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The free electron laser instability is investigated for a

relativistic annular electron beam propagating through a helical wiggler

magnetic field. It is assumed that the beam is thin, with radial

thickness (2a) much smaller than the beam radius (R0 ), and that

V/Yb << 1, where v is Budker's parameter. The stability analysis is

carried out within the framework of the linearized Vlasov-Maxwell

equations for perturbations with general azimuthal harmonic number t

and radial mode number s, including the important influence of (a)

finite beam geometry in the radial direction, (b) positioning of the

beam radius relative to the outer conducting wall (R0 /Rc ), and (c) finite

wiggler amplitude (6B). All of these effects are shown to have an

important influence on stability behavior. Moreover, the maximum

coupling between the transverse and longitudinal modes increases

substantially with increasing radial mode number s. It is also

found that the transverse magnetic (TM) mode has slightly larger

growth rate than the transverse electric (TE) mode.
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I. INTRODUCTION

There is a growing literature on the free electron laser 1 -7

which generates coherent electromagnetic radiation using a relativistic

electron beam. For the most part, previous theoretical analyses of this

instability have been carried out for an electron beam with uniform

density, neglecting the influence of finite radial geometry.3-6

Strictly speaking, a more accurate theoretical model of radiation

generation by the free electron laser instability, including a determina-

tion of the optimum value of the beam radius RO, requires a linear

stability analysis for perturbations about an annular electron beam

propagating in a helical wiggler magnetic field. This paper develops

a self-consistent theory of the free electron laser instability

for a relativistic annular electron beam propagating in a helical

wiggler field, allowing for perturbations with general azimuthal

7
harmonic number 2. The present work extends the previous analysis

by the authors, carried out for an undulator (multiple mirror) wiggler

field and k = 0 perturbations, to the case of a helical wiggler field

and arbitrary azimuthal harmonic number e.

The analysis is carried out within the framework of the Vlasov-

Maxwell equations for a relativistic annular electron beam propagating

in the combined transverse wiggler and uniform axial guide fields

described by

0
B = B 6 - 6Bcosk zd - 6Bsink ze

0 Auz 0 ^x 0 IY

where B0 and 6B are constants, X0 = 2fr/k 0 is the axial wavelength

of the helical wiggler field, and A , y , and E are unit vectors
.x "'y Ikz

in the x-, y-, and z-directions, respectively. It is assumed that

the beam thickness (2a) is much smaller than the mean beam radius R0'
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and that v/yb << 1, where v is Budker's parameter, and ybmc2 is the

characteristic energy of the electron beam. In Sec. II, equilibrium

properties are calculated for the choice of equilibrium distribution

function [Eq. (14)]

f - 2 22
fb K x 6( Ch - CO) 6 (Cl - Ybm v0)G(C Z)

where Ch' , and Cz are the helical, transverse, and axial invariants8

defined in Eqs. (12), (11), and (13), respectively, K is a normalization

constant, and v0 and C0 are constants related to the radial thickness

and mean radius, respectively, of the beam.

The formal stability analysis for the free electron laser instability

is carried out in Sec. III, and a complete dispersion relation [Eq. (68)]

is obtained, assuming that 1w - (k + nk0 )bcI << k0abc, W Pwhere w and

k + nk0 are the complex oscillation frequency and the wavenumber of the

perturbation, respectively, wc = eBO/Y mc is the electron cyclotron

frequency, c is the speed of light in vacuo, and abc = (yb - 1 c/yb

is the mean axial velocity of the electron beam. The resulting

dispersion relation [Eq. (68)] constitutes one of the principal

results of this paper and can be used to investigate stability properties

for a broad range of system parameters.

In Sec. IV, the dispersion relation for the free electron laser

instability is investigated for w and k + nk0 near the simultaneous

zeroes of the transverse (vacuum waveguide) dispersion relation,

2
2 2+la s TE mode,

- (k + nk0 - ko) 2R = 2+l,s

S2 0 0TM mode,

and the longitudinal dispersion relation r + (7/2Y )Xn ,n 0

where Rc is the radius of the conducting wall, rZ,n and Xn,n, are

defined in Eqs. (54) and (81) and y and a , are the s'th roots
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of the Bessel function J ,(, ) = 0 and its derivative J',((a , ) = 0,

respectively. The abbreviations TE and TM refer to transverse electric

and transverse magnetic polarizations, respectively. It is shown that

the maximum coupling between the longitudinal and transverse modes

occurs at a value of R0 satisfying

at /ak+, , TE mode,

a c 0+1,s TM mode.

Moreover, the coupling coefficient increases considerably with increasing

radial mode number s. It is also found that the TM mode is slightly

more unstable than the TE mode.
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II. EQUILIBRIUM CONFIGURATION AND ASSUMPTIONS

The equilibrium configuration consists of a relativistic annular

electron beam propagating in the combined transverse wiggler and uniform

axial guide fields described by

0
B = B & + 6B

Ooz \

= B 8 - 6Bcosk ze - 6Bsinkza , (1)VIZ 0 lx 0 %y

where B0 and 6B are constants, X = 2ir/k 0  const. is the axial

wavelength of the helical wiggler field, and , and ^z are

unit vectors in the x-, y-, and z-directions, respectively. The

electron beam has a characteristic radial thickness 2a and mean radius

R0, and is located inside a grounded cylindrical conducting wall

with radius R . We introduce cylindrical polar coordinates (r,O,z)

with z-axis along the axis of the beam; r is the radial

distance from the z-axis, and 6 is the polar angle in a plane

perpendicular to the z-axis. In cylindrical coordinates, the trans-

verse wiggler field 6B in Eq. (1) can be expressed as

6B = 6B e + 6B e
rr e4e

= -6Bcos(O - koz) r + 6Bsin(e - koz) , (2)

where r and k. are unit vectors in the r- and e- directions, respectively.

