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ABSTRACT

Use is made of the macroscopic cold-fluid-Poisson equations to investigate
the electrostatic stability properties of nonrelativistié, nonneutral electron
flow in a cylindrical diode with applied magnetic field BO%z' The cathode is
located at r=a and the anode is located at r=b. Space-charge-limited flow with
Eg(r=a)=0 is assumed. Detailed stability properties are investigated analyti-
cally and numerically for electrostatic flute perturbations with 3/3z=0.
Particular emphasis is placed on the influence of neutral anode plasma on
stability behavior assuming uniform cathode electron density (ﬁb) extending
from the cathode (r=a) to r=r, , and uniform anode plasma density (ﬁe=Ziﬁi)
extending from r=r D to the anode (r—b) Depending on the cathode electron
density (as measured by s, w /w ), the anode plasma density (as measured by
s -w /w2 ), the diode aspect ratio, etc., it is found that there can be a
strong coupllng of the anode plasma to the cathode electrons, and a concomitant
large influence on detailed stability behavior for both the high-frequency
(electron—driven) and low-frequency (ion-driven) branches. Detailed stability
properties are investigated over a wide range of cathode electron density, anode

plasma density, diode aspect ratio, etc.
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I. INTRODUCTION AND SUMMARY

There is a growing literature on the equilibrium and linear

stability properties of sheared, nonneutral electron flow in

2-6

cylindrical1 and planar models of high-voltage diodes with

application to the generation of intense charged particle beams

for inertial confinement fusion.7 These analysesl_6 have repre-

i 8-11

sented major extensions of earlier work to include the

important influence of cylindrical,l relativistic,zy_6 electro-

o

~——~——~——magnetieg:ﬁ—and—kineticéweiiegfs on stability behavior at

moderately high electron density. However, none of these treat-
mentsl_6 has included the influence of'éctive plasma components

in the anode-cathode gap. Indeed, it would be expected that
plasﬁa ions and electrons could interact effectively with the
cathode electrons and modify stability behavior. For example, it
is well established in applications related to heavy ion accelera-
torslz"14 and electron ring accelerators15 and in basic theoretical

16-13 of nonneutral plasma stability properties that the

studies
:collective'interactions associated with an active ion component

in an electron-rich background can lead to an instability known

as the ion resonance instability]:2 The strength of the ion reso-
nance instability depends on a number of factors, including ion'
density, the relative motion of electron and ion components, and
the strength of the equilibrium self eléctric fields. As such an
instability may have deleterious effects on stable diode operation
and/or the production of well—collimatea ion beams, one purpose

of the present analysis is to investigate detailed properties of
the ion resonance instability in geometry particular to cylindrical
diodes (Fig. 1). 1In addition, we investigate the stability be-

havior associated with the (high-frequency) interaction of the

plasma electrons with the cathode electrons.




In the present analysis, we make use of a macroscopic,
cold-fluid model to investigate the electrostatic equilibrium
and étability properties of nonrelativistic nonneutral plasma
in a cylindrical diode with applied magnetic field Bgéz. As
illustrated in Fig. 1, the cathode is located at r=a and the
anode at r=b, and space-charge-limited flow with Eg(r=a)=0 is ¥
assumed. In general, the nonneutral plasma is assumed to
consist of three components: eiectrons in the cathode region
(J=b), positively charged ions (j=i), and plasma electrons
(j=e). The macroscopic cold—fluia model used in the equi-
librium (Sec. II) and stability (Secs. III-VI) analysis is
based on the continuity and momentum transfer equations for
the density nj(§,t) and mean velocity Xj(ﬁ't)' Moreover, the
electric field g(§,t)=-—v¢(§,t) is determined self-consistently
from Poisson's equation, and 3/9z=0 is assumed for both equi-

librium and perturbed quantities.

