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ABSTRACT

The purpose of this paper is to develop a self-consistent kinetic

description of helically distorted relativistic electron beam equilibria

for free electron laser applications. In particular, radially confined

equilibria are considered for a helically distorted electron beam prop-

agating in the combined transverse wiggler and uniform axial guide

0
fields described by B =B oz+6=Bo z-6Bcosk zkx- 6Bsinkozky, where B0=

const., 6B=const., and X0=27r/k 0=const. is the axial wavelength of the

wiggler field. It is assumed that the beam density and current are

sufficiently small that the equilibrium self fields can be neglected

0
in comparison with . In this context, it is found that there are

three useful (and exact) invariants (C±,Ch,Cz) associated with single-

particle motion in the equilibrium field B0kz+6 . These invariants

are used to construct radially confined Vlasov equilibria f0 (C,,Cz
b2 ±h2Cz)

for an intense relativistic electron beam propagating primarily

in the z-direction. Examples of both solid and hollow beam equilibria

are considered, and it is shown that the transverse wiggler field can

have a large modulational influence on the beam envelope, depending

on the size of 6B/B 0 '
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I. INTRODUCTION

There have been several theoretical 1-5 and experimental6 ,7

investigations of the free electron laser which generates coherent

electromagnetic radiation using an intense relativistic electron beam

as an energy source. With few exceptions, theoretical studies of the

free electron laser instability are based on highly simplified models

which neglect the influence of finite radial geometry and beam

kinetic effects, or make use of very idealized approximations in

analyzing the matrix dispersion equation. The purpose of this paper

is to develop a self-consistent kinetic description of helically

distorted relativistic electron beam equilibria for free electron laser

applications. In particular, we consider radially confined Vlasov

equilibria for a helically distorted relativistic electron beam

propagating in the combined transverse wiggler and uniform axial guide

fields described by [Eqs. (1) and (2)]

0

=B0% A--Bcosk zkx-6Bsink Zk~

where B0=const., 6B=const., and X0=2r/k0=const. is the axial wavelength

of the helical wiggler field. Both solid and hollow beam equilibria

are considered, and it is assumed that the beam density and current

are sufficiently small that equilibrium self fields can be neglected

0
in comparison with B . Within the context of this assumption it is

found that there are three useful (and exact) invariants (C2 ,Ch,Cz)

associated with single-particle motion in the equilibrium field B A +6k.OMz
These invariants can be used to construct radially confined Vlasov

equilibria f0 (C.Ch, Cz) for an intense relativistic electron beam
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propagating in the z-direction, including the important modulational

influence of the transverse wiggler field on the beam envelope.

The three exact invariants derived in Sec. II and Appendix A

are given by the perpendicular invariant C, [Eq. (4)],

C=p2 +p 2eB0 (2 z~ b er 8~p0  ick 0 ZYb b ) k +
0 0

the helical invariant Ch [Eq. (5)],

ChP + (p Yb mV)+ er 6Bsin(O-k 0z)

and the axial invariant Cz defined by [Eq. (6)]

eBOj 2 z eBO 22e

where p =(pr 'pz) = yuv is the mechanical momentum, Pe=r(p -eB0r/2c)

is the canonical angular momentum, ybmc 2=const. is the characteristic

directed energy of the electron beam, and Vb=const. is the characteristic

mean axial velocity. In the expressions for C, and Ch, we have subtracted

the constant terms proportional to ybmVb without loss of generality.

Moreover, for 6k=0, we note from Eq. (6) that the axial momentum pZ is

a constant of the motion, and that Eqs. (4) and (5) yield the familiar

invariants, p +p 2=const. and P6=const., for a charged particle moving

in a uniform axial field B0.

The striking feature of the present analysis is the fact that the

exact invariants (C ,Ch,Cz) can be used to construct helically

distorted relativistic electron beam equilibria fb h,C) of

experimental interest for free electron laser applications. Generally

speaking, the two classes of relevant beam equilibria can be charac-

terized as (a) solid beam equilibria, and (b) hollow beam equilibria.

For example, equilibrium distribution functions of the form [Eq. (10)]

1!
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0
fb =F(Ci-2ybmwbCh)G(Cz)

where G(C ) is strongly peaked around Cz=ybmVb, correspond to a solid

electron beam with non-zero density on axis (r=O). On the other hand,

the class of beam equilibria described by [Eq. (11)]

f =F2 (C±)6(Ch-CO)G(Cz)

where C0=-(eB0/2c)R6=const., corresponds to a slowly rotating annular

electron beam with characteristic mean radius R . Of course, it is

found that the detailed spatial dependence of beam equilibrium prop-

erties (density profile, temperature profile, etc.) depends on the

specific functional form of G(Cz), F2 (C,) and F (C±-
2ybmwbCh). It

is also found that the radial envelope of the beam can be strongly

modulated by the transverse wiggler field, depending on the size

of 6B/B [Sec. III].

