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Parametric decay of a lower hybrid pump wave into another lower hybrid

wave and a low frequency ion-sound quasi-mode (wR : k11vti) is studied. Such an

instability may be excited during high-power lower hybrid heating experiments in

tokamak plasmas and may lead to strong modification of the incident nll spectrum

near the plasma periphery. Such an instability could explain the broadened and

downshifted frequency spectrum and phase-independent heating observed in the

Alcator A tokamak experiments. Although the growth rate for this decay increases

like _y + r 2 - E2 for powers slightly above threshold (W2 is the linear damping

rate at the lower sideband and E0 is the pump electric field), for powers well above

threshold (such that y > wR) -y - E0'3 , and the convective thresholds are rather

high. However, for inaccessible noll, the pump wave power is expected to accumulate

on the outer surface of the plasma column where the growth rate is large and the

convective thresholds are significantly reduced. In such a case the threshold pump

power can become quite low and may be exceeded in experiments such as Alcator

A.
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I. INTRODUCTION

During the Alcator A lower hybrid heating experiments, frequency downshifted

and broadened. RF spectrum and enhanced low frequency spectrum were observed

on RF probes located in the shadow of the limiter.' Frequency downshifted and

broadened RF spectrum was also observed in the plasma interior using small angle

CO 2 laser scattering. 2 Similar frequency spectra have been observed in Alcator C

with both RF probes 3 and CO 2 scattering.4 In addition, the ion tail production

observed in Alcator A was found to be independent of waveguide phasing. 1

One possible explanation of these results is the scattering of lower hybrid

waves at the plasma edge by the low frequency density fluctuations. 2,5,6 While this

mechanism accounts for many of the observed features in the Alcator A experiment,

it cannot easily explain the downshifted RF frequency spectrum and the enhanced

low frequency spectrum. In addition, it would take hundreds of scattering events

to explain the broad (up to 8MHz FWHM) frequency spectrum observed. In this

paper, we consider another process, namely the parametric decay of the lower hybrid

pump wave, wo = WLH[1 + (mj/me)(k /k 2 )]1/ 2 , into another lower hybrid wave

and a low frequency ion-sound quasi-mode, WR : kjjvtj (WR/wo is typically of the

order of 10~'). Through this parametric decay, higher n1l lower hybrid waves can

be generated. We find that for the accessible part of the no, spectrum, due to

the narrow resonance cones the convective thresholds are rather high (P >1MW).

However, the inaccessible components of the pump wave spectrum will accumulate

on the outer surface of the plasma column where the growth rates for this parametric

process is high. If the parametrically excited sideband waves propagate mainly in

the poloidal direction (as opposed to the radial direction) the threshold can be low

(P < 1kW) compared with the available pump power. Therefore, we would expect

that this process might play an important role in experiments where a significant
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fraction of the incident power is in the inaccessible range of noll. In this paper

we shall not consider the effects of scattering from density fluctuations or toroidal

geometry. We remark, however, that toroidal effects may also produce a pump wave

that propagates to the surface periodically. 5

The plan of the paper is as follows: In Section II, analytical and numerical

calculations of homogeneous growth rates and thresholds are presented. In Sections

III - V, various convective and inhomogeneous thresholds are estimated. The

depletion of the pump wave due to this decay instability is discussed in Section

VI. Finally, in Section VII the summary and conclusions are given.
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11. HOMOGENEOUS GROWTH RATES AND THRESHOLDS

We consider here only the outer region of the plasma column, namely r/a >

0.75 where a is the limiter radius. We consider the slab geometry shown in Fig. 1.

Here, z, y and z correspond to the radial, the poloidal and the toroidal direction,

respectively, in a torus. We assume an RF pump wave of the form

E0 = (E011 + E0 I) cos(wot - ko -x)

where Eoll is the component of E0 in the z-direction and E0 I is the component of E0

perpendicular to the external magnetic field (which need not be in the z-direction).

Near the plasma edge, we shall not distinguish between the z- and the parallel

direction B/B.

We use the parametric dispersion relation derived by Porkolab7 :

+ _=Jo ( 2 X(e+ + X )

+ +2(I+)j2(,) e 1

Xi +X. 1+X+ 1+X

j02(I)j12()[ Xe 1+X7+

1 + _ _ _ X

1 + - J2 ()Xe+ J 2 Xm)(1)

Jo 2 ttj,2 X, Xe
1 + X, + X c

1 + 1- J0 2 ()Xe _i 72 0)Xe
X i-+ XT 1 +X,

where Xi,e Xi,e(w, k) and X1,= Xi,e(w+, k±) are the linear susceptibilities at

the low frequency (wk) and at the sidebands (w± = w ± wo, k+ = k ± ko)

respectively, and J's are the Bessel functions. We used the following expressions

for the susceptibilities in our numerical calculations:
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1+ W- W + %/ Io(b,)e ~Z + i'

Xe(W, k) ~ kllvt, klvt ] (2)
k+ 1+ Io(b,)e-bZ( ku)

1 + ' 100 J~.bZ( w nn'ilk22k vi k v t
Di n=100x 1(w, k) ~ 1~ + k *vt n=b-e-100. (3

)12 k2 kVk

Here oti, a(2Ti,/m 1/2 O , a t a eB/m ,,c, bi,, _= k2 oI,,j/22?,,

I's are the modified Bessel functions, Z is the Fried-Conte plasma dispersion func-

tion, and v, is the effective electron collision frequency which includes electron-ion

and electron-neutral collisions. We have included the effects of drift waves in the

susceptibilities by introducing the drift frequencies wi,, k, V2',/21j,eL, where

Ln = njdn/dx|~.

In the dipole approximation (ko = 0), the coupling constant u is given by7

= e k E [(Eow X kg)-i]
M 4 +2W

where i is the unit vector in the z-direction. We have neglected the polarization

drift term but kept the parallel electron drift term and the E X B term which are

important near the edge. For finite ko, we have to use different expressions for I

at upper and lower sidebands (p+ and i-). Following Drake et al,' we obtain the

following dispersion relation:

1 (p-) 2  (g+)2
e+ + + Xe(1 +Xi)=-0 (4)

where

ek (k)EI E [ Eoj 1 X k) -

e k Oi + . (5)
M, k± WO W Wx2
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We remark that Eq. (4) is valid only if p 2 < 1 whereas Eq. (1) is valid even near

y ~ 1 (but ko/k < 1). Thus, Eqs. (1) and (4) may be used to explore somewhat

different regimes.

