approach. In
the former case, one is required to integrate a single determin-
istic system of equations containing ∼106 density matrices,
while in the latter one must compute 105 Monte Carlo sam-
ples, but the system of equations contains only ∼20 matrices.
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This scaling becomes even more favorable as the system size
increases.

B. Energy transfer rates

As seen above, the sHEOM approach is capable of gen-
erating the numerically exact dynamics at both high and low
temperatures, as well as the correct equilibrium limit. Now
we turn to simulations that are difficult, if not impossible, to
carry out with the standard hierarchy, but become straightfor-
ward when using the hybrid approach. We first consider en-
ergy transfer in the two level donor-acceptor system consid-
ered in Ref. 26. The bias, electronic coupling, and cutoff fre-
quency are � = 50 cm−1, J = 20 cm−1, and ωc = 53 cm−1,
respectively. For this relatively weak value of the electronic
coupling, the Förster rates provide a reasonable approxima-
tion to the exact rates (see Fig. 5). In Ref. 26 the tempera-
ture was fixed at 300 K and the energy transfer rate from the
higher lying electronic state to the lower state was computed
as a function of the reorganization energy. However, the reor-
ganization energy is generally not an experimentally tunable
parameter. Here, we fix the reorganization at the maximum
energy transfer rate observed in Ref. 26 (λ = 20 cm−1) and
scan the temperature from 1 to 1000 K. In every case, the
results were converged with L = 2 hierarchy tiers and 104

Monte Carlo samples. The rates, k, are computed by fitting the
long-time population dynamics to a kinetic model for the en-
ergy transfer dynamics between the two sites.27 In this model,
the population of the initially excited state is given by

P1(t) = χeq + e−(1+χeq)kt

1 + χeq
, (19)

where χeq = P
eq
1 /P

eq
2 is the ratio of the equilibrium

populations computed from imaginary time path integral
calculations.12 In the results presented in Ref. 26, the accu-
racy of the Förster rates improved for very large or very small
values of the reorganization energy. Here, the Förster rates
are seen to systematically overestimate the exact results for

FIG. 5. The energy transfer rates computed from the exact sHEOM simula-
tions (black) and the standard Förster rates (red). The bias is � = 50 cm−1

and the electronic coupling, J = 20 cm−1, with the cutoff frequency ωc

= 53 cm−1 and reorganization energy λ = 20 cm−1. The exact results are
computed with L = 2 levels of the hierarchy and 104 Monte Carlo samples.

all temperatures. This error can be largely corrected by in-
cluding the fourth order correction in the electronic coupling
to the Förster rates, as shown in previous studies of diffusion-
limited electron transfer.28, 29

C. Entanglement dynamics

Finally, we present results on the entanglement dynam-
ics of two qubits at near zero temperature across a wide range
of system-bath coupling strengths. The system Hamiltonian is
given by Ĥ0 = ω0(σ̂ z

1 + σ̂ z
2 ) + J σ̂ x

1 σ̂ x
2 and the two qubits are

coupled to identical, independent baths through their respec-
tive σ̂ x operators. The system frequency and bath cutoff are
ω0 = 1.5J and ωc = 3J, respectively, in units where J = 1
sets the energy scale. This model was considered in Ref. 30,
and, although not shown, we have reproduced the high tem-
perature dynamics shown therein. The initial state is chosen
to be a completely entangled state, ρ(0) = I + σ̂ x

1 σ̂ x
2 + σ̂

y

1 σ̂
y

2
− σ̂ z

1 σ̂ z
2 , where I denotes the identity matrix. Fig. 6 displays

results for the concurrence with the low temperature, βJ = 50
converged with 106 Monte Carlo samples. At very weak cou-
pling, λ = 0.01J the results of the secular Redfield equation
are in excellent agreement with the exact numerical results.
However, the equilibrium state generated by the Redfield dy-
namics is always that given by the Boltzmann distribution
computed with respect to Ĥ0, regardless of the system-bath
coupling strength. Additionally, in the scaled units of time,
λt, the secular Redfield dynamics are independent of λ. Nev-
ertheless, for weak system-bath coupling, λ = 0.1J, the Red-
field dynamics still provide an accurate approximation to the
exact results. The entanglement displays an initial death fol-
lowed by a subsequent reappearance and slow equilibration.31

In contrast to the Redfield results, the exact dynamics cor-
rectly demonstrate that the environment-induced decoherence
steadily destroys the entanglement between the qubits as the

FIG. 6. The exact concurrence between two qubits compared with the results
from the secular Redfield equation. The solid red, dashed green, dot-dashed
blue, and dotted orange lines display the results for reorganization energies
of λ/J = 0.01, 0.1, 1, and 10, respectively. The exact λ = 0.01J results are
indistinguishable from the Redfield results on this scale and for clarity are
shown only until λt = 1.106 Monte Carlo samples were used in each of the
stochastic hierarchy calculations. In the scaled units of time, λt, the Redfield
dynamics are independent of λ.
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system-bath coupling strength increases. In fact, for λ = 10J
there is no reappearance of the concurrence after the initial
death. In this case the system-bath coupling is sufficiently
strong so as to destroy all of the equilibrium entanglement.

