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ABSTRACT

Calculations of the dispersion characteristics of a free electron laser

with a linearly polarized wiggler magnetic field and an axial guide magnetic

field have been carried out in the collective (Raman) regime for a cold, rela-

tivistic electron beam passing through a parallel-plate waveguide. The linear

growth rate and efficiency of the TE andTEM waveguide modes have been computed

for radiation in the centimeter and millimeter wavelength ranges.

tPermanent address: Institute of Electronics, Academia Sinica, Beijing,
People's Republic of China



- 2 -

I. INTRODUCTION

Many theoretical studies'-5 have been devoted to free electron lasers (FEL)

comprised of an electron stream traversing a periodic, circularly polarized

magnetic (wiggler) field, as can be generated 6-7 with bifilar, helical, current-

carrying wires. The electron dynamics in these systems exhibit simple proper-

ties that have considerable theoretical appeal. However, from the experimental

poInt of view large amplitude, circularly polarized wiggler fields are diffi-

cult to attain because of the large currents that are required in their wind-

in s; and for long pulse or steady-state operation, bifilar conductors may be

entirely out of the question. In view of the above, studies of free electron

la ers have begun"-" in which the electron beam is subjected to a periodic,

linearly polarized transverse magnetic field such as can be produced, for ex-

ample, by an assembly of permanent magnets illustrated in Fig. la. Indeed,

the use of samarium-cobalt as the magnet material has lead to a new generation

of magnetic wiggler systems.' 2"3

In this paper we calculate from appropriate fluid equations dispersion

characteristics of the FEL instability in the collective (Raman) regime for

thq case of a cold monoenergetic electron beam. The geometry is illustrated

in Fig. la. An electron beam of velocity v0 traverses a parallel-plate wave-

guide immersed in a static magnetic field which in our one dimensional model

(applicable to sufficiently small transverse quiver motions of the electrons)

can be approximated by

= zB. + xB cos(k ()w kz

Here B,, is the amplitude of the guide field; and Bw and kw= 2n/z are the ampli-

tude and wavenumber of the wiggler field, respectively (Z is the spatial peri-

odicity). The axial guide field B,, has a two-fold purpose. First, it con-

fines"the electrons against the radial space-charge forces and thereby permits

the propagation of high current-density beams. And secondly, it can enhancelS,16,1 7
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the growth rate of the FEL instability by exploiting the resonance between

the electron cyclotron frequency eB,,/m 0cy in guide field B,,, and the frequency

k w associated with the wiggler field Bw o=(1-BV2, O=v0/c).

In our model the electron beam is allowed to fill uniformly the parallel

plate waveguide shown in Fig. la. The electromagnetic perturbations, taken to

vary in the propagation direction z as exp(ikz-iwt), are assumed to be short

wavelength such that spatial variations transverse to z can be neglected; that

is, 3/3x, 3/3y<<3/Dz. Subject to these conditions we shall derive dispersion

equations for two modes of polarizations. (i) -A transverse electric (TE)

mode with =yE y, I=xB +zB and (ii) a transverse electromagnetic (TEM) mode with

I=$E , II=9B . We will show that the two modes have different growth rates.X y
Indeed the FEL instability associated with theTEMmode exists only by virtue

of the presence of the axial guide field B, which couples the cyclotron motion

of the electrons to their quiver motion in the wiggler field Bw*

In section II we discuss the steady state beam dynamics in the wiggler

and guide fields. In section III we derive the dispersion equations for the

FEL instability for the two modes of polarization stated above. Finally,

section IV will be devoted to giving numerical examples of the radiation fre-

quqncy,phase velocity and the instability growth rate. Estimates of the free

electron laser efficiency will also be given. The FEL parameters have been

chosen to yield radiation in the centimeter and millimeter wavelength regions

using both low and high velocity electron beams. Table 1 gives a summary of

the FEL parameters. At low, essentially nonrelativistic velocities (y0 -1),

the radiation wavelength is roughly equal to the wiggler period k, as is typi-

cal of UBITRONS. 8 Here the efficiency is large and operation is possible with

low current density beams that can be obtained from electron guns using therm-

ionic cathodes. At high velocities, the radiation wavelength is approximately

equal to Z/2y'; now the efficiency is small and the system must be operated
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using high current density beams (see Table 1) like those generated by field