In the limit /2 < 1 we can expand the Bessel functions in Eq. (1) and we

arrive at the well-known parametric dispersion relation 7

E+ + (1 + Xe)Xi = 0. (6)

We note that the contribution from the upper sideband can be neglected if ie+ >

1e~J. In this case, we may neglect the second term in the bracket in Eqs. (4) and (6)

and the two expressions agree provided that we use p- for y at the lower sideband

in Eq. (6) and provided that XeR > 1 and XR > 1. Here, 172 E EI(W2)/(8ER/aW2)

is the, linear damping rate at the lower sideband w2  WO - w-

I--A. ANALYTIC CALCULATIONS

Near the edge of a tokamak plasma where T T,, we shall consider para-

metric decay into low frequency ion-sound quasi-modes such that wR ~ kjjvt <

kiivte. Furthermore, since at the waveguide mouth the plasma is mildly overdense,

we assume that at the edge region wp, > fw-j > i (where w- - w - wo).

Neglecting the upper sideband, from Eq. (6) we get

+ p2 ~~ 0 (7)
4 e

where we have assumed that IXRl > 1. On the other hand, from Eq. (4) we get

1+ Xe zi : 0 (8)
4 Ee-

where we have assumed IXjRI >1.
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For powers slightly above threshold so that - < wR, we find from our numeri-

cal studies that the following approximations hold: IXeRI > IXiRI, IXiIl > IXelI,

and JXjI < IXeR. Taking the imaginary part of either Eq. (7) or Eq. (8) then gives

(11+ 22 2R
aw2~X + X22iXiI eR

where ER(w2) = 0, i.e., w2 = WLH[1 + (mi/m,)(k211/k 2)2 11 / 2 , F2 ~ (v'/2)(1 -

2 2+/w tw /wewe1), and we have used p- for M. We get the following expression

for the growth rate:

-y + F 2  (,~)2 _e F
=:: 1 + (9)

W2 8 2e k2X

where

F 2 xp

1 - r i exp (-2 

We see that the growth rate increases like y + F 2

threshold.

However, for powers well above threshold such

be expanded as

b i = -v-kj vti

E2 for powers just above

that -y > WR > kl1vti, Xi can

11 3 k _2 2_
Xi- - 1 - + - --

X2 2 4 k2 W2 W2

kl wi 3 k 1,v i

Xs- 1

since the perpendicular component of the ion susceptibility is usually negligibly

small in the outer plasma layers. For sufficiently large wnlklfvti and -y/klivti we
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have IXeRI > Ixjn and IXeIl > Xi, in which case we get

aER - 6)+
+ (y ) + i(,+ 2 )]~ - x

where 6 = WO - w2 . Solving the real and imaginary parts simultaneously and

maximizing the growth rate with respect to 6 gives

1 20

-R ~ -)/2 2
: (,--)2 - = 31/2 WR

_2 3 - -(11)
WO 4 k 2 01

and 6 = 0, where the approximation r 2 < -y has been used. We see that the growth

rate increases only like -y - E20/ 3 . This is similar to the fluid quasi-mode discussed

by Porkolab. 7 In this paper we shall refer to this as the reactive quasi-mode. Our

numerical solutions often follow this power scaling. However, the ion-sound quasi-

mode decay tends to get overshadowed by the ion-cyclotron quasi-mode decay at

high pump powers when y/wci approaches 1. In Fig. 2 we show the comparison

between the analytic scaling given by Eqs. (10) and (11) (solid curves) and the

numerical solutions of the more complete dispersion relation Eq. (1). We see that

the agreement between the two techniques is good.

The transition from decay into dissipative quasi-modes to that into reactive

quasi-modes occurs for y > WR > 2k 1vti as can be seen from Fig. 3. Here, we

show a contour plot of log1 o lXiim/Ximl as a function of wR/kjvtj and -y/k 1voti.

The following parameters were used for this plot: Alcator A, deuterium plasma,

B = 5T, ne = 1 X 1012 cm-3, T, = Tj = 3eV, cko0 /wo = 2 and ckj1/wo = 7.

The ratio of the Ell coupling term to the E X B coupling term in (A-) 2 is
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given by 9

k2HEo) k

2 0 k We2 W4

(Eo± Xk 2±)-i] 2  k01 w4 (12)

where we have assumed Eol/Eo ~ ko0 /ko 1  ~ kol/ko ~ wo/wp,, k2 /k 2 -

k2ll/k2_ ~ ko0 /ko_, and kowILk 2w. We see that the Ell coupling term dominates

if w , < wow,., and the E X B coupling dominates in the opposite case. For typical

Alcator A edge conditions of B = 5T and fo = 2.45GHz, Ell coupling dominates

in the growth rate for densities n. < 4.2 X 101 2 cm-3.

We now consider powers just above threshold. When Ell coupling dominates,

we can drop the E X B coupling term in y- and from Eq. (9) we get the following

expression for the growth rate:

2
-1 + 1'2 F UDII T,

_::: T, (13)
wo 4 v, T'

where VD1 = eEou/mwo, and the approximations w2 ,< W2 and W2 <w were

used. In a uniform plasma the threshold can be obtained from Eq. (13) by setting

= 0:

m2 w 4 Ti Ve
Ei 2 :::- (14)e2  F m, wo

Similarly, if E X B coupling dominates over Ell coupling, we get for the growth rate

Y+ P 2  F ko± X k2\2 W 2U2

4 kok2  I 25 v2

where U = cEoj/B. For the uniform plasma threshold we get

2 B 2 w 4 Tj Ve WLH WH kok 2  2

E ~ LH FC2 H M Wc w )w koj X k2j)
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For powers well above threshold we get from Eq. (11) for the Ell dominated

case

31-/2 M, (15)
WO 4 Vmi W J

and for E X B dominated case

,1 31/2 koL X k2 2. k U2
- :: - .L (1)
WO 4 kok 2  W 2 1 (16)

Typical threshold values are given in Table I. For the Alcator A experiment,

Eoll = 330V/cm at the waveguide mouth roughly corresponds to a total incident

power of PRF = 1kW. We see that the thresholds in a uniform plasma and pump

electric field are low when compared with the experimental values (up to 100kW).