To make the analysis tractable, the following simplifying assumptions

are made.

(a) The thickness of the annular electron beam is much smaller

than its mean radius, i.e.,

a/R 0 << 1. (3)
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(b) The characteristic transverse momentum p, of a beam electron

is small in comparison with the characteristic directed axial momentum

YbmVb, i.e.,

I-LI<< YbmVb z (4)

where Vb is the mean axial velocity of the electron beam.

(c) It is also assumed that

V/Yb << 1, (5)

where ybmc2 is the characteristic electron energy, and v = Nbe /mc

is Budker's parameter. Here, c is the speed of light in vacuo, -e and

m are the electron charge and rest mass, respectively, and

Nb = J do J dr r nb is the number of electrons per unit axial length.
b 0 0b

Consistent with Eq. (5), the equilibrium self fields can be neglected

in comparison with the applied magnetic field B0 in Eq. (1).

(d) It is assumed that the axial wavelength X0 = 2n/k 0 of the helical

wiggler field is sufficiently short that

2

W c 261B < k 2 , (6)

0 C 0

where w0 and wc are defined by

W k V and w - eB0  (7)

0  0 b c Ybmc

Consistent with Eq. (6), it is also assumed that

2wO 6B
c -- <<c, (8)

- YbmVb 0

which is easy to satisfy for sufficiently short wiggler wavelengths.

(e) In the stability analysis, it is assumed that the wave

perturbations are far removed from resonance with the transverse
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cyclotron motion and the axial motion of the beam, i.e.,

jw - (k + nk0 )VbI C,ko (9)

where w is the complex oscillation frequency, and k + nk0 is the

wavenumber of the perturbation. It is also assumed that the cyclotron

motion and the axial motion is nonresonant with

22 2
Oz c

where vz = p/ym is the axial velocity of a typical beam electron.

Within the context of Assumption (c), there are three exact

invariants8 associated with the single-particle motion in the equilibrium

field k0 [Eq. (1)]. These are the transverse invariant C1,

2 2 2eBO 2e
C1 - r + + ck 0 z - bmVb) + k _ (11)

0 0

the helical invariant Ch'

p 1 e6B
h e + k Ybmvb) + -e- rsin(O - k z) , (12)Ch=P k0 (p b0 k

and the axial invariant Cz defined by

eBO 2 eBO 2
Cz ck0  z 0 0 ,

where = (pr p' Pp) = ymy is the mechanical momentum, P0 = r(p. - eB r/2c)

is the canonical angular momentum associated with the axial field BO

2= 2 4 2 21/2 lt t lcrn nry nymc = (mc + c ) is the relativistic electron energy, and Yb
2 2 -1/2_(1 - Vb/c const.

In the present analysis, we consider the general class of annular

electron beam equilibria described by8

0 22 2
fb = K 6(C - ybM v 2 h W C)G(C (14)

where v0 is a constant related to the radial thickness of the beam,
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K is a positive normalization constant, C0 = const. is defined by

1eB
CO = ---- R ,(15)0 2 c 0'

and G(C ) is normalized according toz

f dCzG(CZ) = 1. (16)

In the parameter regimes of practical interest for free electron laser

applications, G(Cz) is strongly peaked around C z =b mVb, with

characteristic half-width ACz bmVb. We therefore approximate

Eq. (13) by8

C=p - Wc W B (17)
z~ z o~c 0

where use has been made of Eq. (8).

As a simple example, we consider the distribution function

in which all electrons have a same value of axial invariant CzP i.e.,

G(C ) = 6(Cz - YbmVb) . (18)

After some straightforward algebraic manipulation that makes use of

Eqs. (3), (6), (15), and (17), it can be shown that the electron density

profile associated with the distribution function in Eqs. (14),

and (18) can be approximated by8

Nb! 2

0 2 2 2 r2) 1 /2 , r _< r < r2nb(r) [(r - r )(r2 - 2 )] (19)

0 , otherwise

where r1 = R - rL, r2 = R0 + rL, and the effective Larmor radius rL is

defined by
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2 2

r2 = Vb (B 2(20)
L =2 - )2 

(C 0

In the lowest-order calculation presented here, the electron density

profile in Eq. (19) is independent of 6 and z for system parameters

satisfying Eqs.'(3) and (6). Additional equilibrium properties assoc-

iated with the distribution function in Eq. (14) are discussed in Ref. 8.
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III. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we make use of the linearized Vlasov-Maxwell

equations to obtain an eigenvalue equation describing the free electron

laser instability in an annular electron beam. In the subsequent

analysis, it is assumed that all perturbed quantities have temporal

and spatial variations of the form

6(x,t) = 6*p(x)exp(-iwt)

where Imw > 0, and 6p(x) is the amplitude of the perturbation. Using

the method of characteristics, and neglecting initial perturbations,

the perturbed electron distribution function is given by

6f (xt) = ef dt' -V'6J(x',t') - 6A(x', t')

(21)
v' x V' x 6A(x',t'))

+c f b"' a' k b .