emission cathodes. 19' 2 0

II. ELECTRON MOTION IN THE WIGGLER AND GUIDE FIELDS

Because of the discreteness of the magnets shown in Fig la, the wiggler

magnetic field exhibits harmonics of the fundamental period k having consider-

able amplitude. In practice,' the magnet arrangement illustrated in Fig. lb

removes the third harmonic and all even harmonics, with the result that the

field approaches closely the periodic vacuum field

BO = Bwcosh(kwx)cos(k z)

B0 = 0 (2)
y

BI = - Bwsinh(k x)sin(k z)

which satisfies VxB = v-B = 0. As a result the equations of motion of an

electron of charge -e and rest mass m are,

dvox_d - - 1v + Q v1 sinh(k x)sin(k z)dty w y w w

dv0
= Q v0 - Q2 v sinh(k x)sin(k z) - Q vocosh(k x)cos(k z) (3)

dt "x w x w w w z w w

dv0

= wv 0 cosh(k wx)cos(k z),

Here Q = eB,,/yomoc and Qw = eBw/yomoc are the cyclotron frequencies in the

guide magnetic field Be, and wiggler magnetic field Bw, respectively (yo=

(1- 'O) - ;0=v0/c).

Equations(3) has been solved numerically by the variable-step method of

Adam" using the facilities of the MIT Computer Information Processing Center.

Figure 2a shows the projection onto the x-y plane of an electron trajectory

for the case of an electron starting on axis xo=yo=zo=O with velocity v=zvo

equal to 2.33x10 10cm/s (beam voltage V=300kV). It is guided by an axial mag-

netic field B,, equal to 5kG and perturbed by a wiggler field having a periodic-
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ity z=1.Ocm and amplitude of 0.5kG. Figure 2b shows a plot of electron dis-

placement r=(x 2+y2 )2 as a function of axial position. The motion is quasi-

periodic. When the initial electron position is displaced from the center,

the quasi-periodic oscillations are accompanied by a drift. This BxvB/IB 2I

drift results from the combined presence of the uniform axial magnetic field

B,, and the nonuniform wiggler field B . Figure 3 illustrates the situation

for the case when the initial electron position is given by xo=0.lcm, yo=zO=0;

the drift along the negative y direction is now clearly discernible. We note

that the drift represents a major drawback when a linearly polarized wiggler

and a guide field act simultaneously on a beam electron. 2 2 Moreover, the

drift exhibits a resonance similar to that which occurs in the quiver motion 5 ,

16,17 of the electrons. This problem is not encountered with helical wigglers.

However, when the inequality

q 2w /(" - kwvo)|<<4 (4)

is satisfied, the drift and the oscillatory amplitudes are reasonably small.

Figure 4 shows plots as a function of Bw and B,, of the combined drift plus

quiver motion after an electron traverses a one meter long section of wiggler

field and guide field. At a distance z-100cm the maximum excursion for the

cases shown in Fig. 4 is ymax =1cm. The corresponding value q of Eq. (4) equals

0.3. Thus, even though q is quite substantial, the electron excursion from the

axis is not excessively large.

Subject to the above inequality, Bw of Eq. (2) becomes B=R(Bw cos (kwZ) +

2B, and the equations of motion of an electron whose initial velocity at z=0

is V=x(0) + 9(0) +ivo are then given by

0Q

vy = vis (kwz) - vicos(-I z)(5

V4 = V2sin (k z) - visin( z) (5) Z

v 0 = V 00
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X k o sin(kwz) - v sin (loi z)

y = - k2 cos(kwz) + cos 6 z)

z = vot

where

Q w "lv w k wv
2t =v ,2v2=

o - k vs 02 - k vs

Henceforth, we shall assume that inequality (4) is applicable, and that the

steady state motion of the electrons (in the absence of the RF fields) are

given by Eqs. (5) and (6).