H-B. NUMERICAL RESULTS

We solved Eq. (1) numerically for WRIwo and y/wo, with X, and Xi defined by

Eqs. (2) and (3) respectively. In a given numerical search, we vary kI while specific

values of n,, T,, Ln, BT, PRF, koll and k1l were kept constant (Ti was usually set

equal to T,). We calculate E011 and E0 I from PRF (net RF power injected by the

waveguide array) using the WKB method 10:

Sw (zwG) - +w(XwG) _ (xwG
-- 1 2 U 2 W2E __w_ Wo We NEoE1WG 0_cc)=

21/2 ( 2 J 2 ( A )

EoI(x) = Ikol(zI Eo1(x)

where EoijwG is the parallel component of the electric field at the waveguide mouth.

In our slab model EO_ = Eo and E01, = 0. EoI1wG is calculated from the applied
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RF power by requiring the conservation of power flux across the waveguide-plasma

interface.

PRF = [WTVOZ1WGLvLZ (18)

where WT = (Eg/167r)wo(aE/awo) is the total wave energy density, vo: is the group

velocity in the x-direction and LyL, is the total area of the waveguide array. The

factor 1/21/2 in Eq. (17) is included to account for power divided equally in two

resonance cones (Fig. 1region B). In region A this factor should be .omitted. We

note that Eoll decreases and Eo increases as the wave propagates radially inward

to a region of higher plasma density. WKB approximation is not valid where

k-'(dko,/dx) > ko0 . For k0 j, = lcm', L, = 0.2cm (a typical experimental

value in Alcator A), this is within 0.4cm of the critical layer x = x, (wp,/wo < 3).

Since this is only a very narrow region near wp, = wO where other effects may

become important, in the present paper we have avoided this region. In addition, in

most experiments the plasma is overdense at the waveguide mouth so as to optimize

coupling."

In Fig. 4(a) we show a typical result of our numerical calculation. The

parameters used are: ne = 4 X 10"cm- 3 , nWG = 1.5 X 101 1 Cm-3, T T =

3eV, B = 5T (B = 5T at the outer edge corresponds to B = 6T at the plasma

center), fo = 2.45GHz, deuterium plasma, noll = 2, n- = 5 and PRF = 10kW,

which represent typical experimental conditions during the Alcator A lower hybrid

heating experiments. wR/wo and 'y/wo are plotted against kXD,. Here, WR, -y and

k are the real part of frequency, the growth rate and the magnitude of wavenumber

of the quasi-mode, respectively. We note that the wavenumbers satisfy the usual

selection rule k = ko + k-. A plot of -y/wo vs. wRIwo is shown in Fig. 4(b). We

see that for PRF = 10kW the growth rates are comparable with the frequencies of
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the quasi-modes and that -y is maximum for wRIwo 0-3. In Alcator A where

fo = 2.45GHz, this would predict f :: 2.5MHz for the most unstable quasi-mode

at the particular density of ne = 4 X 10"cm- 3 near the edge. We also note that

the frequency width of this quasi-mode is of the order of the frequency at maximum

growth rate. We find the results are quite insensitive to the relative orientation of

koI and k-. Hence, we took koILkI in all of our calculations. We also remark

that if we used p- instead of Y, the difference in the maximum growth rate would

be typically of the order of 10%.

Figure 5(a) shows the radial variation of wR/wo and -y/wo (where WR WRmax

is the value of wR at maximum growth rate and -1 - maz) for the case of Alcator A

with a = 10cm, nol = 2, nI = 5, PRF = 10kW, deuterium plasma and B = 5T

(B = 6T at the plasma center). The assumed temperature and density profiles

are shown in the inset. The density at the waveguide mouth was assumed to be

1.5 X 10 1 1 cm- 3 . The waveguide used in Alcator A had a flat interface vertically

with the plasma at r=12.5cm (so the top and the bottom of the waveguide mouth

were actually located behind the vacuum vessel wall). Although WKB theory is

not strictly valid in the shaded region of Fig. 5(a), for the sake of comparison we

have included results from this region. We do not expect the electric fields based

on WKB calculations to differ appreciably from the actual electric fields near the

waveguide mouth. We note that the growth rate is large at the edge (-Y/wR - 2

at r > 12cm for PRF = 10kW) and decreases significantly as the waves propagate

inward. The dotted lines show solutions with the E X B coupling term neglected

while the solid lines give the results when both the E X B and the Ell terms are

retained. In agreement with Eq. (12), the E X B coupling term starts to dominate

for n, > 1013 cm- 3 . Figure 5(b) shows the variation of WRIwo and y/wo as we vary

k11 of the quasi-mode for the same conditions as Fig. 5(a) and n, = 4 X 10 11 Cm- 3 ,
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T, = Tj = 3eV. The parallel wavenumber of the lower sideband, k, also increases

as k1l is increased since k0 j, is kept constant and k- = ki, - koll. For higher k1j, wR

(~ k1 vti) is larger and so is the value of -y/wo. We note that lower hybrid waves

having large values of k- will be strongly electron Landau damped shortly beyond

the plasma edge and will not propagate to the center of the plasma column. In Fig.

5(c) we show the power dependences of wR/wo and -y/wo for the same conditions as

Fig. 5(b) and for n- = 5. The homogeneous (collisional) threshold for this case is

less than 1OW, and near the threshold we find WR = 1.2k 1vti.

Figures 6(a)-6(c) show similar results for Alcator C where a 4.6GHz RF system

is used. The waveguide array consists of four rows and four columns and the width

of one row of waveguides is 3.8cm and the height is 5.75cm.' 2 The limiter radius

for usual operations is a = 16.5cm. For this case we used the measured density and

temperature at the waveguide mouth (r = 17.8cm or r/a = 1.08), namely n, ~

5 X 101 2 cm- 3 and T. ~ Tj ~ 5eV, respectively. Figure 6(a) shows the frequencies

and the growth rates at various minor radii for noll = 3, n- = 5, PRF = 40kW,

hydrogen plasma and B = 8T (B = 10T at the plasma center). We again note

the large growth rates for r/a > 1.08 (behind the waveguide mouth). Figure 6(b)

shows the frequencies and the growth rates for different parallel wavenumbers of the

quasi-mode for the same conditions as Fig. 6(a) and for n, = 5 X 1012 cm- 3 and

T, = T = 5eV. Figure 6(c) shows the frequencies and the growth rates vs. applied

RF power for the same conditions as Fig. 6(b) and n = 5. The homogeneous

threshold for this case at r = 17.8cm is P < 4kW.
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III. CONVECTIVE THRESHOLD

Here we shall examine the thresholds due to the finite length of the wave

launcher and the finite width of the resonance cones. O We shall take L, as the extent

of the coupler along the toroidal direction, and L, as that in the poloidal direction.