Under steady-state conditions (3/3t = 0), the equi-
librium analysis (Sec. II) allows for general density profiles
ng(r) (j=b,e,i) and corresponding self-consistent radial
electric field [Eq. (5)] |

r
Eg =§:4nej %/ dr'r' n(j) (r').
4 .
Moreover, equiliﬁrium force balance in the radial direction
[Egs. (8) and (11)] can be used to determine the angular
rotation velocity wrj(r)==ng(r)/r of the j'th component fluid
element. For slow rotational equilibria satisfying w;}(r=a)=0,

the rotation velocities are given by [Egs. (13) and (14)]




- 1 2 1/2 .
wrj(r) = 7‘ wce-[wce-4wcewE(r)] / % ; J=b,e,
- -1 - 2 1/2 ca
wrj(r) =3 g wci-+[wci-+4wcin(r)] é, j=i,

in the regions where ng(r) is non-zero. Here, wE(r)=
0 . 0 A . _
cEr/rB0 is the @ ><B0$Z rotation frequency, wce-—eBO/mec and

w .==ZieB0/mic are the cyclotron frequencies, and Zi is the

cl

degree of ionization of the ions. As specific examples,

detailed equilibrium properties are investigated for two cases:

a neutral plasma in the anode region (Sec. II.B and Fig. 2),

and ion-contaminated cathode electrons (Sec. II.C and Fig. 4).

Stability properties are investigated in Sec. III for
small-amplitude electrostatic perturbations about general
equilibrium profiles ng(r), Eg(r) and wé}(r). Expressing
6¢(r,6,t)==§6¢Q(r)exp(i26—iwt), where Imw > 0 corresponds to
instability, the linearized cold-fluid-Poisson equations give

the eigenvalue equation for 6¢£(r) [Eq. (42)]20

: ) »
Lo [ (g ) 2e0t] - & 2
r or [r lﬁz:xj)3r§¢ ] 2 (1+Z:Xj)6¢

J r 3

[} 0)2.(e.w Lt w )
= 28073 1 3 |_pi deci  rj
r S w—w . or v.2
R rj ]

where wsg(r)==4nng(rfe§/m.,£.==sgnej, the effective suscepti-

J J
bility xj(r,w) is defined by [Eq. (43)]

xy(r,w) =-—21
J vj(r,w)




and v?(r,w) is defined by [Eq. (47)]

' 4re. '
2 o o =2 2 _ j 0
\)j (r,w) = (w erj) [wcj + 2€jwcwa(r) mj % eknk(r)] .

The summations § and i are overall plasma components (b,e,i),
and Eq. (42) is to be solved subject to the boundary condi-
tions 6¢£(r=a)==0==6¢2(r=b). The exact eigenvaluekequation
(42) is simplified in Sec. III.B for the special casebof rec-
tangular density profiles for the cathode electrons and for

the neutral plasma ions and electfons in the ‘anode region

(Fig. 2). The resulting éigenvalue equation (48), together
with the definitions in Egs. (19) - (21) and Eqs. (49) - (54),
have a wide range of applicability and are analyzed numerically
in Sec. VI. That is, in Eqs. (48) - (54), there is no a priori

assumption that the diode aspect ratio is large, that the

density is low, etc.

As an example that is analytically tractable, in Sec. IV
(see also Fig. 5) we simplify the eigenvalue equation (48) in
circumstances where the anode plasma density is low [Eg. (55)],
the cathode electrons are strongly magnetized [Eg. (56)], the diode
aspect ratio is large [Eg. (57)], the perturbation frequency is
low [Eqg. (58)], and the anode plasma is in contact with the.
cathode electrons [Eg. (59)]. This gives the approximate eigen-—

value equation [Eg. (66)]

r
JL(SdJ2 (a;;/wce)
r w=-2w_(r) § (r rb)’




where xi(r,w) is defined by [Eq. (64)]

0 , a<r<r

b
X (rlw) =
i &2
- —> p12 — ’ rb<r<b.
(w-lwri) - (wci+2wciQE)