where dx'/dt' = v' and dk'/dt' = -ev' x ( ')/c, and the particle

trajectories (x', k') in the equilibrium field configuration satisfy

the "initial" condition x'(t' = t) = and p'(t' = t) = k. In Eq. (21),

the perturbed electric and magnetic potentials, 60 and 64, are determined

self-consistently from the linearized Maxwell equations

V - c = 4wefd3  6fb (22)

and

v2_ 1 a2) A 4we f d3 p v 6f , (23)
c 2 at2 c b

respectively, where use has been made of the Lorentz gauge condition

V - 6A(x,t) +- a 6$(x,t) = 0 . (24)Vu lA 1 C at 1\0

I ~
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Without loss of generality, the perturbation amplitudes are

expanded according to

6(x) = ( - - n) (r)exp{i[e + (k + nk0 )z . (25)
&~-co n=-w

Correct to lowest order, the axial motion of the electrons is free-

streaming, i.e.,

p
z' = z +-- (t' - t) . (26)

ym

The transverse trajectories are calculated for the case where the

wiggler amplitude satisfies Eq. (6), assuming that the axial and

transverse motions are far removed from cyclotron resonance, i.e.,

2 2 2 7,8
k0 v 2 0i) [Eq. (10)]. After some straightforward algebra, ' we

obtain

v= V cosW T - (r - R )wsinW T

W ) 6B
+ C - v cos(e - k z - k v)

- w0 B 0  Z 0 Oz

+ [(wc/k0)sin(6 - k0z)sinWCT + v Zcos(- k0Z)COSec ,(27)

and

v' = (r - R )W COSC T + V sinW T

+ -C 6B {v sin(e - k z - k v t)
Wc -0 0 0  z 0 0 z

- [(o c/k0 )sin(e - k0 z)cosWcT - VZcos(e - k0z)sinwc1]} , (28)

where use has been made of Eqs. (12) and (26), and T = t' - t.

As evident from Eqs. (27) and (28), the radial and azimuthal

orbits contain oscillatory contributions proportional to cosW c

sinocT, sin(e - k0z - kovZT) and cos(e - k0 z - k0vzT). For present
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purposes, in the t'-integration on the right-hand side of Eq. (21),

we retain terms proportional to [w - (k + nk0)Pz/ym] 1, and assume that

the value of [w - (k + nk0 )P/ym] is well removed from resonance

with the cyclotron motion and the axial motion of the beam [Eq. (9)],

i.e.,

|w - (k + nk pz /Ym k0 b

Within the context of Eqs. (1) and (9), the perturbed distribution function

in Eq. (21) can be approximated by7

0

6fb ('E) = -e dTexp(-iWT) 2(ymiw(6^ - v' 6 )

0 (29) 0

-z( L 6+ v' - 6 + 6+ - f'-
_ z IV az ap z a z

2 2 2 2 1/2
where y = H/mc (1 + p /m c ) . Moreover, making use of Eq. (9),

only those contributions to v' and v; proportional to sin(e - k z - k T
r e0 k0 vr

and cos(6 - k z - ko zT) are retained. That is, on the right-hand

side of Eq. (29), we retain contributions to v' and v' of the formr

v' = v Wc 6B cos(e - k z - k0v T) (30)
W c 0

and

v' = -v - 6 sin(6- kz - kv zT) . (31)
6 z10-Wc B 0 0 z

Finally, since the oscillatory modulation of the radial and azimuthal

orbits is small-amplitude [Eqs. (3), (6), and (9)], we approximate

r' = r , 6' = 6 , (32)

in the arguments of the perturbation amplitudes on the right-hand side

of Eq. (29), i.e.,

( (r')exp(iie') (n) (r)exp(ie).
k



13

Substituting Eqs. (25) and (30) - (32) into Eq. (29), and making

use of Eq. (9), we find after some straightforward algebra that the

perturbed distribution function 6fb (,k) can be approximated by

exp{i[20 + (k + nk0 )z]} v
6fb (xk X (n) A (r)b - (k + nk0v n)1vn c z,

+ vz c 6B (n+1) (n-1)
+ 2 W c~ 0 B 0 n+l O,k-1 n-lA6, k+1

v
+ 1 c c 6B [A A(n+l) + X A(n-1)] (33)2 c Wc ~ W0 B n+1 n,Z-1 n-1 n,Q+1

where the function A , (k,w,k) is defined by

f af 0

Xn' (R,,w,k) = 2 [ymw - (k + n'k )p] I + (k + nk0  ' (34)

It is convenient to introduce the dimensionless potential

amplitudes defined by

(r) = (n) r) Vb A (n)(r)] (35)

mc

A, a(r) = -~-A nl(r) , (36)

mc
and

ArC1r) = ~-A (~ r) .(7

Moreover, we introduce the dimensionless parameter

eSB
2 6 (38)

2ybmc k0

and define the effective susceptibility Xn,n (wk) by

Xnn 2(wk) = 47re2f3 Crr 3 n' (kw,k ) (39)Xn,n, ok x 0 rd d W - (k + nk 0 )vz .*39
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To simplify the present analysis, it is also assumed that

W 0 >>W (40)

where o = k0 Vb and c = eBO/Ybmc Equation (40) is easily satisfied

in parameter regimes of practical interest for free electron laser

applications.

The integral d 3 b in Eq. (23) is required to evaluate

the r-, 6-, and z-components of the perturbed current density.

Within the context of Eqs. (3), (6), and (9), it is important to

note from Eqs. (11) and (14) that the quantity X (pw,k) defined

in Eq. (34) is an even function of pr -r0' where8

Pr0 = 2ybmc W0 - Wc Acos(e - k0z) . (41)

Therefore, it follows from Eq. (33) that

d3p yr b f d3 p(prO/Ybm) 6 b

where we have approximated y = Yb' which is consistent with Eq. (9).