III. DISPERSION RELATIONS

The dispersion equations for a cold electron beam will be obtained by

solving the relativistic equation of motion of the electrons

dtmyB) V )1 (7)

together with the equation of continuity

v-(NV) + = 0, (8)at(8

and the wave equation

Vx(VxE) + 1 2E + - (9)
c at2  c2 at

Here V= +v is the sum of the steady state and RF components of the particle

velocity; N=n0+n is the sum of the steady state and RF components of the parti-

cle number density; J=-e(n +n) (vi+) is the sum of the steady state and RF cur-

rent density; y= (1.( v*0+vj/c) 2)-1; and ' and - are the RF electric and magnet-
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ic fields respectively, associated with the radiation and space-charge fields.

The sought-after dispersion equations are derived by linearizing the above

equations and allowing all perturbed parameters to take the general form,

n=o
F = n=O f n exp i (knz - 't)] (10)

with k n=k+nkw, n=0, ±1, ±2 +.... . Here w is the radiation frequency, k the

radiation wavenumber, and kw= 2 r/z the wave number of the wiggler with period z.

1. TE Mode of Polarization

For the TE mode of polarization, the RF field components are E=9E and B=
y

xB +2Bz. Linearizing Eq. (7) and assuming that all transverse oscillations

are small such that D/Dx, 3/Dy<<a/Dz, we obtain,

+ vo v =- BIN + - B B OVOE
y 0 c oXcy c 2x 21o ~ 3

+v y] - [Ey - 1 BIv + cv B - - vB -L v vE - viBz I )

vm Bov vB v; Ey + E

where 2E,, is the axial electric field associated with the RF space charge on

the electron beam, and where y of Eq. (7) has been approximated by

y y (1 + y2gO .- /c2) . (12)

Substituting Eq. (10) in Eqs. (11) and using the orthogonality relation

Jo n 1m
exp(iknz)exp(-ikmz) dz = (13)

0f 91 n =m

leads to the following expressions for the spatial harmonics of the perturbed

velocities:
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Vxn = - i e
Y om o0

e
V = - i

I - n Bzn-1 - Bzn+ 1] - E2 [_2 +E En+1]]

[Ey - v + B 21 B 1  + Bzn+1 +
yn~ ~~~ 2 2-ncxnR(z-

2C2 E Xn-1 + En+1~

Y 2 2Bw

2c vzn-1

e
VZn -Ym n

B 

2c [vyn- 1 + vyn+l] + i v2 Bxn-1-Bxn+1 +

S 0 V 2  Ey- - Eyn+1 + E
2 C2 ( n1 y+1 Y 0 In

where

Qn = W Vk. 

(15)From the Maxwell equation VxE+(1/c)aB/at=O we have, B =-(ckn /w)E . Neglect-

ing small quantities, Eq. (14) simplifies as follows:

v = -il
xn n yn

vy - y e E (16)
n + Y + M [ n n

e E + i Lw (vy
Y 3m 0 zn 2 n y
oo n

ev2 
v+yw vc + ki Evyn+1) +2y m on -y n-11 yn-1

( - kn+11 E

Solving for the velocity components, Eqs. (16) then become

v - / 2 e E
1n - iI/On )2 YOML 0 W fl

V 1 - e E
yn 1-(2III/Qn) 2 Yom0w yn

+ Vzn+1 14)

Vzn

(17)

(15)
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v = i e E + w - E + -E +
zn y 3m Yn n 2 ym n-1E2 n yn-1 n+1)2 n yn+1

0_ _ 0 n
eV2 rvo - v 0, on

- kn- 1  E - - k-+1 Eyn+ 1j

The linearized current density J=-e(nv*O+n 0 >) is obtained from Eqs. (8) and

(10) with the result that,

j= en v - en Vi k 1  -1 + kn+1 zn+1
xn ..o xn o 2  k +1

j = -en v + ien v2 kn-1 vzn-1 kn+1 Vzn+] (18)
yn -o yn o 2 n- An+1 .