A

Here, =wE(rb)=(a;;/wce)(rb-a)/rb [Egs. (60) and (62)],

A2 A 22 N2 a2 " ) 2
wpi—4ﬂnizie /mi, wpb—4nnbe /me, and wri-(l/Z){ wci+[wci+
10;8:11%} [Eq. (61)]. Tt is clear from Eq. (66) that the

surface-charge perturbation on the cathode electron layer can
couple to the dielectric response of the plasma ions in the
anode region. Solving Eq. (66) for a large-aspect-ratio
diode with (b-a)/a<<l gives the appréximate dispersion

relation [Eq. (75%]'

A 52
1+ 5B)- pl

A= 2D 2 ~
b (w—kwri) —(wci+2wciQE)

Pal

. ﬁE 29E

Ab w-zﬁE

where Ab=rb-a and Ap=bfrb(F1g. 5), and Ab’ Ap<<rb is assumed. The

dispersion relation (75) is analyzed in Sec. IV and stability proper-

ties are investigatedxover a wide range-df the dimensionless para-
5 _ e 2 ~2 52 82

meters wci/QE—(Zime/mi)(wce/wpb)(rb/Ab) and wpi/QE =

(Zini/nb)(rb/Ab)(wci/QE). A strong wvariant of the ion resonance

instabilityl%s found for a wide range of system parameters.




Although the assumptions in Sec. IV are somewhat restrictive,
the analysis clearly establishes the existence and qualitative
features of the ion resonance instability and the fact that
the plasma ions in the anode region can strongiy couple to the
cathode eiectrons.

As a second example that is anélytically tractable, in
Sec. V we investigate the eigenvalué equation (48) in circum-
stances where‘the'énode plasma is not in contact with the
cathode electrons [Fig. 2 and Eq. (81)]. Assuming high-frequency
perturbations [Eq. (83)], unmagnetized ions [Egs. (82) and (84)],
and low-density electrons [Eq. (85)], it is found that the
cathode electrons ahd anode plasma electrons combine to give
the diocotion instability driven by electron velocity shear over
the interval a<r<b. For infinitely massive ions, the resulting
approkimate eigenvalue eéuation (86) is solved exactly to

give the dispersion relation [Eq. (93)]

b [1—(a/rb)22]

2%
1- (2 1+
(fp) | w/up=2 (rp-a®) /x?

= |1+

Ao 20 9 [
(ne/nb)[l-(b/rp) L -2
w/wD-l(rﬁ-az)/r;

r, 2N\ [1-(a/r )

b b
1= 2 77|

rp w/wD-l(rb—a )/rb_

which determines the complex oscillation frequency w in terms

of geometric factors, the density ratio ﬁe/ﬁb, and the diocotron




frequency wD=®;;/2mce. In Sec. V, the dispersion relation (93)
is used to investigate detailed stability properties over a wide
range of system parameters ﬁe/ﬁb, rp/a, rb/a, and harominc

number £. In the unstable region of parameter spaée, it is found
that the instability growth rate can be substantial (inbthe

range of 0.1 wD), even within the cgntext of the low-density
assumption made in Sec. V [Eqg. (85)].

Finally, in Sec. VI, we make use of the exact eigenvalue
equation (48) to investigate numerically electrostatic stability
properties for the éhoice of rectangular density profiles
illustrated in Fig. 2. The anode plasma is assumed to be elec-
trically neutral hydrogen plasmé (ﬁe=ﬁi). No a priori assumption
is made that the cathode electron denéity (as measuréd by Sy =
@;i/wéi) or the anode plasma density (as measured by se=$;2/wél)
is small.‘ In the absence of anode piasma (se=0), the conven- |
tional diocotron instabilityl_driven-by the cathode electrons
is recovered. At low cathode electron density this instability
is extrémely weak .(Imuu/uoce<10_4 for sb=0hl‘and se=0), although
the growth rate‘does become substantial as Sy is increased to
larger values. In the presence of anode piasma (se#O), the
numerical analysis in Sec. VI shows that both the anode plasma
ions and the anode plasma electrons can have a large influence
on stability behavior, even at -lOW' density. 4Indeed, ﬁhe
presence of the ahode plasma introduces a new low-frequency mode
(ion resonance insﬁability) in which there is a stfong coupling
between the cathode electrons and the anode plasma ions. More-