That is, the perturbed radial current is given approximately by

-efd Vr 6 b = -2ecAcos(6 - koz)6nb , (42)

where use has been made of Eq. (40). It can also be shown that the

perturbed azimuthal current is given approximately by

-ed pvG'b = 2ecAsin(e - k0z) 6nb . (43)

Making use of Eqs. (33) - (43), the Maxwell equations (22) and

(23) can be expressed in the approximate form
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a 2
r 3r 2

r

2 2
+ 2 (k +

C

a (.1) 2+1
2
r

2
+ - k + (n

C

S 2 0) a(w,k) , (44)

ybR0

-1)k0 2}rA+1

2i(2+1) ( 6 (r - RO)

r2  0,2.+1 RO Aca(w,k)

ra - ( +1) +1 2 2r ~+ - - [k + (n-1)k]r2 20
r c

2i (2,+l)
+ r2

r
A (r)

6(r-RO)

RO (IA)cx(w,k)

a (Z-1) 2 +1
r 2

r

22
+ 2- [k + (n +1k A

C 20 
r -

21(t-1) - 6(r - RO)

r 2 A6,k- 1 (r) RO A a (,k) ,

2+

r 2
r

+21(X-1)
+ 2
r

22
2 - [k + (n+1)k 0] A0 O£,l (r)

CJ

6 (r - RO)
A -ll(r) = (-iA)a(w,k) (48)

for a thin annular beam satisfying Eq. (3). In Eqs. (44) - (48), the

source function a(w,k) is defined by

a(w,k) = Xn,n 0(R - iA[Xn,n+ A,t-1 (R0  Xn,n-1 ,L+1 (R0

(49)

- A [Xnn+Ar,- (R 0) + Xn,n-1Ar, t+(RO)]

Since the right-hand side of Eq. (44) vanishes except at r = RO,

Eq. (44) can be expressed as

r
r

+ p (r) = 0

1 a
r r

r

ha
ar

(45)

(46)

(47)

(50)

a

r 57
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for r # R0. In Eq. (57), the parameter p2 is defined by

p = w2/c2 -k + nk0 ) . (51)

The solution to Eq. (50) is given by

AJZ (pnr) + BN (pnr) RO < r < RC

n ( )CJ (p r) , < r < RO (

where J (x) and N (x) are Bessel functions of the first and second

kind, respectively, of order 2, Rc is the radius of the conducting wall,

and the constants A, B, and C are determined from the appropriate

boundary conditions. Multiplying Eq. (44) by r and integrating

from R0 (1-c) to R0 (1+E-), with e + 0+, we obtain

r (wk)o(RO) = - r (w,k) , (53)
2ybYb

where the longitudinal dielectric function r2.  (w,k) is defined by

r (w k) (54)
Zn ' J I(Cn)N 2 (C )n J ( n )N (n

with tn = pnRO and C = Rpn

The transverse dielectric functions associated with Eqs. (45) - (48)

are calculated in detail in Appendix A. For example, for 0 < r < ROP

the solutions to Eqs. (45) and (46) are given by

(k +1)(+)
A (r) = C_ J (p n-1 r) + C+ lr)

(55)

(k +1)
Ae ,£+(r) = iC_ J(pn-lr) - iC(+ +2 n-r)

where p- W2/C2 - [k + (n-l)/k0 2, and the constants C(Z+1) are

determined from the appropriate boundary conditions. After some

straightforward algebraic manipulation, which is summarized in

F ,
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Appendix A, it can be shown from Eqs. (45) and (46) that

+ k)(9.+l)J 1 (6
D +1 ( +,k)C 2+)+2 n-1) = Aa(ow,k) (56)

and

D+ (o,k)C(+) i Q- 1) 1A (wk) (57)

where the transverse dielectric functions D + (w,k) and D2 + (w,k) are

defined by

D+ (w k) = - n-1 9+l n-1 +1 n-1 (58)
2+1 J (n-l +2 n-1

and

D2. i (wk) = g2+1 n-i k n-1
Dk+1 k= +1 n-l )N Yl( n-l i2 t(n-l) (59)

Here, the prime (') denotes (d/dx)J +1(x). In Eqs. (58) and (59),

2 W [2/C2 - (k + n'k ) ]R , 2 , = [2/C2 ( k + n'k) 2]R6, and
n 0 c 0'0

the function g2,,(C) is defined by

2J , (CJ'P, (4)
= Jt, ( )N', (C) + J, (4)Nt, (C) (60)

Similarly, the solutions to the coupled differential equations

(47) and (48) are given by

Ur) 1) (2.-i)
(r,-i(r) = C t-2(pn+l r) + C J i(pn+i r)

(61)

A 6,.-(r) = iC i -2(pn+ir) - iC + iJ pn+1 r)

for 0 < r < R . From Eqs. (47) and (48), we obtain

+ (2.-i)1D (w,k)C J n+i) = -'Aa(w,k) , (62)

and

D2 -(wk)C J 2 +1) = Aa(o,k) (63)

V
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where the transverse dielectric functions D +(w,k) and D - (w,k) are

defined by

D+ (w,k) =g 2 -1  n+1 ) / 7 TJ Pn+l (64)
gk-1( n+l )N k(cn+l n+l1

and

D (,k)- n+1 2-i n+i -.1 n+1 (65)
2 n+1 -2 n+1

Substituting Eqs. (55) and (61) into Eq. (49), the source

function a(o,k) can be expressed as

a(w,k) = X ; (R) 2A[ X C J (En,n 2. 0 kn,n-l ( 2 n-1

(66)