As a general remark, one of the most appealing features of the

recent free electron laser stability analyses by Davidson and Uhm,3

Sprangle and Smith,5 and Bernstein and Hirshfield for a relativistic

electron beam with uniform density and infinite cross-section is the

fact that the influence of the transverse wiggler field is contained

in a fully self-consistent manner in the equilibrium distribution

function f =n0 6(P )(P )Go ). That is, when carrying out the stability

analysis, the excited electromagnetic and electrostatic fields are

treated as small-amplitude perturbations about a self-consistent

equilibrium that includes the full nonlinear influence of the equilibrium

wiggler field. We believe that the present equilibrium investigations

form an important first step in formulating a self-consistent

Vlasov description of the free electron laser instability that includes

the effects of finite radial geometry and also correctly incorporates

I



5

the nonlinear influence of the transverse wiggler field on the beam

equilibrium.

The organization of this paper is the following. In Sec. II,

we discuss the basic equilibrium configuration and assumptions.

Specific examples of helically modulated relativistic electron beam

equilibria are analyzed in Sec. III, both for solid (Sec. III.AI and

hollow [Sec. III.B] electron beams.



6

II. EQUILIBRIUM CONFIGURATION AND BASIC ASSUMPTIONS

We consider the class of helically modulated relativistic electron

beam equilibria propagating in an externally applied magnetic field

0=B0 z+6B , (1)

where B0=const. is the axial magnetic field, and

6B=-6Bcosk0 z -6Bsink0 zk , (2)

is the transverse helical wiggler field with axial wavelength X0=2n/k0 '

In the present analysis, we assume that 6B-const. is a good approximation

over the radial extent of the beam. In cylindrical polar coordinates

(r,e,z), Eq. (2) can also be expressed as

6D=6Br9r+6B e', r~ur en'e

--6Bcos(6-k z)i +6Bsin(e-k Z)k, (3)0j lur 0 ' 3

where kr and k, are unit vectors in the r- and e-directions, respectively.

It is assumed that the beam density and current are sufficiently

low that the influence of the equilibrium self electric and self

0 0magnetic fields, s(x) and s(x), on the particle trajectories

can be neglected in comparison with the vxB0 force associated

with the applied magnetic field in Eq. (1).

Within the context of the above assumptions, there are three useful and

exact invariants (C,,Ch,C z) associated with single-particle motion in

the equilibrium field BO&z+6B. These invariants can be used to

construct cylindrical Vlasov equilibria f0 (C,,Ch,Cz) for an intense

relativistic electron beam propagating in the z-direction, including

the important modulational influence of the transverse wiggler field
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on the beam envelope. As outlined in Appendix A, for relativistic

electron motion in the applied magnetic field defined in Eqs. (1) and

(2.), the three exact invariants are given by the transverse invariant

C1 [Eq. (A.12),

2 2 2eB0  2e
C.pr+p +- (p ybmVb)+ ck 0 -EL.(')rO c 0  z

the helical invariant Ch [Eq. (A.7)],

h + k bmb)+ --- rsin(O-k0 z) (5)
0 0

and the axial invariant Cz defined by [Eq. (A.ll)],( eB / eB) \2e
Czzo-6 (6)

cko Pz ko ck 0 WI.

In Eqs. (4)-(6), p=(pr3'PePz)=Ymy is the mechanical momentum, P,=

r(p -eB0r/2c) is the canonical angular momentum associated with the

2 2 4 2 21/2
axial field BO, ymc =(m c +c pZ ) is the relativistic electron energy,

-e is the electron charge, m is the electron rest mass, ybmc 2=const.

is the characteristic directed energy of the electron beam, and Vb

const. is the characteristic mean axial velocity. Moreover, pg

is the transverse momentum, and p9-6k can be expressed as p91-6k=

-pr Bcos(8-k0z)+pa6Bsin(O-k0 z). Note in Eqs. (4) and (5) that

we have subtracted the constant terms proportional to YbmVb without

loss of generality. For B 0=const. and 6B=const., we reiterate that

C.L, Ch, and Cz are exact constants of the motion for arbitrary

wiggler amplitude 6B.

In the limit of zero wiggler amplitude, 6B+0, Eqs. (4)-(6)

reduce to

02~2 2eB0
C=p 2+p + ek0 ZbmVb)=const., (7)

I r6+- -,-(p-ym0

9
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0 1 )cnt
Ch=Pe+ (PzybmVb)const., (8)

0

C0 p =const. (9)z Pz(9

For 6B-0, we note from Eq. (9) that the axial momentum pz is a

constant of the motion, and Eqs. (7) and (8) yield the familiar

invariants, p +p =const. and P =const., for a charged particle

moving in a uniform axial field B0.

There are two classes of helical beam equilibria f 0 (CSC C )
b ~'h' z

of experimental interest for free electron laser applications.

Generally speaking, the two classes can be characterized as (a) solid

beam equilibria, and (b) hollow beam equilibria. For example,

equilibrium distribution functions of the form

0
f b=F (C.-2yb bCh)G(C ) (10)

where G(C z) is strongly peaked around Cz=ybmVb, corresponds to a

solid electron beam with non-zero density on axis (r=0). In Eq. (10),

b= const. is related to the mean angular rotation of the beam [Sec. III).