over, the conventional high-frequency stability properties




calculated for Se=0 are significantly modified by the coupling
between the cathode electrons and the anode plasma electrons. For

example, for the parameters chosen in Fig. 12(b), it is found

4 -2

that Imw/wce=3.5x10 for se=0 and sb=0.2, whereas Imw/wce=10

for se=0.l and sb=0.2. In Sec. VI, the numerical studies of
detailed stability properties are carried out for a wide range of

system parameters Sy, rSgar diode aspect ratio, etc.




10

IT. COLD-FLUID EQUILIBRIUM FOR A CYLINDRICAL DIODE

A. Equilibrium Model and Assumptions

We consider here the steady-state equilibrium properties
(8/3t=;0) of a cold, nonneutral plasnm;%onfined in the cylin-
drical diode configuration illustrated in Fig. 1. The non-
neutral plasma is generally assumed to consist of three
components: cathode electrohs (j=;b), positively charged ions
(j=1), and plasma electrons (j=e). The plasma electrons may
overlap spatially with the ions, e.g., for the case of a
neutral plasma in the vicinity of the anode (Fig. 2). As
illustrated in Fig. 1, the cathode is located at r =a and the
anode at r=¥b, where d=b -a is the anode-cathode spacing.
Moreover, the nonneutral plasma is immersed in a uniform applied
magnetic field |

B, = B @ (1)
o

For simplicity, the present analysis is based on a nonrela-
tivistic, electrostatic, cold-fluid model for each plasma

component (j=Db,e,i). In equilibrium (3/3t=0), the following

simplifying assumptions are also made:

(a) All equilibrium properties are uniform in the z-
direction (3/3z=0), and there is no equilibrium electric
field parallel to Byf , i.e., E*(x)*f, =0. All equilibrium
properties are assumed to be azimuthally symmetric (3/36 =0)
about the diode axis, e.g., the equilibrium density and

azimuthal flow velocity components satisfy
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0 0
nj(§) nj(r) '

(2)

Y30 = Vol (018,

where %6 is a unit vector in the 6-direction, and r=(x2+y2)l/2

is the radial distance from the axis of symmetry.

(b) Equilibrium diamagnetic effects are assumed to be
negligibly small in comparison with the applied magnetic field
A . ' cq s . . 0 0
BO%z' That is, the equ;llbrlum azimuthal current %nj(r)ejvej(r)

generally produces an axial self-magnetic field Bz(r). The

present analysis assumes that IB:(r)|<<B0.

(c) In general, the plasma is electrically nonneutral and

there is a corresponding equilibrium radial electric field

_ ,
Bo(®) = EL(0)E,. (3)

where Eg(r) is determined self-consistently from the steady-

state Poisson equation

Rl

Bir [rEg(r)] =23;4nejng(r) ) (4)

Here, the summation is over j=b,e,i, where ej==—e for the
cathode electrons (j=b) and plasma electrons (j=e). More-
over e; =+Z;e for the positive ions, where Z; is the degree

of ionization.

(d) Space-charge limited flow with Eg(r=a)==0 is assumed.