jzn = - en vzn

Inserting Eqs. (17) and (18) in the wave Eq. (9) yields the dispersion relation,

2 2 2 W2-1 22 2 2

2- c2k - - = on
n *2 2 2

n " 0 n

v kn- ' nQ+1 W4V2 QW~n.
- k2 - 0f l-k n- 0 + (19)

(C2 n-) Q 4+1 2 4 02

+ V2 w- k kn+1
C 2 n 0g

n+1

where wp=(47rn e2/my )1 is the plasma frequency. We are interested only in

the lowest mode, n=0 and upshifted frequencies w=(k+kw)vo. In this case Eq. (19)

reduces to the sought-after dispersion equation,
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22(p - v 0k) 2_ 2L2 -c 2 k2 _ P - v 0 (k + k )j - -
(W - vk0 k)2 - vw ?1J Y 0

(20)

P2 (W kw Vk) 2 v 2kw v
44+ 0k--2- w - k (k + kw)

S-v k (o- V k) t a v k IC2

This sixth order equation in w has been solved on a computer for real k and

complex w, and detailed results will be discussed in section IV. However,

when one makes the approximations w=ck, w=(k+kw) o, one finds the following

results for the real and imaginary parts of the complex frequency:

r Z (1 + 0 )y2 kwc (21a)

0 o 1 + ao
W / . o - 1 (21b)

4Y 3/' |1 - R21 k
0- 0

Here wr is the approximate radiation frequency at maximum growth rate, w., of

the FEL instability; O =eB /m c and i =eB,,/m c are now the nonrelativistic elec-

tron cyclotron frequencies in the wiggler and guide fields respectively; po =

(4rne2/m0)1 is the nonrelativistic plasma frequency; and R=(2,,O/yokwcSo). We

see that the real part of the frequency exhibits the familiar y2 upshift and
0

that the imaginary part exhibits the familiar resonance6 at R=1. We point out,

however, that our result is only applicable when inequality (4) is satisfied,

so that R must not be too close to unity.

2. TEM Mode of Polarization

For the TEM mode of polarization, the RF field components are E=xE and B

=B y. Proceeding the same way as we did in the above section, we obtain the

following expression for the dispersion equation:
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S2(W- V k)22 22
2 - c2k2_ p 0 I - v (k + k) -

()- v k) 2 - W) 2

(22)

2 Q v - - k v k -
= - Q2 W F - Vk ( + k)

4 Oykw (W-v 0k) _1 QI -g _ yk2W

Detailed solutions of this equation for real k and complex w are presented in

section IV. An approximate result subject to the assumptions w=ck, w=(k+k )v0

is

r (1 + )y2kwc (23a)

Wa~n a I1 so]W- - 010 - W O + 0 (23b)
4y 3/ |1 - R2 1 (k c) 3 ( +( 

b

0 w 0

Comparison of Eq. (23b) with Eq. (21b) shows that whereas the growth rate of the

TE mode varies as Bw, that of the TEM mode varies as the product Bw B, and is zero

in the absence of the guide magnetic field. This is readily understood. When B,

is zero, the oscillatory -ev xBwcos(kwz) force is in the y direction (see Fig. 1)

and the RF electric field of the electromagnetic wave is therefore also polarized

totally in the y direction. When B., is finite, the helical motion of the elec-

trons in the guide field is coupled to the y-directed quiver motion in the wig-

gler field. Hence, the RF electric field acquires a component in the x direction

and thus excites a TEM mode. This is of considerable practical interest since

the TEM mode has no low frequency cutoff, and the waveguide walls can be brought

(arbitrarily) close together. This allows one to bring the wiggler magnets

close together, increase Bw and thus increase the instability growth rate. We

note that the same reasoning used for the parallel plate waveguide also applies

to the lowest mode of a rectangular waveguide that would be used in practice.
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IV. RESULTS AND DISCUSSION

The FEL instability discussed in the previous section comes about as a re-

sult of the coupling of the negative energy space charge wave on the electron

beam

w = (k + kw)v - (P /Y ) (24)

and the linearly polarized electromagnetic wave,

m2(W - kv )2
k2c2  2 _ P - (25)

(w - kv )2 _

This is readily seen by setting the coupling term on the right-hand side of Eqs.