For simplicity we shall assume here that the plasma is spatially homogeneous. In

this section we shall consider only accessible waves (non > nlhlac), and for simplicity

we shall assume Eov = 0.

I-A. Ell COUPLING

For this case, the decay lower hybrid wave can propagate almost parallel

to the pump wave. The decay wave is assumed to propagate in the x-z plane

to minimize the convective loss. The homogeneous convective threshold can be

estimated by13-15

-YAXr 
(19)

tV2.1 V V2z VoZ

I V2x VOx I
where -/ is the homogeneous growth rate and Az = L./V2 - vo,/voxl is the

maximum distance the decay wave can travel in the x-direction before it convects

out of the pump resonance cone (see Fig. 7). In order to get this threshold, an

exp(27r) growth of the decay wave power was assumed. If the power level of the

background lower hybrid waves were already enhanced by the presence of the pump

lower hybrid wave due to scattering from previously existing low frequency density

fluctuations, Eq. (19) may give an overestimate of the convective threshold.

The convective threshold is determined as follows: we first obtain the homo-

geneous plasma growth rate needed for this threshold 1th from Eq. (19). We can then

obtain the threshold RF power from a graph of -y/wo vs. PRF such as shown in Figs.

5(c) and 6(c). However, we can get a rough analytic estimate of this threshold using

14



either Eq. (13) or Eq. (15) depending on the power level relative to the threshold

power.

At the edge, w2 = wUe(k 2,/k 2 ), so v2, aW2/ak2. =(W2/k2z)(k Ik

V2x -a W2 /3k 2. = -(w 2 /k 2 .)(k2 /k2), where we took k2 1 = k2 :, k 2 , = 0. The

threshold given by Eq. (19) can then be estimated as

4m2WO2 T, vCkJ 7 s 2Em ~ -4V + [--:): ) L 2,,2] (20)Oi e2 Me WO k2 k2,LZ WO

where we have used Eq. (13) since th/wo < kiivti/wo and we have kept the

collisional threshold term. The second term in the bracket can be of the order

of vle/wo or less, in which case the threshold is essentially the same as the collisional

threshold. However, to obtain this low threshold Az, the distance the parametrically

excited lower hybrid wave has to travel in the z-direction, may become larger than

the plasma minor radius and Eq. (20) is no longer valid. Furthermore, effects of

density and temperature gradients must be considered, including large variations in

-y due to the changing plasma parameters. These problems will be examined in Sec.

IV.

III-B. E X B COUPLING

For this case the decay wave has to travel at an angle with respect to the

pump resonance cone (see Fig. 8) since coupling tends to vanish as k2, approaches

zero. In general, if k2v/k 2z' is large, the E X B driving term is large (Eq. (5))

but the convective loss is also large. On the other hand, if k 2,/k 2. is small, the

convective loss is small but the E X B driving term also becomes small. The optimum

angle of propagation for the decay lower hybrid wave can be found by maximizing

-Az/v 2xl with respect to the angle 0 that k 21 makes with the x-direction.15

For the E X B dominated decay -j is proportional to k2, well above threshold,
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= --(k 2 w2 /k)(1 - /= (w2 /k 2 ,)(1 - 2/W ), and we find

coso4 = -A+ (A2 + 3)1/2 - 1 - (1/2)(w/wo) for optimum convective growth in

the x-z plane, where A = (k 2/k 22k2 1 )(kozkoj/kO) I + (w/wo) for w/wo < 1

and for wLH < W. Convective growth in the y-direction is also optimized for

k 2 , < k2, since -y increases only like k2 / 3 but |v 2yf increases like k2y. We get

k2y < k 2 . (cos 4 = 0.9995 for w/wo = 10--3) and we can use Eq. (19) to calculate

the convective threshold for this case. However, we note that the coupling is lost

and the growth rate is reduced by the factor (1 - cos 2 0)1/3 , (w/WO)1/ 3 ~ 10-1

from the optimum coupling case k2y = k2 1 in order to get the low convective loss

(which corresponds to a factor of 1000 in RF power). In addition, there remains

the same problem that Ax is large.

Here we shall consider the case when the E X B driving term is maximized

so that k2y = k 21 and k2x = 0. Then the convective thresholds in the y- and

z-directions, respectively, are:

L , _Lvk2s|_ = 7r

I2 J2 W(1 - WL)~W 2=r

yILZ -/Lzk 22I = 7r

|V2z| 
221IaI W2(1 - W2H)

where we have used jk2 yj ~ k2 , which is valid in the E X B coupling regime. There

is no convective loss in the x-direction because we have assumed that k2, = 0.

Convective loss in the z-direction dominates because L, < LY and jk22I < Ik2y| :

I k2 II for the present case.

Since we find that Yth/wo > kuit/wo, we have to use Eq. (16) for the

homogeneous growth rate and we get
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Eg, 1 B 2 k- w w 7r _ 3
-- I :;- k2. IL,,31/ 2 k k WLHZA k k2z|L

as the estimate for this threshold. More precisely, one should use the numerical

growth rate as in the previous sub-section. For the Alcator A edge conditions and

for n 211 = 5 we get 'Yth/wo :: 0.5, a value that can never be achieved and therefore

the E X B coupling in the outer plasma layers is not expected to play a significant

role under the assumed conditions.
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LV. THRESHOLD DUE TO FINITE RADIAL GROWTH REGION

IV-A. CASE WITH WELL-DEFINED RESONANCE CONES

In this case we consider a pump wave packet characterized by no1 > nIlae, such

that the pump wave penetrates into the plasma but is confined between resonance

cones.10 Initially these waves have voI oriented mainly along the x-direction. As

shown in Section II-B, the homogeneous growth rate associated with the Ell coupling

is strongly peaked near the edge. Furthermore, we have seen that the convective

threshold for this decay process is very high if the coupling is dominated by the

E X B term. Therefore, the lowest threshold will be associated with Ell coupling,

but only if the radial (i.e., x-direction) growth distance Ax is small compared to

the plasma radius a (i.e., Ax < a).

To optimize the large growth rates due to El near the plasma periphery, we

shall consider a factor of exp(27r) growth in the decay wave power within a distance

L (L. < a) from the waveguide mouth (Fig. 1).

f 2-)(x) dx = 27r
|v2Z( x)|

where the range of integration is from the waveguide mouth to the plasma center.