Integrating Eq. (4) then gives for Eg(r)
r

0 _ 1 1100 s
Er(r) —Zj41rej 7 / dr'r nj(r ). (5)

a
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Expressing Eg==-8¢0/3r, where ¢0(r) is the equilibrium electro-

static potential, we impose the boundary conditions

bolx=a)=0,
(6)
bolr=Db) =v_,
where the anode voltage V consistent with Eq. (5) and

E (r=a) =0 1is given by

V= ¢,(b) =—Z41re / dr® / dr'r n (r'). (7)

(e) Finally, within the context of the present nonrela-
tivistic, cold-fluid model, equilibrium radial force balance.

on-the j'th component fluid element can be expressed as

m.Veo.z(r)

_ j _ 0 1.0 |
iR [Er(r) +1 Vej(r)Bo] , (8)

corresponding to a balance of centrifugal, electric and

. . . 0 .
magnetic forces in the region where nj(r) is non-zero.

In the subsequent analysis, it is convenient to introduce

the equilibrium angular rotation velocity wrj(r) defined by
V()(r)=(u (r)r (9)
6] rj !

and the EQJ(BOQZ rotation frequency wE(r) defined by

0
cE_ (r) 4me.c r
wg (x) == __g___ = - Z:‘ 32 dr'r'nQ(r'). (10)
50 J B,r J

0" %
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Making use of Egs. (9) and (10), the equilibrium force balance

equation (8) can be expressed as

2

wrj(r) €5 c; rJ( r) - E]ij E(r) (11)
where
1®51B0 _

Equation (11) generally supports two solutions for wrj’
corresponding to fast (w ) and slow (w .) rotational equi-
libria. For present purposes, we consider slow rotational
equilibria satisfying w (r a) =0. Therefore, in the regions

where nj(r) is non-zero, Eq. (11) gives

TR (r)——{ 0o - (02 = 4o _gu E(rnl/z}, j=be (13)

for the cathode and plasma electrons, and

zw " =1)_ 2 1/2 s s
wri -'wri(r)__f; wci+ [wCi+4wc1 E(r)] %I J=1, (14)

for the plasma ions. Here, wE(r) is defined in Eq. (10), and

wce:=eB0/mec and wci==zieB0/mic are the cyclotron frequencies.

B. Neutral Anode Plasma

As a first equilibrium example, we consider the case
illustrated in Fig. 2. The cathode electrons (j=Db) are

assumed to have the rectangular density profile

ﬁb= const., a<r«< s
ng(r) = » (15)

o, rb<<r<<b .
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Moreover, there is a neutral plasma in the vicinity of the

anode with ion density profile

0, a<r<rp ’

ng(r) = (16)

”"
n. =const., r <r<b .
1 P

The electrons are assumed to provide complete charge neutrali-

zation in the region rp<:r«<b with
0 _ 0 . '
n_ (r) = Zini(r). ' (17)

Making use of Egs. (15) - (17), Poisson's equation (4) can be

integrated to give

-Znﬁ e
b 2
— (r”" -a™), a<r<rb,v

E) = ) (18)
-Znnbe 2
--—1—.—----(r]D -a),rb<r<b.

< s ~ 2
Defining wpb

Egs. (13) and (18) give for the electrons in the cathode

_ A2 . _ _.w0
= 4ﬂnbe /me, and making use of wE(r)- cEr/rBo,

region

2 2
-y = 1 _ 2 _ 22 [r"-a
wrb(r)"fg Yee [wce ‘ 2mpb ( 2 )]

On the other hand, from Egs. (13) and (18), the plasma elec-

1/2
}, a<r<ry .. (19)

trons in the anode region have equilibrium rotation velocity
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2 2\ _1/2
wory =Ll w2 252 (2712 r_<r<b (20)
re 2) ce ce pb r? " Tp '

and from Egs. (14) and (18), wrl(r) is given by

Z.m r2- 172

-, ,_1f_ 2 ie ~2 [fp72
wri(r)"fg “ci*'[“ci*'z m “pb| ™ 2~ ] }' Tprek (21

for the plasma ions in the anode region. The rotation
velocities wrj(r)(j==b,e,i) are illustrated schematically in

Fig. 2.