(20) and (22) equal to zero. There are two unstable waves, one at high frequen-

cy which is of primary interest and whose frequency is approximately given by

Eqs. (21a) or (23a), and one at low frequency. The high frequency wave propa-

gates along the positive z axis and is associated with positive wave numbers k.

The low frequency wave propagates along the negative z axis in the absence of a

guiding magnetic field (k<O). However, if B,, is sufficiently large, k for this

wave can also be positive.2 3 This happens when

k Wv - - < < k]v - - (26)

a result which is obtained by eliminating w from Eqs. (24) and (25) and solving

for k.

The dispersion characteristics (w. versus k) are illustrated in Fig. 5 for

a high voltage, high current beam for which V=1.275MV, J=4.3kA/cm 2; y =3.50; wp
=2.93x10' 0sec~1 ; B,=9.8kG, Bw=0.4kG, z=3cm (kw=2.09cm~1). They were computed

by solving Eqs. (20) and (22) on a computer. The TE and TEM modes each exhibit

two maxima corresponding to thz lo1 and high frequency waves dicuss-' atov:.

Their dispersion charactcri:tirs arc scon to overlap. Both wavzs proPagate in
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the positive z direction since inequality (26) is satisfied (the smallest value

of B,, given by Eq. (26) is 8.84kG, for the above values of kw, v and w p). The

maximum growth rates shown in Fig. 5 for the high frequency TE and TEM modes

agree very well with those obtained from the approximate Eqs. (21b) and (23b),

respectively.

Growth rate curves like those shown in Fig. 5 have been obtained for a

number of guide magnetic fields B,,, with all other parameters held constant.

The respective maximum growth rates are illustrated in Fig. 6. We note that at

low magnetic fields the growth rate of the TE mode is larger than that of the

TEM mode, but the situation reverses at higher magnetic fields. Resonance oc-

curs when R=(o,,/k Wv )1 which corresponds to B,,=12kG. However, near this res-

onance our calculations become inapplicable and are not shown; only those re-

sults are graphed for which inequality (4) is well-satisfied. Figure 7 shows

the corresponding real parts of the dispersion characteristics, namely Wr, and

the phase velocity v =o rk, as a function of B. We see that for magnetic

fields above the resonance, both waves are subluminous (v <c), but below the res-

onance the TE wave is superluminous but the TEM wave subluminous.

The remainder of this section is devoted to free electron laser operation

using almost nonrelativistic,1  low current beams with 300kV, 160A/cm 2 and 30kV,

22.3A/cm2 , respectively. The 300kV, 160A/cm2 results are qualitatively similar

to those shown in Figs. 5 through 7 and are not graphed. Instead, the results

are summarized in Table 2.

For the 30kV, 22.3A/cm2 beam" we have yo=1.059, Wp=6.52x10 9sec~1; we al-

so take B,,=lkG, Bw=0. 2kG, z=2cm (kw=3.14cm- 1 ). The imaginary part of the dis-

persion characteristic is shown plotted in Fig. 8. For the magnetic field B,,

which we have chosen, inequality (26) is not satisfied, and therefore there are

only two high frequency waves (TE and TEM) with positive k, rather than the four

waves shown in Fig. 5. Figure 9 illustrates how the maximum growth rate varies
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with the axial guide magnetic field B,,, with all remaining parameters being fixed

at their previously stated values. The resonance R-(QiI/k wv )=1 occurs at B,=1.86

kG. We knote that for low velocity but fairly high density beams such that kwv
is comparable with wp/y , the radiation frequency is considerably less than that

given by the familiar result, wr=(1+S )y2kw v (Eqs. (21a), (23a)). Solving Eqs.