+ X CZ-1(2-)
n,n+1C+ k n+1

Equations (53), (56), (57), (62), and (63) constitute a set of linear

algebraic equations relating X (RO), C+ and C+ However,

we note from Eq. (66) that the common source term a(w,k) is related only

to the constants $ (RO), C( , and C . In this regard, the

equations containing C(.+l) and C are completely decoupled from

the remaining equations. Without loss of generality, Eqs. (56)

and (63) are therefore omitted from the subsequent stability

analysis. Making use of Eqs. (53), (57), and (62), we obtain the matrix

equation relating (R 0 C + J Qn+1 ), and C X+, i.e.,

2. 0 +r A A ~ (R2n

k,n 2 2 n,n 2 Xn,n-1 2 n,n+ t(R
2b b Yb

-1 AX D + A 2 XA 2 Xc (2+l) 2. (E =0,
iAn,n 2+l n,n-1 Xn,n+l ( ) n-1

- AX , A 2X - D ++ A 2Xn,n+ + 2 n+

(67)
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which is similar in general form to the matrix equation obtained by Uhm

and Davidson for the free electron laser instability associated with

an annular electron beam propagating through an undulator multiple

mirror magnetic field. Of course, the transverse dielectric

functions D and D _ for a helical wiggler field are different from

those for an undulator field.

The condition for a nontrivial solution to Eq. (67) is that

the determinant of the matrix vanish. This gives the general dispersion

relation

D+ ~ r+D +-1 D+ r,n 2y2 Xn,n
b (68)

= -A 2 (Dn+ + D+ X r£ = 0
X-lXn,n-1 k+l n ,n+I X,n'

which can be used to determine the complex eigenfrequency w in terms of

k + nk0 , k, v, A, and A.
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IV. FREE ELECTRON LASER STABILITY PROPERTIES

We now investigate the free electron laser stability properties

predicted by Eq. (68) for a relativistic annular electron beam

propagating in a helical wiggler field. Consistent with Eqs. (5)

and (9), the eigenfrequency o can be approximated by w = (k+nk0 )Vb We

therefore approximate Cn+1 = {2 /C - [k+(n+1)k0 2 1/2R by

n~l~'(k+nk0)
2  2 1/2

Cn+ i2 + 2k0 (k+nk0 ) + k2 RC (69)

Yb

After careful examination of Eq. (64) together with Eqs. (60) and (69),

it is evident that the transverse dielectric function D+ (w,k) is

never equal to zero for k + nk0 > 0. In this regard, for small wiggler

amplitude (A << 1), we investigate free electron laser stability

properties for w and (k + nk0 ) near the simultaneous zeros of the (A + 0)

transverse dispersion relation D+ (w,k) = 0, and the (A -+- 0) longitudinal

dispersion relation r + (1/2y )X = 0. For small but finite A,

the general dispersion relation in Eq. (68) can then be approximated

by the simplified form

+D2-nn -A 2 X r (70)
n+1 + , y + Xn,n)=- Xn,n-1 X,n .(0

b

Equation (70) is one of the principal results of this paper and can be

used to investigate stability properties for a broad range of system

parameters.

Making use of

iq E i(k + nkO/b , (71)

the longitudinal dielectric function r can be expressed as

r = - h(q R ) =. 1  I k (qR)/ k(qnR0) (72)
n,n 2 n 0 2 Ik (q nRc)Kt (qnR 0 nR0)K (q Rc)
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for k + nk 0 > 0. In Eq. (72), I Cx) and K (x) are modified Bessel

functions of the first and second kind, respectively, of order k, and

h(qnR ) is the effective longitudinal wave admittance. For short

axial wavelengths with (Rc - R0)(k + nk0) >> Yb, it is readily shown

from Eq. (72) that the wave admittance h can be approximated by

k + nk0
h(qnR) 2 - R (73)

(73b

For free electron laser applications characterized by axial wavenumber

k + nk0  ( l + ab)y ko, Eq. (73) constitutes an excellent approximation.

For very small wiggler amplitude (A + 0), or for very low beam

density (v -+ 0), it is evident from Eq. (70) that the linear dispersion

relation for transverse perturbations is given by

D+ (w,k) = 0, (74)

and the linear dispersion relation for longitudinal perturbations is

given by

r kn(w,k) + "2X,n = 0 ,(75)

2y b

where k + nk 0 > 0 has been assumed. Iaking use of Eqs. (59) and (60),

the dispersion relation in Eq. (74) can be expressed in the equivalent

form

2
2 (k + nko _ 2 = k+l,s (76)

c R2

for the transverse electric (TE) polarization, and

2 2 2

k- (k + nk( k 2 + 77)

c 20 0R2
c

for the transverse magnetic (TM) polarization. In Eqs. (76) and (77),

a I is the s'th root of J',(a I ) = 0, and I is the s'th root
1 ,s k k ,S is
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of J ,( 9',s) = 0. Equations (76) and (77) are the familiar TE and TM

mode dispersion relations for the vacuum waveguide modes.