On the other hand, the class of beam equilibria described by

0
f b=F 2 (C) 6 (Ch-CO)G(Cz)

2where C =-(eB0 /2c)R0=const., corresponds to a slowly rotating annular

electron beam with characteristic mean radius R . Of course, the

detailed spatial dependence of the beam equilibrium properties (e.g.,

density profile, temperature profile, etc.) depends on the specific

functional form of G(C z), F (CL.-2ybmbCh) and F2 (C'). In this regard,

specific examples of helical beam equilibria are discussed in Sec. III.

As a general remark, it is found that the radial extent of the beam

can be strongly modulated by the transverse wiggler field, depending
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on the size of 6B/B0'

While it is true that beam equilibrium properties can be calculated

from Eqs. (10) and (11) making use of the exact invariants in Eqs. (4)-

(6), there are useful approximations that can be made in simplifying

the expression for Cz [Eq. (6)] in the regimes of practical interest

for free electron laser applications. We now discuss these approximations,

which will be used in the detailed equilibrium examples presented in

Sec. III.

First, in the regimes of practical interest, the characteristic

transverse momentum k, of a beam electron is small in comparison

with the characteristic directed axial momentum ybmVbup , i.e.,

<< YbmVb (12)

Second, we assume that the beam axial motion is far removed from cyclotron

resonance. Specifically, referring to Eq. (6), it is assumed that

eB 2
m - B (13)Ybmvb ck0  ck00 0

or equivalently,

2 pr 6
wo-w >b m b 0(14)

where o and w c are defined by

eB0
wO=k0 b andw - be . (15)

0 Ob c Ybmc

To assure radial confinement of the beam electrons, the present analysis

of course assumes B000. Making use of the inequality IZ|j < yb mVb

[Eq. (12)], the striking feature of the present analysis is that

the inequality in Eq. (14) is easily satisfied even for large wiggler

amplitude (6B5B0 , say), both in the limits of weak axial field



10

(W <<w ) and strong axial field (w >>w ). For example, if 2 >>W ,

then Eq. (14) reduces to

1>>2 -- -A- (16)
0 YbmVb B0

which is readily satisfied in the parameter regimes of experimental

interest. In any case, within the context of the inequalities in

Eqs. (12) and (13), the exact axial invariant Cz defined in Eq. (6)

can be approximated by
e

ck0

z z eB
0

pz ck0

where we have taken the positive square root in Eq. (6), which

corresponds to Cz and pz having the same polarity. Equation (17)

is an excellent approximation to Cz in the parameter regimes of practical

interest for free electron laser applications. Moreover, for G(C Z)

strongly peaked about Cz=y bmVb, with characteristic half-width

ACz «YbmVb, the denominator on the right-hand side of Eq. (17)

can be approximated by p ZeB /ck bmVb-eB0/ck0. Equation (17)

then reduces to

W
Cz"p c P (18)O c 0

which is the approximate form of the axial invariant used in Sec. III.
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III. EXAMPLES OF HELICALLY MODULATED RELATIVISTIC

ELECTRON BEAM EQUILIBRIA

There is clearly a wide variety of helically modulated relativistic

electron beam equilibria that can be analyzed within the context of the

equilibrium formalism described in Sec. II. The relevant choice of

0
b (C±ChC ) of course depends in detail on injection geometry,

beam quality, etc. For our purposes here, we consider two simple

examples of solid and hollow beam equilibria that clearly illustrate

the strong influence of the transverse wiggler field in modulating

the beam envelope. In both cases, for simplicity, we assume that

the axial distribution G(Cz) is cold, i.e.,

G(C Z)=6(Cz ybmVb

(19)

0cz bm b~ w0 c

where use has been made of Eq. (18). The analysis can be extended in a

straightforward manner to distribution functions G(Cz) with a small

spread about Cz YbmVb'

A. Solid Beam Equilibria

As an example of a helically modulated solid electron beam, we

consider the case where f (C±,Ch'C ) has the form [Eq. (10)]

0 n0fb - (C -2 ybmobCh-2ybm±)

(20)

x5(CZ- mV '

where C1 and Ch are defined in Eqs. (4) and (5), CZ is defined in

Eq. (18), and n0, b, and T, are positive constants. Equation (20)
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is a straightforward generalization of the uniform density beam

equilibrium f b(n /01)6(p +p -2ybmwb P-2ybmT,)6(p .YbmVb) previously

discussed by Davidson8 for the case 6B=O. Evaluating CL-2ybmw bCh

for Cz =YbmVb, and rearranging terms, we find that

[CI- 2ybmwbCh]Cz 
bmVb

p _e w~4b e ('"0w Be1

+k0 uo~c) 6Br + PB-ybmwbr+ c (0b 6BJ,

+Yb m2 (r,O-k0z) (21)

where wO0=koVb, wc=eBO /Ybmc, 6B r=-6Bcos(6-k 0 z), 
6B =6Bsin(O-k0z), and

the effective potential $(r,O-k 0z) is defined by

(r,O-k z)=(wb W -wb)r

2 6(22)