This can be estimated roughly by

- .= [w _ k2  ) 2 k2 IL J = 7r (21)
|V2,| . 2 k2, ]=W

where Lx is the effective growth distance in the radial direction. This condition can

give a relatively low threshold only if Ik2xI < lk2yl =- k 2 I I.

The convective threshold in the y-direction for the present case is

YL ~ _ -/ ( |2k2y'L, = 7r, (22)
jV2y| W2 k2y
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whereas that in the x-z plane given by Eq. (19) can be rewritten as

-y k2 2 |k2,|L. (3=r (23)
w2 k2s k2 kk

k2 2 k2, ko.kox

where 4 H < wO is assumed. The highest of the thresholds given by Eqs. (21),

(22) and (23) determines the threshold. Note that the threshold (21) can be made

smaller than the threshold (22) for

. I<(24)
k2V LV

If this is true, the threshold Eq. (21) reduces to

-Lz

1V2z1 =7

which is just the convective threshold in the z-direction. The convective threshold

in the z-direction is always higher than that in the y-direction under the assumed

conditions since (Ly/L.)(w,/wo) > 1. But the convective threshold in the z-

direction may not exist in the standing wave region A of Fig. 1.

We now consider the decay occurring in the region A and take Eq. (22) to be

the relevant threshold. We take the situation shown in Fig. 9, i.e., ko" ~ k1 >

k2x, kly ~ -k 2y > ko, so that Eq. (24) is satisfied. In this case the threshold

becomes

7t h 7r k2y, k2,
wO |k 2,|Ly k2 k2

C WO (25)
2fo~n 2iILy w,

Table I shows some examples of threshold (25). Since c/(2fon 201 Ly)~ 0.1 for

Alcator A and for n211 : 5, this threshold is very high unless w, >> wo or n 211 > 5.
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We see that in Alcator A, this threshold is not reached even with PRF = 1MW for

n = 5. Even for n- = 20 this threshold is greater than the available power of

100kW. Furthermore, these waves will be Landau damped in the edge region with

Te - 100eV and never propagate to the center.

IV-B. CASE WITH UNIFORM PUMP WAVE SHELL

In the Alcator A experiment a two-waveguide array was used as an antenna.1

In such a geometry a significant fraction of the total RF power is contained in the

inaccessible part of the nol spectrum, namely 1 < no, < nil,. These components

of the pump electric field will be confined to the outer plasma region which extends

from the slow wave cut-off layer (w = wp,) to the slow wave-whistler wave mode

conversion layer' 6

wpi 2 2-11/
- nolly F [1 + ni(y 2 _ 1)112 (26)

where y wo/(wew)'1/2. Due to toroidal effects5 the pump wave acquires large

values of the poloidal wavenumber such that ko, > ko:, and then the wave will

propagate mostly in the poloidal-toroidal plane. The combined effects of magnetic

shear and rotational transform may increase noll to values larger than nlac, and the

pump wave will penetrate to the plasma interior. In this process we expect that a

shell of outer pump wave region with a thickness 6r and circumference 27ra (i.e., a

volume (27rR)(27ra)6r where a and R are the minor and major radii of the tokamak

plasma) will be formed. In a real tokamak, this pump wave shell is deformed due to

the 1/R dependence of the toroidal field so that the width of the shell is narrower

on the outside of the torus. For simplicity, we shall neglect this effect and we shall

assume that this region is filled uniformly with the pump wave.

To examine this model in more detail, let us consider the dispersion relation-
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ship near the plasma surface. The fourth-order equation for nfL can be split in two

roots, 16 ,17 namely the slow wave

n2=P (S -n 2

2 (27)
- 1)(n 2_1),

and the fast wave

2 D 2

n (S - n2)

4 11(28)

~ 2 -(n2j
2Wc2 (n -1)

Here P = 1 -w /w2  WI/w2  2 S + 1 + / Pt 2  1 and

D : w ,/(wweC). In obtaining Eqs. (27) and (28), we assumed that 2< W2 <

W2 < W2,, and that the waves are not near the mode conversion layer given by

Eq. (26). The region 6r is confined between the critical densities given by Eq. (27)

(taking n2, = 0, i.e., w = ,2) and Eq. (26) (take the negative sign for the first

mode conversion layer), and its value is typically a small fraction of the plasma

minor radius. Note that the fast wave (whistler) cut-off layer is between the critical

densities found from Eqs. (26) and (27), and thus it is also contained within 6r.

In the limit w2 > w 2, the group velocity of the slow wave is deduced from

Eq. (27) as

8w c

8k1 /2

d te- E (2

and that of the fast wave follows from Eq. (28):
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D 2 +2n2
vil = cnjj1=fllnID

2 + (ni, - 1)2

n D 2

- I= c(n 2 _ 1)3/2 [D 2 - (n )211/2
n D 2 + (n - 1)2

We note that waves having different values of n1l propagate at different angles to

each other and as a consequence they tend to diverge instead of propagating inside a

resonance cone as the density varies. Toroidal effects and scattering from turbulent

density fluctuations will further accentuate this phenomenon. Here we shall consider

the case when the pump lower hybrid wave has uniformly filled the outer pump

wave shell. If, in addition, the parametrically excited lower hybrid waves propagate

mainly in the y-z plane, (i.e., the poloidal-toroidal plane) we recover the case of the

homogeneous threshold of Sec. II-A. The decay waves will keep amplifying until

due to the small but finite k, they get out of the region filled with the pump wave.

We note that in order to explain the enhanced low-frequency fluctuations observed

on the probe located in the shadow of the limiter by this mechanism, the decay had

to occur at the location of the probe. If the decay occurred only in front of the

waveguide, the quasi-mode would damp as soon as it would leave the growth region

and a probe at a different location would not detect the enhanced low-frequency

fluctuations.