It is convenient to introduce (for ac< r<'rb)

~ 2

' W 2 2
b r -a
we (r) = =2 (22)
E 2wce ( r2 )
in Eg. (19). For
20 2 fz—az
gb b2 << 1, (23)
Yee Ty

it is clear from Eq. (19) that wég can be approximated by

wéL(r) = wg (1), a<r<r,, (24)

where wg (r) is defined in Eq. (22). For a large-aspect-ratio
diode with (rﬁF-az)/ri << 1, note that Eq. (23) is easily

satisfied even at moderately high electron densities with

~ 2 2 . ' - .
2wpb N Making use of Eq. (23), the angular velocity of

the plasma electrons is given by the approximate expression

w;e(r) = § , rp<r<b , (25)

E

'ﬂdbﬁw




le
where
S 2 r2 -a2
A = pb b
g = wp(rp)= = ) (26)
ce rb

Moreover, Eq. -(21) can be expressed as

241/2
2 s~ Tb
-wci4-[wci-+4wciQE ;5-]

, ¥ _<r<b, 27
pr (27)

For strongly magnetized ions with §E<<w¢i/4’ Eq. (27) reduces
to the k:o xgo rotation frequency
2

- A~ Tp
wri(r) = QE r—z- R rp<r<b. : (28)

On the other hand, for weakly magnetized ions with ﬁE>>wci/4,
Eq. (27) reduces to
1/2 “p

Weg (‘r) = (wciQE) - rp <r<b. (29)

In both cases, for a diode with moderately large aspect ratio,
(b—a)z/a2<<l, Egs. (27) - (29) exhibit only a weak variation
ofﬁwé}(r) with r over the anode plasma region (rp<r<b).

Pl

Figure 3 shows a plot of w.; versus QE/wci for the case
rp=rb and r=ry,. Note from Eq. (26) that QE/wci is related to
other equilibrium parameters by

A N2 2 2
w -
QE _ m, b r,-a (309
W . Z.m 2 2 :
ci i"e 2wgg Iy

Therefore, the region QE/wci>>l in Fig. 3 corresponds to
sufficiently high density of the cathode electrons that the

inequality
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w r, —a Z.m
pl; b — p> 22 (31)
2mc-e rb S

vis satisfied.

C. Ion-Contaminated Cathode Electrons

As a second equilibrium example, we consider the case

illustrated in Fig. 4 where the cathode electrons are partially

neutralized by a positive ion background%z.ln particular, it is

assumed that ng(r) has the rectangular profile

ﬁb=const. ’ a<r<rb,
nd(r) = (32)

’ rb<r-<br_

and that the ion density profile:ng(r) is related to ng(r) by

0, ., _.._0
Z;n; (r) =fn (x), (33)

where f =const. is the fractional charge neutralization. There
is not a second component of electrons in the present equi-

librium example, i.e., n2(r)==0. Making use of Egs. (32) and

(33), we determine Eg(r) from Eq. (5). This gives

-Zweﬁb(l-f)

2.
r (r"-a”), a<r<r,
0 v

(34)
-2nefn, (1-f)
b 2
(rb-a Y. rb<r<b.

r

Therefore, from Eg. (10), wg(r) is given by
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~ 2

w b (r2_a2)
wo(r) = s£2 (1-f) AEZ2 ) (35)
E 2w 2
ce r
over the interval a<r<rb. For wE(r)<<wce/4, it féllows from

Eq. (13) that the angular rotation velocity of the cathode

electrons can be approximated by

wéL(r) = wglr), a<r<r, (36)

where wE(r) is defined in Eq. (35). Finally, defining
A _n2 _ 2_2 ,2 o
QE._wE(rb)-(wpb/2wce)(l f)(rb a )/rbL and making use of
Egs. (14) and (35), the ion rotation velocity can be

expressed as

w . (r) = LV | +|w? + 4w _.Q f; (r2_a2) e a<r<r (37)

ri*t™? T 2] Ped T Yei T *Yei¥E T2 2 2, ' b’

r (rb-a )