+2w CB sin(O-koz)~ b) 2

We now evaluate various macroscopic properties of physical

interest for the choice of distribution function in Eq. (20). For

example, making use of Eqs. (20) and (21), it is readily shown that the

equilibrium density profile n (r,,z)= d 3 p fb(C±,ChCZ) corresponds

to a constant-density beam with sharp radial boundaries, i.e.,

0 0  , (r,e-k0 z)<2 T /ybm ,

nb(r,O-k~z)= (23)

0 , (r,6-k0z)>2T±/ybm ,

where p is defined in Eq. (22). Moreover, making use of j aj '-ybmVb'

the mean equilibrium velocity of the electron beam can be approximated by
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V ()=[fd 3 p(k/ym)f 1/(fd3p f0)
b b

(24)

1 (fd3p p f 0)/f 3 P 0d

and the transverse temperature profile can be approximated by

T b ( )=! { d3p r~v r r <v ~4>]f }/(fd 3fO

(25)

1 J d p (p <r>) +(p e 9 e 2]f } (fd3

where <p >=( d3pp f )/ d3pf ), and use has been made of yy

Substituting Eqs. (20) and (21) into Eq. (24), the mean macroscopic

velocity components of the electron beam can be expressed as

V0b(r,6-k z)=Vb w(WI-b) cos(6-k0 z) , (26)

rb r 0k )b=Vb ( 0 W B S (27

b r,"-koz)=W r-V \ B sin(e-koz) (27)

and

V 0b (r,O-kO)=Vb (28)

in the region of configuration space where n (r,e-k z) is non-zero.

In obtaining Eqs. (26) and (27), use has been made of 6Br =--6Bcos(O-k 0z)

and 6Be=6Bsin(6-k0 z), and the contribution to Vb of order . >-6B/ybmVbBO

has been neglected in obtaining Eq. (28). Finally, making use of Eqs.

(20), (21), and (25), the transverse temperature profile can be

expressed as

(r,a-k 0Z)
Tib(re-k z)=Tl 1- 2 1(29)

v0

in the region of configuration space where n (r,6-k z) is non-zero,

2
i.e., where _< 2T/ybm v0 [Eq. (23)].
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Evidently, from Eq. (23), the outer radius Rb(e-koz) of the electron

beam is determined self-consistently from the solution to the "envelope"

equation $(Rb,O-kz)=2T,/ybm v . Making use of Eq. (22), we find

that the physically allowed value of Rb(O-koz) is given by the expression

Rb(6-k z)=ARbsin(e-koz)+[( 2 2 2-k z)+R ]1/2b(0 b) si (Ok + 0]

where Ro and ARb are defined by

02 w b 2 26B 2b

2 00 W 2 0 / b
R6 - 0

(b cb

(30)

(31)

and

k AR = c B (32)

Moreover, the equilibrium density profile in Eq. (23) can be expressed as

n (r,e-k0 z)=

n0  0 < r < Rb(0-koz)

0 , r > Rb(e-koz) .

(33)

In addition, after some straightforward algebraic manipulation that

makes use of Eqs. (29)-(32), the transverse temperature profile can

be expressed as

(_ r 1+
T0 -kz=m b
TLb (r, -0 )=TLb

r--bsin(O-k z)
b b (34)

Rb sin(O-koz)

where Rb(e-k z) is defined in Eq. (30), and Tmb is the maximum, on

(r=O), transverse temperature defined by

2 2

r~= -- I IS- 2 wo wc / 2 bo .

As a simple reference equilibrium, for 6B=O, we note from

Eqs. (30) and (31) that the beam radius Rb reduces to the familiar

-axis

(35)
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result Rb ROO b/(W bWW2) 1 2 , and that AR .0, which corresponds to

zero modulation of the beam envelope. In addition, for 6B=0, it follows

that V0 =0 [Eq. (26)], V0 =W r [Eq. (27)], and T 22L(l-r2/R )rb ab b TLb=T - / 0)

[Eqs. (34) and (35)]. That is, for zero wiggler amplitude, Eqs. (30)-

(35) reduce to the familiar results8 corresponding to an electron beam

with uniform density, constant beam radius, rigid-rotor angular velocity

profile, and parabolic transverse temperature profile.

In the case where 6B#0, we note from Eqs. (30)-(32) that the outer

envelope of the beam is modulated by the transverse wiggler field.

Moreover, for existence of the equilibrium, R > 0 is required

[Eq. (31)] so that wb must lie in the range

0 < wb < wc (36)

for radially confined equilibria. From Eq. (30), the maximum 0

and minimum (R) radial excursion of the beam envelope occurs for

0-k z=(2n+l)ff/2, n=0, ±1, ±2,..., with R and R defined by0

R=JARb I+[(ARb)2+R ]1 /2

and (37)

R =-JARbl+[(ARb) 2 +R ] 1 / 2

where R and ARb are defined in Eqs. (31) and (32), respectively.