The threshold electric field for this case is given by Eq. (14) but it is not so

easy to calculate this field from the RF power at the waveguide. We can estimate

the RF threshold power as follows: assume that is the fraction of RF power in the

inaccessible region of noll, and that this power fills uniformly the cylindrical volume

(27ra6r)(27rR). Applying conservation of power flux across a cross sectional surface

of this cylindrical volume at one poloidal plane, we get

QWPRF = WTvof2ra(br)
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where WT is defined in Eq. (18). The quantity Q is the enhancement factor due to

the fact that the pump wave may propagate around the torus several times before

it loses its energy by collisions. We define Q = (1 - P1/Po)-' where P1 /Po =

exp(-27rRv,/vo11 ) is the fraction of the pump wave power left after one toroidal

pass. Now since ae/8w0 ~ 2/wo,

E 2 E 2 o 2 E021 W2
W ~ ~ 11 ko - ~P

8r 8ir kol 87r w2

Hence, the threshold electric field is given by

2. c 21ra(br)
PRF -' r 2

87r Luo no,,(

For Alcator A, Q ~ 14, e ~ 0.4, a = 10cm, br ~ 2cm, and taking w/w2 ~

5, for the threshold we get PRF ~ 90W for Eol = 0.03kV/cm which should be

compared with the PRF ~ 80kW injected power. For Alcator C we take Q ~ 3,

- 0.2, a = 16.5cm, 6r ~ 3cm, and for -,wo ~ 5 we get PRF ~ 4kW for

E01 = 0.04kV/cm (homogeneous threshold electric field for ,5 and Te =

Ti= 3eV). Again, the PRF ~ 650kW power injected into this device can exceed

this threshold. We note that the convective threshold for the E X B driven decay

(such as the ion-cyclotron quasi-mode decay) can also be significantly reduced inside

this pump wave shell.

Concluding this section we remark that applying these calculated thresholds

to actual experiments assumes a pump wave with a narrow bandwidth. If the

surface of the plasma is turbulent, and the pump wave frequency spectrum broadens

sufficiently due to this turbulence such that Aw/wo : -/wo, then there is some

question in applying these thresholds.18-20 In this paper we shall not calculate the

effects of such low frequency density fluctuations.
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V. THRESHOLDS DUE TO DENSITY GRADIENTS AND TEMPERATURE

GRADIENTS

In the parametric decay process under consideration the following selection

rules must be satisfied:

W2 = WO - W (29)

k 2 =ko -k (30)

where

w ~ k11vti (31)

W2 = WP -- ; 11 :: - .0 j (32)
k2 ko

Let us first consider the case of inhomogeneous density, but spatially uniform

temperatures. For a given T' and k1j, w is fixed through Eq. (31). Equation (29) can

be satisfied with the same value of W2 . As the waves propagate radially inward to

a region of higher density, koI and k2 1 change in order to satisfy the dispersion

relationship Eq. (32). Since there is no restriction on k 1 , it can always be chosen so

as to satisfy Eq. (30). Therefore, density gradients do not introduce new thresholds.

Let us now consider the case when both the density and temperature vary in

the radial direction. In this case, w changes as the waves propagate inward to a

region of higher temperature. Equation (30) can still be satisfied as in the case of

density gradients only, but Eq. (29) can no longer be satisfied with the same value

of W2 and frequency mismatch occurs. But we have seen in Section II-B that the

frequency spectrum of the quasi-mode is quite broad (except at powers very close

to threshold) and AWH is typically of the order of wR. Therefore, the effect of

mismatch is not so important unless L. > LT where LT = TIdT/dxI' and L.

was defined in Sec. IV-A. Thus we shall take L, < LT and the thresholds obtained
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in Sec. 111-B remain valid. We also remark that the effect of gradients does not

play an important role for the case considered in Sec. IV-B where parametric decay

occurs mainly in the outer plasma shell.
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VI. PUMP DEPLETION

If the decay waves remain small in amplitude, the pump wave power can

be considered as essentially constant along its trajectory. However, if the decay

waves are amplified to such an extent that significant fraction of the pump power

is transferred to the decay waves, the power contained in the pump wave decays as

it propagates towards the plasma center.

The spatial evolution of the pump and the sideband powers after reaching a

steady state is described by the following coupled equations 2 1 ,2 2

VO VIO = -aIOI2

(33)
V2 V12 = +C1 012

where Io(x, y, z) = Eg(x, y, z)/wo and 12(x, y, z) = E (x, y, are the action

variables, vo and v2 are the group velocities of the pump wave and the sideband

lower hybrid wave, respectively, and

E w ( We) m

_ 2'ywo
E 2'

Here EowG is the pump electric field at the waveguide mouth, Im is the imaginary

part, and -y is the linear growth rate. It can be seen from Eq. (33) that V -(volo +

V21 2 ) = 0 and the action flux is conserved. In the limit w < W2 : wo, the power

flux is conserved among the pump wave wo and the lower sideband W2 (there is

negligible power going into the low frequency mode w).

Here, we consider the case when a uniformly filled pump wave shell exists

in the outer layers of the plasma (the case discussed in Sec. IV-B). Significant

pump depletion is not expected when well-defined resonance cone exists since the
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convective threshold for this case was found to be high in Sec. IV-A. This case is

reviewed in the Appendix. Since the pump wave is assumed to fill the outer shell

region of the plasma, there are no convective losses in the y- and z-directions and

Eq. (33) reduces to

--o =GoG2

aG2
- +GoG 2

where Go aIo/v2x, G 2  caI 2/vox. The pump wave is now assumed to be

homogeneous in the shell region of thickness Lx so the boundary conditions become

Go = Ao

G 2 =A 2

at x = 0. Solving for Go and G2 within the shell region gives

Ao
A0 A2
- + -2 exp(Atz)

At At

A2 exp(Atz)
C2 A0 A 2

- + -- exp(Atx)
At At

where At = Ao + A2 . Half of the pump wave power will be depleted within the

x-distance Lx if

2,yx,,I( Ao
AtL > l= A

Iv2x|

so that appreciable pump depletion is not expected unless 1V2xl < IV2,I, i.e., when

the decay wave propagates mainly in the y-direction (and therefore, can spend a

long time inside the pump wave shell).

In reality, the situation is more complex. The pump wave fills up the shell

region by undergoing many reflections from the lower hybrid-whistler wave mode
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conversion layer and the plasma wave cut-off layer and the location of the mode

conversion layer is different for different n1 's. Moreover, the source of the pump

wave is localized both toroidally and poloidally. However, the analysis given in the

present section remains valid in an approximate sense.
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VII. SUMMARY AND CONCLUSIONS

The results of analytic and numerical calculations of the growth rates and

various thresholds for parametric decay of a lower hybrid pump wave into another

lower hybrid wave and a low frequency ion-sound quasi-mode were presented. It

was found that for the Alcator A edge plasma parameters, the frequency of this

quasi-mode is of the order of a few MHz (WR wo : 10-3 ) and the homogeneous

growth rate at the edge region is large ('Y/wR Z 1) even for modest pump powers.