For future reference, Taylor expanding the transverse dielectric

function D +l(W,k) in Eq. (59) about the vacuum waveguide results, it is

straightforward' to show that D (w,k) can be approximated by

2 2
Rc 2 2 2+1 +,s

+1(w,.k) = 2a2 + a s +l,s (Z+l) j J(a + 1,sR0 /Rc)
+l, s2 

(78)

x (k + nk k0) 2 R+

c

for the TE modes, and

R2  J'(a s) 2

D (wk) = c j+l £+ls
k+1 2 J (a+,sR0/R C)

(79)
22

x - (k + nk - k2 %+,s

cc

for the TM modes.

In order to investigate the influence of axial momentum spread

on the free electron laser instability, we assume an axial distribution

function of the form

G(C) (80)

z 7r (Cz bmvb 2 + 2

where A is the characteristic spread in Cz about the mean value ybmVb'

We further assume that the spread A is small in comparison with

YbmVb, i.e., A << YbmVb. Substituting Eqs. (14), (34), and (80)

into Eq. (39), we then obtain

2 2
2v W - (k+nk0)(k+n'k 0 )c

Yb [W - (k+nk0 Vb + ilk+nkOA/y bm]2

within the context of Eqs. (6) and (9).
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For small but finite wiggler amplitude and low beam density,

we make use of Eqs. (72), (78), (79), and (81), to simplify the

full dispersion relation in Eq. (70). This gives

2 2 +2 s k+nk 'A 2
2- (k + nk0 - k0) 2' - (k+nko)Vb + k 3

c R c Ybm

2 a2
- 2 A 2k0 (k+nk0) - k - X+0 ,s (82)

y3 h (0 0 0 R2
b c

2 a2+l S QE(R/R
= bR 2k 0 (k+nk0 -k0  + sOc

b c - c-

for the TE mode polarization, and

W2 2 a2 - k+nk |A 2
- (k+nk0-k0 )

2  Z+1ss w - (k+nk )Vb + i 3 0

v2  
0 0_2_0_b_

c R c b bm

-2vc 2k 0 (k+nk 0 ) - 2 - t+l,s (83)
y3h 0 0Rb

2 vc2
4A - k0 (k+nk 0 -k 0 _ - ,s Q" (RO/R

YbRcI- c

for the TM mode polarization. In Eqs. (82) and (83), the TE and TM

coupling coefficients, QE (RO/Rc) and Q s(RO/Rc), are defined by

a 2 rJ (a R /R 2

Q (R /R ) 2 £+l,s 2 k+ls 0 c (84)
ks1, (21 2 +1 (aY+1,s ,

and

M i k +ls R/Rc (85)
QRs (RO/Rc) J' (a (5

I +l k+1, s

respectively. Equations (82) and (83) are the dispersion relations

used in the remainder of this section, and can be used to investigate

stability properties for a broad range of system parameters of experimental

interest.
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A careful examination of Eqs. (84) and (85) shows that the

coupling between the transverse and longitudinal modes is maximum

whenever J'(a R /R ) = 0 for the TE mode, and J'(++lsRO/Rc) =
k. 2+l,soC

for the TM mode. Here, the prime (') denotes dJ (x)/dx. In this context,

it is found that the maximum growth rate for perturbations with

azimuthal harmonic number k occurs for a value of RO/RC given by

0/R a /a+ls , TE mode ,
1R2/+lcs(86)

a /+ ,s, TM mode

where a is the first root of J'(c ) 0. Equation (86)
2.,l 2. t' ), =0

is valid only when a2.,1 < a2+ 1 ,s for the TE mode, and a l< +,s

for the TM mode. For a2 . 1 > a2+ 1,s (TE), or a, 1 > a+,s (TM),

the maximum growth rate occurs for R0/RC 1.

Shown in Fig. 1 are plots of (a) the ratio R /Rc that satisfies

Eq. (86), and (b) the corresponding coupling coefficients Q and Q M

for several values of azimuthal and radial mode numbers, 2 and s.

Several points are noteworthy in Fig. 1. First, the maximum coupling

occurs at R0 /R = 1 for the (2,s) = (0,1) mode, where a ~ 3.83,

a = 1.84 and 8,1 ~ 3.83. Second, except for azimuthally symmetric

perturbations (2 = 0), the value of R0/Rc corresponding to maximum

coupling increases with increasing mode numbers 2 and s. Third,

from Fig. l(b), for a specified value of azimuthal harmonic

number 2, the maximum coupling coefficients corresponding to the values

of R0/R in Eq. (86), increase rapidly with increasing radial mode

number s. Finally, for specified values of (2,s), we note from

Fig. 1(b) that the maximum value of QM is slightly larger than QE
k ,s 2.,s*
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Defining the normalized Doppler-shifted eigenfrequency by

= [w - (k+nk0)Vb]/k0c , (87)

we calculate the normalized growth rate n = lmQ numerically from Eqs. (82)

and (83) for a broad range of system parameters yb, V/yb, A, A/YbmC,

R0 /RC, Z, and s. Shown in Fig. 2 are plots of the normalized growth

rate 0 versus (k + nk0)/k0 [Eqs. (82) and (83)] for (Z,s) = (1,3),

Yb = 10, V/Yb = 0.02, A 2 = 0.01, A/Ybmc = 0.002, and RO/Rc =a /a2,3

for the TE mode, and R0 /Rc a 1 1 /a2, 3 for the TM mode. It is evident

from Fig. 2 that the TM mode is slightly more unstable than the TE

mode, which is consistent with Fig. 1(b).