Defining the average beam radius by Rb=(R -R )/2 gives

2b=[(A)2+R 2 1/2 (38)

Moreover, defining the peak amplitude of the radial modulation by

- 0 i
Rb=(Rb-Rb) 2 gives
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ARb=IARb

(39)

k0 W0 -w B0

We now parameterize the equilibrium properties within the context

of the basic assumptions enumerated in Sec. II. First, the transverse

(r,e) motion is assumed to be nonrelativistic [Eq. (12)]. Making use of

IVrb0 << c, we find from Eqs. (26) and (27) that the quantities

WC) Wb, 6B, etc. are required to satisfy

Vb c (w0wb) 6B
c ~O" -~- «1 , (40 )C 0 (W0-w c B0

and 2-

2 (41)
c

where w0 and wc are far removed from cyclotron resonance [Eq. (14)].

For a weak axial field with w> c b Eq. (40) reduces to

Vb c _6BI
< 1, (42)

which is easily satisfied even for moderate wiggler amplitudes with

I6B/BOI % 1. On the other hand, for a strong axial field with ao0 < c'

Eq. (40) reduces to

Vb 6B 
(43)c B0

which requires a small wiggler amplitude with I6B/B 01 << 1. Here we

have assumed w0 > b Finally, for present purposes, we estimate

2-2 2 2 2 2 2 2, 2

bRb/c 2 bRO/ 2 WV 2 /ab)c c [Eq. (31)]. The inequality in Eq. (41)

then becomes

2

a, 2 1, (44)
c
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which is easily satisfied since b < c [Eq. (36)] and the

transverse thermal motion is nonrelativistic (v 2 C2

It is also interesting to determine the characteristic size of

k0ARb, the normalized maximum radial excursion of the beam envelope.

From Eq. (39), for 0 > c, we find kTR b =(w/w0 )(6B/B 0)1<< 1

[Eq. (42)] for weak axial magnetic field. Moreover, for w0 < C

we find k0ARb = 6B/B0 1 < 1 [Eq. (43)] for strong axial magnetic

field. That is,

k 0 " 1 , (45)

follows consistently from the assumption of nonrelativistic transverse

motion in both the weak field [Eq. (42)] and strong field [Eq. (43)]

regimes.

We also determine the characteristic size of k0R0. Estimating

2 2
R0  v /bW [Eq. (31)] gives

2 2
2 2 W v 0
k R=- (46)0 0 %wbw

c Vb

where w0 =k0 Vb and w b < Wc [Eq. (36)]. The regime of most interest

experimentally is k2R 2> 1, which requires sufficiently slow beam

rotation satisfying [Eq. (46)]

2 2
Wb w0 v0

S(47)
Wc 2W~

c b

As a numerical example, in Fig. 1 we show a plot of the normalized

radius kORb of the beam envelope [Eq. (30)] versus 6-k0 z for several

values of 6B/B0 and the choice of equilibrium parameters w0=
4wC9

Wb .1 W, v /c2=0.04, Yb= 3 and V /c 2=8/9. In this case,b C 0 b b
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k 1 6B (48)
0 -i-O

and

k0R6=8[l+ (19.5/9) (6B/B 0) 2(49)

follow from Eqs. (31) and (32). Substituting Eqs. (48) and (49) into

the expression for Rb in Eq. (30) gives the results shown in Fig. 1

for 6B/B 0=1/4 [Fig. 1(a)], 6B/B0 =0.5 [Fig. 1(b)] and 6B/B 0=1 [Fig. l(c)].

We note from Eqs. (38), (39), (48), (49), and Fig. 1 that the normalized

average beam radius kORb and maximum modulation amplitude k0ARb

increase from (kORb,kOARb)=(2.83,O) for B/B 0=,to (kRb,kJRb)=

(5.185, 0.333) for 6B/B 0 =.

We conclude this section by emphasizing that the theoretical model

developed here can be used to calculate the equilibrium properties

of a helically modulated solid electron beam propagating in an

equilibrium magnetic field prescribed by Eqs. (1) and (2) for a broad

range of system parameters Wb' "' ', v /c 2, 6B/BO, etc. The major

approximations relate to the assumptions that the transverse particle

motion is nonrelativistic [Eq. (12)] and that the axial motion is

far removed from cyclotron resonance [Eq. (14)].
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B. Annular Electron Beam

As an example of a helically modulated annular electron beam,

we consider the case where fb (C.L,Ch,C) has the form [Eq. (11)]

0 nORO bmvO 2 2 2 2 2
fb" 243 U[(Ci-ybm v0) - ]5(Ch-G0)6(C ybmVb , 50b eb 0zy b (0

where C0=-eBR 2/2c=const., and n0, RO' v0 , and E are positive

constants. In Eq. (50), U(x) is the Heaviside step function defined

by U(x)=l for x > 0, and U(x)=O for x < 0. Evaluating Ch-CO and

2
C±-(ybmv0) at Cz=y b mVb, and rearranging terms, we find

[GJOC r+ 1j~ W B 0 n(O-k z)jP
[Ch-CO]Cz= bmVb= r 70 W sin( -kBz) 0

(51)
16 cos(-k Z)p'-F(r,6-k Z),

0 O-w CB 0

and

2 2 2 2 ' 2[C -(ybmvO) 2C bm ' 2 2 V (52)
z Ybm b a (Ybm) v

where

,22 2 2 6B

v =v;+ o (

p =Pr-YbmVb w - cos(O-k0z) , (53)

p=+YbmVb oc 6B sin(O-kZ),
P;P~ymbWQW-1 B 0  0

and F(r,e-k 0z) is defined by

F= b k0 (r
2-R )+r c c sin(6-kz)Ybmb(L2 00 0 W WO-wc B 0 0

+ 1-_ (4 2(B (54)

k0 o~wc)( B
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It is convenient to introduce the quantities f and g defined by

f= c 6B sin(e-k z)k 0 W Owc B 0  0

(55)