(24) and (25) yields a more accurate value of the radiation frequency (in the

limit of weak coupling, 0 -*0):

Wr = (kwv - 2[1 + j - - (kwv > Wp/y ) (27)
0 (YO k Wv0 - W P) 2 11f1

For a cold, dense electron beam, the growth rate wi of the FEL instability

increases almost linearly with increasing wiggler magnetic field Bw (cf Eqs.

(21b), (23b). However, when Bw is very large (or w is correspondingly small)
p

departures from linearity become more and more pronounced. Here the electron

susceptibility 2 y-2(w-kv )-2 approaches zero, the collective bunching force

becomes small relative to the ponderomotive force and one enters1' 2 the single

particle, noncollective, high-gain FEL region of operation. This is illustrated

in Fig. 11 where we see departures from linearity at the higher values of Bw.

To observe this, we purposely reduced the value of- p from that used in an ear-

lier example (see Table 2).

In calculating the growth rate, we have assumed implicitly that the paral-

Tel-plate waveguide is filled uniformly with electrons. In practice, the cross

sectional area of the beam is not uniform and the beam does not fill the wave-

guide. To obtain a more realistic growth rate, the values given should be mul-

tiplied by a semiempirical factor2 f1 where f is the ratio of the cross sec-

tional area of the electron beam to the cross sectional area of the waveguide.

In order for the electromagnetic wave to grow, the electron velocity vo

must be slightly larger than the phase velocity of the space charge wave vs. As
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the electrons lose energy to the wave, the difference v -vs becomes zero and

growth ceases. This represents a nonlinear saturation which limits the maximum

achievable efficiency n of the free electron laser. Its value can be estimated

from the expression'

As (28)
m c2 (y _ 1

where As is the change in kinetic energy at saturation when the particles are

deeply trapped. Computing Ae yields

T = - - wr (29)

YO - 1 c(k + kw)]

where wr and k are obtained from solving dispersion Eqs. (20) and (22). The com-

puted efficiencies are listed in Table 1.

In conclusion, we have discussed the real and imaginary components of the

free electron laser dispersion equations for the case of a cold electron beam

propagating in a parallel-plate waveguide and subjected simultaneously to a

linearly polarized wiggler magnetic field, and an axial guide magnetic field.

We have computed the growth rates of the FEL instability for two modes of polar-

ization of the electromagnetic wave. One in which the RF electric field is

polarized at right angles to the wiggler magnetic field (TE waveguide mode),

and the other in which the electric field is polarized along the direction of

the wiggler field (TEM mode). At sufficiently high guide magnetic fields the

parallel-polarized (TEM) component can dominate the conventional cross-polar-

ized (TE) mode. These effects have not been examined previously in a detailed

manner and are directly relevant to ongoing experiments. 22'2 4

Calculations show that the effects of the BxVB/1B1 2 drift inherent in a

system comprised of a linearly polarized wiggler and guide magnetic field may
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not be too damaging to the operation of the FEL. An electron injected into the

wiggler exactly on axis xo=yo=O exhibits no net drift, and electrons that are

almost paraxial exhibit but small drifts. Thus, a pencil beam of small radius

will propagate down the wiggler with relatively little deviation, as is illus-

trated in Figs. 3 and 4.

At low voltages, free electron lasers exhibits good efficiencies and

growth rates even for beams with moderate currents (see Table 1). Their per-

formance compares very favorably with that of gyrotrons.2 s We have also seen

that the application of an axial guide magnetic field increases the linear

growth rate of the FEL instability even when the magnetic field is quite far

from the resonant condition, R=o/kwv =1. This aspect of the problem has not

been exploited in the UBITRON18 which was operated without a guide field.
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CAPTIONS TO FIGURES

Fig. 1. (a) Schematic of an electron beam in a linearly polarized wiggler gen-

erated by a periodic system of bar magnets. (b) Practical version of

the wiggler showing computer generated magnetic field lines.