Shown in Fig. 3 are plots of the normalized TE mode growth rate

Q versus (k + nk0)/k0 obtained from Eq. (82) for R/Rc = a /a +1,s

[Eq. (86)]. The two plots correspond to (a) k = 1 and several values

of s, and (b) s = 3 and several values of Z, and parameters

otherwise identical to Fig. 2. As predicted in Fig. 1(b), it is

evident from Fig. 3(a) that for a specified value of azimuthal mode

number k, the growth rate and range of k-space corresponding to instability

increase rapidly with increasing radial mode number s. For R0 /Rc

satisfying Eq. (86), we therefore conclude that perturbations with

high radial mode numbers exhibit stronger instability than the fundamental

mode (s=l). Moreover, the k-value corresponding to maximum growth is

somewhat reduced as the radial mode number s is increased. For

example, in Fig. 3(a), the maximum growth rate occurs at k + nk0 = 195 k0

for s = 1, and at k + nk0 = 187 k0 for s = 5. The maximum coupling

coefficient in Fig. l(b) decreases slowly with increasing azimuthal

mode number 2, as does the instability growth rate [Fig. 3(b)].

The instability results for the TM mode are similar to those for the

TE mode. However, the TM mode is somewhat more unstable than the TE mode.

i I
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V. CONCLUSIONS

In this paper, we have investigated the free electron laser

stability properties for a relativistic annular electron beam propagating

in combined transverse wiggler and uniform axial guide fields. The

stability analysis has been carried out within the framework of the

linearized Vlasov-Maxwell equations. The equilibrium properties

and basic assumptions were summarized in Sec. II. The formal

stability analysis was carried out in Sec. III for general

azimuthal harmonic number k, and a complete dispersion relation

[Eqs. (68) or (70)] for the free electron laser instability was

obtained, including the important influence of finite radial geometry.

In Sec. IV, this dispersion relation was investigated for w and k + nk0

near the simultaneous zeros of the transverse and longitudinal dielectric

functions. It was shown that the maximum coupling between the longitudinal

and transverse modes occurs for values of R0/R satisfying R0/R C

a x/aIt + 1,s for the TE mode polarization, and RO/Rc = a jl'2.+l,s

for the TM mode polarization. Moreover, the strength of the coupling

increases considerably with increasing radial mode number s. It was

also found that the TM mode is slightly more unstable than the TE mode.
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APPENDIX A

ELECTROMAGNETIC POTENTIALS IN A CYLINDRICAL WAVEGUIDE

In this appendix, we investigate properties of the electromagnetic

potentials in a cylindrical waveguide with radius Rc. Within the context

of the Lorentz gauge condition,

A( ,t) + (x,t) =0 ,(A.1)

the electromagnetic potentials, * and A, are determined from the

Maxwell equations

(~2 - 2L2) *(x,t) = -47p(x,t)
c Bt

and (A.2)

v2 - A1jQ t) = - J47~t)( 2

where p(x,t) and J(x,t) are the charge and current densities,

respectively, and c is the speed of light in vacuo. In the present

analysis, we assume that all quantities vary with space and time

according to

i(xt) = *(r)exp{i(Z6 + kz - wt)} , (A.3)

where Z is the azimuthal harmonic number, k is the axial wavenumber,

w is the complex eigenfrequency, and p(r) is the amplitude. The

components of the magnetic and electric fields can then be expressed as

B rr) = i(/r)A z(r) - ikA (r)

B (r) = ikA r(r) - (/3r)A Z(r) , (A.4)

Bz(r) = (1/r)(I/3r)(rA) - (i/r).A r(r)
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and

Er (r)

E0 (r) =

Ez (r)

Making use of

r

r r

r r

and

r~r

where p is defined

-(a/ar)S(r) + (iw/c)A r(r)

-(i.Ir)(r) + (iw/c)A (r) , (A.5)

-ikO(r) + (iw/c)A z(r)

Eq. (A.3), the Maxwell equations (A.2) can be expressed as

- + p2 )(r) -4rp(r) , (A.6)

Dr 2 +1 2p22 ~ 4r

- 2r+ + p2) (r) - A (r) = - Jr(r)3r 2 P2 0C c rr r
(A.7)

- 2 + pA2 (r) + A(r) = - J0 (r)
r r

(A.8)

a
ar

by

S + 2) Az(r) = - A!jz(r)
r 2+PC

(A.9)

2 2/2 -k 2 .(A.l)

Introducing the new potential variables

A+(r) = A r(r) ± iA (r) , (A.ll)

in Eqs. (A.7) and (A.8) gives

r -r (2 +p2+(r) =-j J (r) (A.12)
( -r L rr T_ 2 c

where the current densities J(r) are defined by (r) = Jr(r) iJ(r).

In many charged particle beam applications, the perturbed

charge density and axial current are related by

II
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(r) = ncp(r) , (A.13)

where n is a constant. We therefore restrict the subsequent analysis

to the case where Eq. (A.13) is satisfied. After a careful examination

of Eq. (A.6), (A.9), and (A.13), we find that the axial component of

vector potential is linearly proportional to $(r), i.e.,

A (r) = n (r) . (A.14)

Making use of Eqs. (A.1), (A.5), and (A.14), the appropriate

boundary conditions at r = R are given by

(RC z(R) A 6A(R) = [(a/ar)(rAr r =R = 0, (A.15)
c

provided

kc - nw # 0 . (A.16)

Here, R is the radius of the conducting wall.
cA

In a vacuum waveguide, where p = 0 = ,. the solutions to

Eqs. (A.6), (A.9), and (A.12) are given by

*(r) = (1/n)Az(r) = 4J k(pr) , (A.17)

and

A+(r) = a+J k±1 (pr) , (A.18)

where 4 and a+ are constants, and J (x) is the Bessel function of the

first kind of order k. After some straightforward algebra that makes

use of the definitions A = - + A )/2 and A = i(A_ - A+)/2,
r - +0+

and the boundary condition A (R ) = [(3/r)(rAr)]R = 0 in Eq. (A.15),
c

we obtain a+ = a_ in Eq. (A.18). Therefore, the radial and

azimuthal components of the vector potential can be expressed as
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Ar (r) = a+ tJt(pr)/pr

(A.19)

A (r) = ia+J'(pr)

for kc - nw # 0. In Eq. (A.18), the prime (') denotes (d/dx)J (x).