1 Li*) 6B csOkZ
g= k W cos (6-k0z)

Furthermore, evaluating C -(YbMV072 at Ch=CO and Cz=ybmVb, we find

from Eqs. (51), (52), and (55) that

2 mbl(_&_)2l 0)2
(C -- (ybmvO) czb mvb= 1+ 2 (r

Ch=CO 2(56)

Lbv2 F 2g 1
-((YbMVO (r+f) 2+g 2

where p is defined by

0 Wc 6B (r+f)2 +g2-F/ YbmVbko
Pr ybmVb cos(O-k 0z) -c B0  (r+f)2 2 (57)

As a simple example, we consider the limit of zero perpendicular

energy spread in Eq. (50). Making use of the identity

6(Ci-y m2v )=lim 1 U[(Cy m2 _ 22 , (58)

we find from Eqs. (50), (51), and (56) that the electron density

0 rc rt o0

profile n (re,z)= dpr dp dpz f (C,ChC z) can be expressed as

nb(r,6-k0z)= n 2ROYbmvO dp16(p,'2) (59)
[(r+f) +g ] -rr

where p"={l+[g/(r+f)]2 1/2 (p-p ), and p is defined byr r

(r,6-k z)= (ybmv?)2_ F . (60)
0O ( b 0 (r+f)2 +g

Carrying out the p" integration in Eq. (59), the density profile
r

can be expressed as
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noROv 0n~ ~ 0 
> 0 ,

n (r,6-kZ)= (v 2[ r+f)2 +g2- (F/ybm)2 1/2~ (61)

0, otherwise

In the subsequenr analysis it is useful to introduce the effective

radial variable R defined by

R 2= (r+ 4c in(-koz) 2

S(62)

k 0 ( 0 c ) B00
+,

and the constant quantities rL,2,R , and Rb defined by

vt

r = , (63)
c

-2=2 2 -1) 2__6B 2 2(
c e kRJ=R cI-( 1 (jc )~ - (64)

k0R0

+ (2+r )1/2 (65)RrL+R+ L) I

- -2 2 1/2
Rb=-rL+(R +r L) (66)

Making use of Eqs. (61)-(66), and the definition of $(r,6-k0z)

in Eq. (60), we find that the density profile in Eq. (61) can be

expressed in the equivalent form

n R 2r (v 1'v')
0 0 L 0 0+

1/2 ' Rb R : Rb

n 0(r ,8-k0 +2=-R2) (R2 -2 (67)

0 , otherwise

From Eqs. (61) and (67), note that the normalization of n is such that
0b

n =no=const. for r=R and 6B=0. In addition, note from Eq. (67) that
b 0

the beam density is singular at the inner (R=Rb) and outer (R=R+)b
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boundaries of the electron beam. This is a consequence of the singular

form for the perpendicular energy distribution function assumed in

Eq. (58). For small but finite E, the beam density remains finite

and varies smoothly throughout the annulus.9 We emphasize, however,

that the beam density profile in Eq. (67) is integrable in the sense

that the number of electrons per unit axial length, Nb= d6O dr r nb is

finite. In any case, the equilibrium example in Eq. (67) is adequate

for present purposes of describing the helical modulation of the inner

and outer beam envelopes by the transverse wiggler field.

Making use of Eqs. (62), (65), (66), and (67), the outer boundary

(r=r ) and inner boundary (r=rb) of the annular electron beam are

determined from

r 1 c 6Bsin(-kz)
k 0  i(68)

2 2 1/2

+ [rL+(R 2+r )1/21 2 c) [1-sin 2 (8-k0z)]

0

and

r~- 1- Wc 6B si(e-k z)
b k0 0- - T s 0

-2 1/2

+ [-rL+(R2+r2)1/2 2 c B 2 [1-sin2(- ,+It-rL"'w;wc R~ +r)1-sin T-k7.
L L k 2W0 Wc B00

(69)

where rL=/W c and R is defined in Eq. (64). In the special limiting

case where 6B=0, it follows from Eqs. (63) and (64) that r L=v0 Ic

and R=Ro, and Eqs. (68) and (69) reduce to the familiar results9

(r )6B= R +r )1/2+rL (70)

and

2 2 1/2
(rb)6B=OR0 +rL -rL .(71)
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That is, for 6B=Q, the average beam radius and beam thickness are

constant, with bE(r +r )/2=(R +r )1/2 ~ R (for r 2<< R ), and

Abr -r =2rL'

For the choice of equilibrium distribution function in Eq. (50)

with e + 0+, Eqs. (68) and (69) give very precise predictions for the

inner and outer boundaries of the annular electron beam for 6BOO,

within the context of the assumptions enumerated in Sec. II.