Fig. 2. (a) Projection onto the x-y plane of the electron displacements after

traversing a distance z=15.5cm. Initial positions x =y =0 at z=O.

(b) Radial displacement r=(x 2+y2)2 as a function of the axial position

z. V=300kV; B1=5kG; Bw=0.5kG; z=1.Ocm.

Fig. 3. Same as Fig. 2 except that initially the electron is positioned off

axis with x =O.1cm, yO=O at z=O; electron drift occurs along -y direc-

tion. In (b) are shown only the maxima and minima of the electron

displacements.

Fig. 4. Electron drift plus oscillatory displacement y as a function of

the strength of (a) the wiggler field and (b) the guide magnetic field

after traversing a distance z~100cm. V=300kV; x=1cm; x0=0.lcm; y =0.

Fig. 5. Normalized growth rate of the FEL instabilities as a function of

the normalized wave number for two modes of polarization of the elec-

tromagnetic wave. V=1.275MV; J=4.3kA/cm2 ; wp=2.93x1010sec~ 1 ; B1=9.8kG;

Bw=0.4kG, k=3cm.

Fig. 6. Normalized growth rate as a function of the guide magnetic field. The

dashed line corresponds to the resonance R=o,,/k v =1. V=1.275MV; J=

4.3kA/cm2 ; wp=2.93x1010sec~ 1, Bw=0.4kG, z=3cm.

Fig. 7. Frequency and phase velocities of the TE and TEM modes as a function

of the axial guide magnetic field. V=1.275MV; J=4.3kA/cm2 ; W =

2.93x10'0sec~1; Bw=0.4kG; k=3cm.

Fig. 8. Real and imaginary parts of the frequency as a function of the wave

number for two modes of polarization. The curves for the real parts
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of the two modes are too close to one another to be distinguishable

V=30kV; J=22.3A/cm2 ; wp=6.52x10'sec-1 ; B1=lkG; BW=0.2kG; Z=2cm.

Fig. 9. Normalized growth rate as a function of the axial guide magnetic field

for two modes of polarization. The dashed portions of the curves

correspond to regions where inequality (4) is not well-satisfied. V=30

kV; J=22.3A/cm2 ; wp=6.52x10 9sec~1; BW=0.2kG; £=2cm.

Fig. 10. Frequency and phase velocity as a function of the axial guide magnetic

field. The dashed portions of the curves correspond to regions where

inequality (4) is not well-satisfied. The curve for the TE and TEM

modes are too close to be distinguished from one another. V=30kV; J=

22.3A/cm2 ; wp=6.52x10 9sec1; Bw=0.2kG; z=2cm.

Fig. 11. Growth rate as a function of the strength of the wiggler magnetic

field, showing departures from linearity (dashed straight lines). V=

300kV; J=16A/cm 2; w =2.92x0 9sec-1; Ba=5kG; Z=lcm.
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Table 1. Summary of FEL parameters

Beam voltage (kV) 30 300 1275

Beam current density (Acm-2 ) 22.3 160 4300

Axial magnetic field (kG) 1.0 5.0 5.5

Wiggler field (kG) 0.20 0.50 0.55

Period of wiggler (cm) 2.0 1.0 3.0

Radiation wavelength (cm) 5.17 0.30 0.15

Spatial growth rate ofTE mode (dB/m) 20.0 19.7 45.7

Spatial growth rate ofTEM mode (dB/m) 12.2 11.8 69.1

Efficiency TE mode (%) 63 7.6 21

Efficiency TEMmode (%) 63 7.6 21
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Table 2. FEL parameters for a 300kV, 160A/cm2 beam; yo=1.59; wp=9.25x109sec-1;

B1=5kG; BW=0.5kG; z=lcm (kw=6.28cm-1).

PARAMETER TE MODE TEM MODE

" /WP 0.074 0.044

wr p 68.1 68.1

v p/c 1.00010 1.00012
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