The growth rate for this instability is found to follow the well-known y + ~ E 2

scaling for quasi-mode decay for low pump powers such that y < wR. However, at

larger pump powers such that -1 > wR, the growth rate increases only like y - E 2 / 3

(reactive quasi-mode).

Various- inhomogeneous thresholds were estimated, including an exp(27r)

growth within a small radial distance L. from the plasma edge. If we assume an

accessible, well-defined pump resonance cone, the convective threshold for exp(27r)

growth becomes very large (P > 1MW for n- = 5). But if we assume that the

pump wave stays on the outer layer of the plasma, as is expected for pump waves in

the inaccessible range of noll spectrum, the convective thresholds are greatly reduced

and we can get a low threshold as discussed in Sec. IV-B.

The efficiency of pump depletion has been estimated. Typically, the pump

depletion becomes effective when the pump power exceeds a few times the exp(27r)

convective threshold and the power in the decay waves exceeds that in the pump

wave. For the accessible part of the n11 spectrum, this power is very high. But the

inaccessible waves that stay on the outer surface of the plasma may get depleted.

This process could explain the results from the Alcator A lower hybrid heat-

ing experiments, namely: (i) frequency downshifted and frequency broadened RF

spectrum and enhanced low-frequency fluctuations; (ii) ion tail formation which
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was found to be independent of the phasing of a two-waveguide grill. Of course,

below the thresholds calculated in this paper we expect that scattering of the pump

wave by the low frequency fluctuations would remain. However, above threshold

the present process would dominate if the effect of pump frequency broadening due

to such low frequency fluctuations can be neglected when compared with WR of the

present decay process.

In Alcator C and in other lower hybrid heating experiments," 3 2 the pump no1

spectrum is better defined and there is less fractional power in the inaccessible part

of no1 spectrum than in Alcator A. Therefore, this process may be less important

in these devices. However, during current drive experiments lower no, components

increase again and the present parametric process may become important again at

high densities.
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APPENDIX: PUMP DEPLETION FOR THE CASE WITH WELL-DEFINED

RESONANCE CONE

First, consider the case when V2. = 0 (i.e., k 2 y = 0). The geometry is shown

in Fig. 7. The pump wave is also assumed to propagate in the x-z plane so that

voy = 0. In this case Eq. (33) can be written in a two-dimensional form

-- '+ Co -~ =-GoG2al a(34)
aG 2  8G 2

-+ C2  - =+GoG2ax ez

where Co vOz/vof, C2  V2z/V2x and Go aIo/v2, G2 aI2/vox. Go and

G 2 are proportional to the power flux in the radial direction of the pump wave and

the decay wave, respectively.

The boundary condition for the case of uniform finite extent pump wave and

a uniform initial noise level (which may be enhanced over the thermal noise) for the

lower sideband can be written as

= ( o Ly LY, L, L.
Go= for 2 2' 2 2 (35)

0 otherwise

and G 2 = A 2 (everywhere) on the plane x = 0. The solutions of Eq. (34) with

the boundary condition Eq. (35) in region A of Fig. 7 (i.e., Iz - CoxI < L,/2,

jz - C2 xI < L,/2, and -(L,/2) < y < (Lv/2) ) are given by 21' 2 2

Go - -(36)

- + - exp(Atx)
At A,

G2= A2 exp(Atx) (37)

-t+ - exp(Atx)
At At

and in region B (i.e., Iz - Coxj < L,/2, Z - C2X < -L,/2, and -(Ly/2) < y <

32



(Ly,/2) ) by

Go = o o A (38)

TO + exp(A 2x) exp Ao r exp [At r -
[I ( 21) - Atx[A( 2)]

A 2 exp(A2x) exp Ao r -

- + exp(A 2x) exp Ao -r - exp At r(39)

Here, V C Co - C2 and r = -(z - Cox)/V. It can be seen form Eq. (36) that

the characteristic scale length for the decay wave growth in the x-direction is At 1 .

This agrees with the result obtained in Sec. III-A since Eq. (36) also predicts an

exp(27r) growth in the decay wave power at the point C in Fig. 7 for

At Ax = 2-)A ~ 27r
V2z

where A 2/Ao < exp(27r) is assumed and Az L,/jVI is the same Ax defined in

Sec. III-A. It is clear that half of the pump power will be depleted at point C in

Fig. 7 when AtAz = ln(Ao/A 2) which is a few times above the exp(27r) convective

threshold.

The fraction of the pump wave power that is depleted can be calculated in

region B of Fig. 7 using the expression for Go given in Eq. (38)21:

00 dz Go
r,(z) a1 - -

- oo Lz Ao

A2 AO(X + L.)+ 1j[(er -1)/n - 1]

where P - AtAx is the spatial growth factor, and the assumptions |A 2 (X +

Lz/2V)erl < 1 and IA 2er/AoI < 1 were made in obtaining this result.

If k2y := 0, the V2 ,(8 2 /ay) term in Eq. (33) must be retained. However, after
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performing the shear coordinate transformation:

X = X

y =y

Z=z- ax-by

where a - (vovz2 -vayVv 2z)/(voxv2y -voyv2x) and b = (vov22 --vozv 2x)/(vo.v2Y -

voyv 2x), the problem can be reduced to that in 2-dimensions. The transformed

equations are:

aGo aGo
C + Co-- = -GoG 2

8G 2 + G2
a7+ C2-2iy, = +GoG2

where Co = voy/vox, C 2  V2,y/V2x. The transformed equations are independent

of z' which is now a parameter that specifies a plane parallel to the plane that is

spanned by the two vectors vo and v2. On a given plane specified by z', this case

reduces to the two dimensional case discussed above. For a finite extent uniform

pump field given by Eq. (35), the transformed boundary condition on the plane

X1 = 0 becomes

G . JAo for -y < y,< L,-, -z' <by/< -z'

0 otherwise

and the background fluctuation level is again given by G 2 = A2 (everywhere). The

geometry, projected on the x-y plane, is shown in Fig. 8.