In the remainder of this section, we make use of Eqs. (68) and (69)

to examine the helical modulation of the beam envelope in the general

case where 6B is non-zero, assuming in addition that the dimensionless

quantities

2-2rL/R < 1, (72)

and

1 ( ) B2 < 1, 
(7k R2 wc B (73)

0 0

can be treated as small parameters. In Eq. (72), R is defined in

Eq. (64), and rL= 2v /w , where v6 is defined in Eq. (53). In the

regime of experimental interest k2 R  > 1. In this regard, we note that

the inequality in Eq. (73) is readily satisfied even for moderate

wiggler amplitudes with 16B/B01 % 1. This is true both for weak

axial fields (wc < w0) and strong axial fields (wc w0 ). Taylor

expanding the expressions for rb in Eqs. (68) and (69), and retaining

terms to order (r /R2) and (6B/B 0) 2, we obtain the approximate

expressions

r = R + 6B sin (-kz)
b R kO 0 ~ W 0

r b r (RkW w c 2

2 2

+ 1 L 1 " 6B [1-sin2 (0-k z)].k 0 R _)- ( [
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Evidently, from Eq. (74), the beam thickness ARb=r -rb is given by

2v'
ARb 2rL (75)

C

correct to order (rL R)2 and (6B/B 0 2. In Eq. (75), v; is defined

in Eq. (53). Moreover, the average beam radius Rb=(r +rb)/2 is given

by

b B sin(-k 0Z)
F'b 0 ' ' c B0 0(76)

2 2

k R k 0 c 02 2 (6

correct to order (rL /) 2 and (6B/B0)
2. We note from Eq. (76)

that the leading-order modulation of the average beam radius Rb

is linear in 6B. Therefore, making use of Eq. (64), the expression

for Rb in Eq. (76) can be approximated by

Rb kR W -W c sin(O-k , (77)

correct to lowest order in 6B/B0

As a numerical example, in Fig. 2 we show a plot of the normalized

average beam radius kORb (dashed curve) versus 6--k 0z obtained from

Eq. (77) for several values of 6 B/BO and the choice of equilibrium

parameters 0 =4w, 2/C =0.04, k0R0-3/2, kOr =kOvO/Wc=1/20, b=3 and

2 2
Vb/c =8/9. In this case

200 6B 21/2
k ARb=.l 1+ B , (78)

and

k- b=kOR- s in(6-k 0 z) (79)
0

follow from Eqs. (53), (75), and (77). Here, k0R=k 0 R0 [l+(28/81)(6B/B0) 2 1/2

follows from Eq. (64). Equations (78) and (79) yield the results shown



25

in Fig. 2 for 6B/B0=1/4 [Fig. 2(a)], 6B/B 0=0.5 [Fig. 2(b)] and 6B/B0=1

[Fig. 2 (c)]. From Eq. (79), we define the peak amplitude of the radial

modulation by kOARb = |(l/3)(6B/B0 )I. We note from Fig. 2 and

Eqs. (78) and (79) that the normalized beam thickness k0 ARb and

maximum modulation amplitude k 0 Rb increase from (k0ARb, k0ARb)=

(0.10, 0) for 6B=O,to (k0ARb, koARb)=(.l 9 , 0.33) for 6B/Bo0 l.

In concluding this section, we emphasize that the theoretical

model developed here can be used to calculate the equilibrium properties

of a helically modulated annular electron beam propagating in the

equilibrium magnetic field B 6 -6Bcosk 0 zk -6Bsink z6 for a broad
x z 0 %Y

2 2
range of system parameters wc W0' v0 /c , 6B/BO' k0 RO, etc. As in

Sec. II.A, the major approximations relate to the assumptions that

the transverse electron motion is nonrelativistic [Eq. (12)] and that

the axial motion is far removed from cyclotron resonance [Eq. (14)].
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IV. CONCLUSIONS

In this paper we have developed a self-consistent Vlasov descrip-

tion of helically distorted relativistic electron beam equilibria

for free electron laser applications. In particular, we have considered

radially confined equilibria for a helically distorted relativistic

electron beam propagating in the combined transverse wiggler and uniform

axial guide fields described by Eqs. (1) and (2). Assuming that the

beam density and current are sufficiently small that equilibrium self

fields can be neglected in comparison with Bokz+6 , it is found that

there are three useful and exact invariants (C,,Ch,Cz) associated with

single-particle motion in the equilibrium field configuration. These

invariants are used to construct radially confined Vlasov equilibria

f (C ,C C ) for an intense relativistic electron beam propagating
b ~'h' z

primarily in the z-direction. Specific examples of solid [Eq. (20)]

and hollow [Eq. (50)] beam equilibria are analyzed in Sec. III, and it

is shown that the transverse wiggler field can have a large modulational

influence on the beam envelope, depending on the size of 6B/B . We

believe that the present equilibrium investigations form an important

first step in formulating a self-consistent Vlasov description of

the free electron laser instability that both includes the

effects of finite radial geometry and correctly incorporates the non-

linear influence of the transverse wiggler field on the beam equilibrium.
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FIGURE CAPTIONS

Fig. 1 Plot of kORb (Eq. (30)) versus 0-k 0z for w =4wc ,b=0' C'

v /c 2=0.04, yb= 3 , V /C2=8/9 and (a) 6B/B 0=1/4, (b) 6B/B 0=1/2,

and (c) 6B/B 0=1.