For an electromagnetic wave described by Eq. (A.19) with a+ # 0,

the boundary condition A (R ) = 0 implies

2 a2
- k 2 (A.20)

c Rcc

where a is the nth root of Jj(a Zn) = 0. Equation (A.20) obviously

satisfies Eq. (A.16). Moreover, from the boundary condition

O(R ) = 0, we also note that the amplitude 4 satisfies 0 = 0,

which is consistent with the definition of the transverse electric (TE)

mode polarization characterized by Ez(r) = 0.

Similarly, for 0 # 0, we find the transverse magnetic (TM) mode

dispersion relation

2 62
2- k2 = (A.21)
c R

C

where an is the nth root of the Bessel function J ( =n 0.

Since J'(0 ) # 0, the constant a+ = 0 is required to satisfy the
2in

boundary condition Ae (R) = 0, which is consistent with z (r) = 0.

From the Lorentz gauge condition in Eq. (A.1), we also find n = w/kc,

2 2 2
and Eq. (A.16) can be expressed as k c - o 2 0. To summarize,

for a vacuum waveguide, the TM or TE modes are exclusively described

by the potentials in Eq. (A.17) or Eq. (A.19), respectively.

As a second example, we calculate the electromagnetic dielectric

function for the case where the radial and azimuthal current densities

are given by

i
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c6(r - R 0
Jr (r) = -iJ6 (r) 4 Cf R K (A.22)

0

where R 0 and K are constants. In this case, Eqs. (A.7) and (A.8)

can be expressed as

1a a k2 +11 2)(r-R 0)
r - + p Ar(r) - ( = -(A- R K, (A.23)

r r 0
and

a k 2 + 22 6(r-RO)

r -r - + p)A (r) + Ar (r) = R iK . (A.24)
r r 0

Substituting Eq. (A.ll) into Eqs. (A.23) and (A.24), it is found

that the solutions to the coupled differential equations (A.23) and

(A.24) are given by

A+(r) = 2 {aJ (pr) + b N k~(pr) , 0 < r < Rc (A.25)
~C J (pr) 0 < r < RO

where the constants a+, b+ and C are determined by the boundary

conditions that the potentials A (r) and A r(r) are continuous at r = Ro'

and that A (r) and (aIr)(rA r) vanish at r = R C. According to Eq. (A.ll),

Eq. (A.25) can also be expressed as

aJ Z1-(pr) + b_N, 1 (pr) + a+ i+1(pr) + b+N,+1 pr)

Ar(r) = RO < r < R , (A.26)

CJ (pr) + C+J,+1 pr) , 0 < r < RO

and

aJ 1 (pr) + b_N,_ (pr) - a+j,+ 1 (pr) - b+N,+1 (pr)

A (r) = i RO < r < R , (A.27)

C-J _ (pr) - C -+ i+(pr) , < r < Ro

Multiplying Eqs. (A.23) and (A.24) by r and integrating from RO(l-E)

to Ro(l+c), with e + 0+, we obtain after some straightforward algebra,

D (w,k)C+J'+1') = K (A.28)

and
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D(wk)C_J (E) = K , (A.29)

where the dielectric functions D (W,k) and D (w,k) are defined by

D (w,k) = - (A.30)
2. E-i 2.+1

and

D - (w~k)2J .(C)J',(0)/TrJ,-
D ( 2,k) = 2J ()J'(C)N - i (C)N'(C) + J (C)N (0) MJ

(A.31)

Here, ( = pRO and = PRc'

In a similar manner, we also obtain Eqs. (A.28) and (A.29)

in circumstances where the radial and azimuthal current densities

are related by

c 6(r-R0)
Jr(r) = De (r)= - 4 R K. (A.32)

0

In this case, however, the dielectric functions are defined by

+2J k(0) ( )/wJk+M
D (w,k) = 2J (C)J'()N W - 1 ()N'( ) + J' (C)N (0)]J1 M

(A.33)
and

D~(w,k) = - (A.34)
£ £ k+l (-A.4
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FIGURE CAPTIONS

Fig. 1 Plots of (a) the ratio R0/R satisfying Eq. (86), and (b) the

corresponding coupling coefficients Q and Q for several

values of azimuthal and radial mode numbers, Y and s.

Fig. 2 Plots of normalized growth rate Q . versus (k + nk0)/k0

[Eqs. (82) and (83)] for (k,s) = (1,3), yb = 10, V/Yb = 0.02,

A 2 = 0.01, A/Ybmc = 0.002, and RO/Rc satisfying Eq. (86).

Fig. 3 Plots of normalized TE mode growth rate 0 versus (k + nk0)/k0

[Eq. (82)] for RO/Rc = a / ak+,s, (a) k = 1 and several

values of s, (b) s = 3 and several values of Z, and parameters

otherwise identical to Fig. 2.
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