Consider the case when koy = 0, Jk2.| < k2yI, and take the plane z' = 0. In

this case Ibi = Iv2u/V2y l = Wp,/w 2 > 1 > L,/L, so that the boundary condition

for Go becomes Go = Ao for -L./2b < y' < Lz/2Ibi. Go/Ao and G 2/Ao for

the case Co = 0, C2 = 10, Ao(L/21b) = 150 (corresponding to 'y/wo ~ 2 for
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Alcator A and n 211 = 5), and A 2/Ao = 104 are shown in Figs. 10(a) and 10(b)

respectively. In this case the decay lower hybrid waves were assumed to travel in

the +y-direction for simplicity, but there may also be waves traveling in the -y-

direction. The fraction of the power remaining in the pump is plotted against the

radial distance in Fig. 10(c). The pump does not get completely depleted in this case

because of the assumption that the decay wave travels only in the +y-direction so

that the depletion is not efficient near y = -L,/2bl. For usual values of y/wO (g

10-2), no significant pump depletion is expected when the pump wave propagates

inside a resonance cone.
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TABLE I - Examples of thresholds due to finite growth region in the z-

direction for accessible noll discussed in Section IV-A. The convective

threshold electric fields E',n, calculated from Eq. (25) are shown. The

homogeneous (collisional) thresholds Eh, given by Eq. (14) are also011th

shown for comparison. T1 was assumed to be equal to T,.

n,(cm-3) Te(eV) noll n- E (kV/cm) E6n, (kV/cm)

Alcator A' 4 X 10" 3 2 5 0.03 >10

2 20 4

Alcator C' 5 X 1 0 l 5 3 5 0.12 4

3 20 0.6

800MHz expt.' 2 X 1011 10 5 7 0.015 0.6

5 20 0.15

'PRF = 1kW corresponds to

bPRF = 1kW corresponds to

EWG = 0-33kV/cm. L. = 2.6cm, L. = 8.1cm.

EwG = 0.15kV/cm. L, = 3.8cm, Ly = 23cm.

PRF = 1kW corresponds to EWG = 0.09kV/cm. L, = 12cm, L., = 25cm.
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FIGURE CAPTIONS

FIGURE 1 - The coordinate system used in the present calculations. In region A

a standing wave is formed in the z-direction.

FIGURE 2 - wR/kllvti (circles) and I/kl1 voi (triangles) as a function of RF power

obtained from Eq. (1). The solid curves correspond to the reactive quasi-mode

scaling Eqs. (10) and (11). The parameters used are: Alcator A, deuterium plasma,

B = 5T, ne = 4 X 10"cm-3, T = T, = 3eV, ckol1/wo = 2 and cklj/wo = 7.

FIGURE 3 - Contour plot of log1 o lXtIm/XIrl as a function of wR/kojvtj and

-1/kivti. Alcator A parameters: deuterium plasma, B = 5T, n, = 1 X 10 2 cm- 3 ,

T, = Ti = 3eV, ckoll/wo = 2 and ckti/wo = 7.

FIGURE 4(a) - A numerical solution of Eq. (1). wR/wo(solid line) and -1/wo(broken

line) are plotted against kXD,. The parameters are: Alcator A, deuterium plasma,

B = 5T, ne = 4 X 10'1 cm- 3 , Te = = 3eV, PRF = 10kW, ckolj/wo = 2 and

ckl1/wo = 7.

FIGURE 4(b) - -y/wo vs. wR/wo for the same conditions as Fig. 4(a).

FIGURE 5(a) - wR/wo(circles) and -1/wo(triangles) vs. radial position for Alcator

A, deuterium plasma, B = 5T, PRF = 10kW, ckoll/wo = 2 and ckll/wo = 7. The

solid lines show the case with both E X B and Ell coupling terms and the broken

lines show the case without the E X B coupling term. The WKB approximation is

not valid in the shaded region (r/a > 1.2). The assumed density and temperature

profiles are shown in the inset. The arrows indicate the radial locations of the limiter,

the virtual (secondary) limiter, the waveguide mouth and the vacuum chamber wall.
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FIGURE 5(b) - wR/wo(circles) and -1/wo(triangles) vs. ckli/wo for Alcator A,

deuterium plasma, B = 5T, ne = 4 X 10 1 cm- 3 , T, = T = 3eV, PRF = 10kW

and ckol1/wo = 2.

FIGURE 5(c) - wR/wo(circles) and -y/wo(triangles) vs. RF power for Alcator A,

deuterium plasma, B = 5T, ne = 4 X 10"cm- 3 , T, = T = 3eV, ckoll/wo = 2

and ckjj/wo = 7. The arrow indicates the value of kllvti/wo.

FIGURE 6(a) - wR/wo(circles) and -y/wo(triangles) vs. radial position for Alcator

C, hydrogen plasma, B = 8T, PRF = 40kW, cko l/wo = 3 and ckll/wo = 8. The

solid lines show the case with both E X B and Eli coupling terms and the broken

lines show the case without the E X B coupling term. WKB approximation is valid

at all points plotted. The assumed density and temperature profiles are shown in

the inset.

FIGURE 6(b) - wR/wo(circles) and -/wo(triangles) vs. ckil/wo for Alcator C,

hydrogen plasma, B = 8T, n, = 5 X 10 12 cm-3, T, = Ti = 5eV, PRF = 40kW

and ckoll/wo = 3.

FIGURE 6(c) - wR/wo(circles) and -y/wo(triangles) vs. RF power for Alcator C,

hydrogen plasma, B = 8T, ne = 5 X 1012 cm- 3 , T, = T = 5eV, ckolj/wo = 3 and

ckil/wo = 8. The arrow indicates the value of kllvti/wo.

FIGURE 7 - The geometry considered in Section III-A when kov = k2y = 0. The

region Iz - Cozi < L,/2 is the pump resonance cone. The sideband lower hybrid

waves grow while they are in this region but they stop growing as they travel parallel

to the resonance cone jz - C2xj < L,/2 and get out of this region. Co - vo,/voX

and C2 V2z/V2x
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FIGURE 8 - The geometry considered in Section III-B when k2 y =e 0. The

projection on the x-y plane is shown. The z-direction points out of the paper.

Co = voy/vo..and C 2 = V2y/72x.

FIGURE 9 - The relative magnitudes of the components of the wavevectors ko,

k, and k2 considered in Section IV-A.

FIGURE 10(a) - Go/Ao vs. x and y for Co = 0, C2 = 10, Ao(Ly/2) = 150 and

A 2 /Ao = 10-4.

FIGURE 10(b) - G2/Ao vs. x and y for the same parameters as Fig. 10(a).

FIGURE 10(c) - Pump power integrated over y vs. x for the same parameters as

Fig. 10(a).
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