Fig. 2 Plot of kOTRb [Eq. (77)] versus 6-k0z for w=4w , c /C 2=0.04,

yb= 3 , V /c2=8/9, k0 0=3/2, k r =1/20, and (a) 6B/B =1/4

(b) 6B/B 0=1/2, and (c) 6B/B0=l.
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APPENDIX A

SINGLE-PARTICLE CONSTANTS OF THE MOTION

In this appendix, we consider the motion of an individual electron

in the applied magnetic field

0
=B 6 -6Bcosk z& -6Bsinkoz^y

Oruz 0'ux

=B0oz-6Bcos(G-k0 z)+6Bsin(e-k0 z) ,

where B0=const. is the uniform axial field, 6k=-6Bcos(e-k 0Z)r+6Bsin(O-k z)

is the transverse helical wiggler field expressed in cylindrical

polar coordinates, 6B=const. is the wiggler amplitude, and X0=2 r/k0 is

_2 2 2 1/2
the wavelength. Making use of y'=(+p' /m c ) =const., the equations

of motion for the particle orbits r'(t'), 0'(t') and z'(t') can be

expressed as

y'm r'-r' 2 - r'
dtt(dt 2  ~ dt' cr

(A.1)

+ - sin(O'-k z d)2:

1 2 (dr' eB0 r e6
Y'mr' d 26'+2 d' dr.+ cos(e'-k z') (A.2)

dt'

y d2 - 6 c Ln(e'-k z') Ar- - e6B co~'kZ 'det(A3
dt' 2 C0 dt' c (O- 0zr -, (.3

Conservation of energy (y'=const.) of course implies that

p +p,2 '2=const., (A.4)

where p'=Y'mdr'/dt', p'=y tmr'de'/dt' and p'=y'mdz'/dt'. Moreover,
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multiplying Eq. (A.2) by r' and making use of Eq. (A.3) gives

d rV, 1- eB 0 ri) e6B ,~o(O- Idz'
t p r r0 rcos('-koz')

(A.5)

=- d' ck r'sin('-k0 zI) - dt2

Integrating Eq. (A.5) with respect to t' gives the helical invariant

P+ + r'sin(O'-k z')=const., (A.6)
8 ko cko

where p'=y'mdz'/dt', and P;=r'(p'-eBor'/2c) is the canonical angular

momentum associated with the applied axial field B0. Subtracting

YbmVb/k0=const. from Eq. (A.6), where ybmc2 is the characteristic

directed beam energy and Vb is the characteristic mean axial velocity

of the beam electrons, gives

C + (pz~ bmVb)+ r'sin(e'-kz')=const., (A.7)
0 0

which is the form of the helical invariant used in Secs. II and III

[Eq. (5)].

To determine the axial invariant associated with Eqs. (A.l)-

(A.3), we consider the quantity Iz defined by

I = 2_ 2eB0 + 2e p'6Bcos(0'-k 0z')ck0  z ck0  r
(A.8)

c_ 2 6Bsin(6'-k0 z')ck0P

where p'=y'mdz'/dt', p'=y'mdr'/dt' and p ymr' dO'/dt'.
weez r 6ynr'd'd'

Differentiating Eq. (A.8) with respect to t' and making use

of Eq. (A. 3) gives
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d -p- eB0  e6B sin('-kz r'

+cos(O'-kz' )r' + 6B cos(d'-kpz')
0 Jj dt)_k cs6-0

(A.9)
dp'
a sin(e'-k zi)-p'sin(e'-k Z') (d -ko "

-p, cos(O'-k Z') -1kO -z

Substituting Eqs. (A.1) and (A.2) into Eq. (A.9) and combining terms

gives

dI
z=

= 0 , (A.10)

which implies that I z=const. is an exact single-particle invariant.

Adding (eB0 /ck0) 2 to Eq. (A.8) implies that

p-e 2-_2 6B[p'sin(6'-k Z')-p'cos(e'-k Z')]

eBO2

= C -- =const.,

which is the form of the exact axial invariant used in Secs. II and

III [Eq. (6)7. For 6B + 0, we note from Eq. (A.1l) that C reduces

to the axial momentum p'.z

Finally, subtracting Iz+ 2 (eB0/ckO)ybmVb=const., from Eq. (A.4)

gives

2eB

C=p,2 , ck 0 (pz'-ybmVb)

(A. 12)

2 e~p6B 2e 'Bi~-ck0  r 6Bcos(e'-k 0z )+ - p'6Bsin('-k0 z)=const.,

which is the form of the exact perpendicular invariant used in Secs. II

and III [Eq. (4)].
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