IV. CONCLUSIONS

In summary, a hybrid stochastic hierarchy equation of
motion approach has been proposed that substantially ex-
tends the parameter regimes accessible to the hierarchy for-
malism. The method combines many of the strengths of the
standard hierarchy with those of recently proposed stochastic
methods.1, 9 By performing a Hubbard-Stratonovich transfor-
mation only on the real part of the bath correlation function,
the problematic temperature dependent terms in the hierar-
chy are exchanged for a Monte Carlo average over real noise
trajectories. This extension eliminates the hierarchy tiers that
are required to account for the low temperature corrections
in the standard approach. Consequently the numerical cost
of the sHEOM simulations is nearly independent of the tem-
perature. Additionally, treating the imaginary part of the bath
correlation function by the hierarchy cures many of the nor-
malization difficulties associated with the purely stochastic
methods.9 The introduction of the reference temperature in
Eq. (16) allows one to achieve an optimal balance between
the stochastic and deterministic components of the evolution
that substantially improves the convergence properties of the
algorithm. Numerical results were presented across a broad
range of parameters, including both the high and low tem-
perature limits, as well as the strong to weak system-bath
coupling regimes. The computations of the energy transfer
rates and the low temperature entanglement dynamics in two
qubits presented in Sec. III are difficult, if not impossible,
to obtain with most other methods. However, these calcula-
tions are very straightforward with the sHEOM approach pre-
sented here. If the noiseless hierarchy is well-behaved then
the Monte Carlo procedure generally converges rapidly, but
even in cases where positivity is not ensured convergence is
generally achieved within 106 samples. Additionally, the use
of the hybrid approach allows for a much lower truncation of
the hierarchy tiers which, in principle, allows one to simulate
larger systems than is possible with the standard hierarchy.
Although not discussed here, we have easily performed cal-
culations on the light harvesting system LH2 across a broad
range of temperatures.

The Hubbard-Stratonovich transformation of the real part
of the bath correlation function appearing in the influence
functional is valid for arbitrary spectral densities. It is only
the hierarchy treatment of the remaining imaginary part that
demands a Drude-Lorentz form. In principle, it should be pos-
sible to employ other spectral densities such as that of the
underdamped Brownian oscillator32 or by decomposing more
complicated spectral densities into a sum of Drude-Lorentz
terms.33 However, the hierarchy of equations will be more
complicated. In these cases, it may be more advantageous to
adapt the procedure outlined above to QUAPI,16 which suf-
fers many of the same problems as the standard HEOM in the
low temperature regime. The extension of the hybrid approach
to the QUAPI formalism would allow for numerically exact

simulations of the non-Markovian dynamics of open quantum
systems for arbitrary spectral densities across a broad range of
the parameter space.
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APPENDIX: NOISE GENERATION

Apart from the integration of the HEOM, which is
achieved through standard Runge-Kutta methods, the only ad-
ditional computational requirement of the sHEOM approach
is the generation of the stochastic process, ξ (t). There are nu-
merous methods to generate Gaussian colored noise. In this
appendix, two approaches are briefly described that we have
found to be particularly useful. The most straightforward ap-
proach originates from signal processing techniques and is
based on filtering white noise through an appropriate kernel:

ξ (t) =
∫ t

0
dt ′k(t − t ′)ζ (t ′) . (A1)

The noise, ζ (t), is a standard Wiener process with zero mean,
〈ζ (t)〉 = 0 and autocorrelation, 〈ζ (t)ζ (t′)〉 = δ(t − t′). The
filtering kernel, k(t), is determined from the factorization of
the autocorrelation function:

Kr (t − t ′) =
∫

dt ′′k(t − t ′′)k(t ′′ − t ′) . (A2)

In practice, k(t) is most efficiently constructed through a
Cholesky decomposition of the discretized kernel matrix
K̄ij = Kr (ti − tj ) with k̄ij defined accordingly, such that K̄

= k̄T k̄. A discretized sample of the desired noise sequence
is then simply generated from the matrix-vector product
	ξ = k̄T 	ζ .

While straightforward, the Cholesky approach encoun-
ters difficulties in simulations where many time steps are
needed so that the kernel matrix becomes large. In this case,
an alternative approach to generate the noise can be used that
relies on a discretization of the correlation function in terms
of its independent frequency components.13, 34 Samples of the
noise can be generated from the Fourier sum

ξ (t) =
√

2

π

N∑
n=1

[
J (ωn) coth

(
βωn

2

)
�ω

]1/2

cos(ωnt + φn),

(A3)
where �ω = ωmax/N and ωn = n�ω with ωmax chosen to
be sufficiently large such that the spectral density has de-
cayed to zero, J(ωmax) = 0. The phases, φn, are uniform ran-
dom numbers generated on the interval (0, 2π ). The noise
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sequence generated in this manner is periodic with a period
of 2π /�ω which, obviously, must be at least twice the sim-
ulation time. The summation in Eq. (A3) is most efficiently
performed through the use of a fast Fourier transform.
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