The rotation velocities in Egs. (36) and (37) are illustrated
schematically in Fig. 4. 1In contrast to Eq. (27), where the
ions in the anode region satisfy wé}(r)rrconst., we note from
Eq. (37) that w£;(r) generally has a strong dependence on r for

the case where the cathode electrons are partially charge

neutralized by the background ions.
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III. ELECTROSTATIC EIGENVALUE EQUATION

A. General Eigenvalue Eguation

We now investigate stability properties for electrostatic
perturbations about the general class of cold-fluid equilibrium
profiles described in Sec. II.A. The stablllty analV51s is
based on the nonrelativistic cold-fluid equations of continuity
and momentum transfer together with Poisson's equation for the
perturbed electric field GE(E,t)-— V6¢(§,t); YFlute perturba—
tions w1th 3/3z =0 are assumed, and all pertu;bed‘quantities
are expressed as

sy (r,8,t) = % sv¥(r)exp(ire-iut);
g=mco :

where % is the azimuthal harmonic number, and w is the complex
eigenfrequency, with Imw>0 corresponding to instability. For
electrostatic perturbations about a cylindricaliy symmetric
equilibrium characterized by density profiles ng(r)(jﬁb,e,i),
radial electric field Eg(r) [Eg. (5)], and equilibrium rotation
velocity w£}(r) [Egs. (11), (13) and (14)], the linearized con-

tinuity and cold-fluid momentum transfer equations are given by

if_ 0

. -2 1 3 0. 9
i(w Qwrj)dnj 4—; 5T (rnj6vJ )4-7?nJGVJe =0, (38)
—i (w20 ) 8vE —(eLw +2w')6v"=-fi—3—<s¢“ (39)
rj jr "7 cj rj 36 mj or !
19,2 - v _ %y igset
-1(w-£w )6V36+ [sjwcJ = E(r wrj)] Ger=- mj = . (40)
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Here, Gng(r), dv;;(r) and 6v;%(r) are the Fourief amplitudes
for the perturbed density, radial flow velocity, and azimuthal
flow velocity, respectively, and the notation is otherwise
identical to Sec. II.A. Moreover, the perturbed potential
amplitude 6¢£(r) is determined self-consistently in terms of

6n§(r) from Poisson's equation

2
1l 9 3 2 L= Lo_ 2: L
T —_Br(r_ar ¢ ) ——-r2_ §¢7 = 3 41rej6nj ‘ (41)

where the summation Z:is over all plasma components j=b,e,i.
3 .

After some straightforward algebra that utilizes Egs.
(38) - (40) to express 6n§ in terms of 6¢2, Poisson's equation

(41) can be expressed as

r il
(42)
L w2 (.00 .+ 2w )
= 2S¢ v 1 3 %p3t%3% T M5’ |,
r ¥ w=-f2w . dr 2
J rj V.
J
where wgg(r)==4ﬂng(r)e§/mj, and the effective susceptibility

xj(r,w) for component j is defined by
w
xj(r,w) = - Rl (43)

where

2 : - -
vj(r,w)-(w Zwr.) -(e.w_.+2w_.) [ijcj+

1
j jTei Tl r

d 2 -
5; (r wrj)] . (44)

For general equilibrium profiles ng(r), the rotation velocities

wga(r) occurring in Egs. (42) and (44) are determined self-
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consistently from Egs. (13) and (14) for plasma components
j=b,e,i. The eigenvalue equation (42) for Gcb2 must of course

be solved subject to the boundary conditions

56X (r=a) =0=66%(r = D) | (45)

at the cathode (r=a) and anode (r=>b). Making use of the
equilibrium force balance equation (11) and Poisson's eguation
(4), the expression for v?(r,w) in Eg. (44) can be further

simplified. In particular, it can be shown that

- 1 8 (2 -
(ejwcj*'zwrj) [ejwcj'*f'ﬁf <r wrj)]

4rne.

_ 2 - 0
= wcj-rzejwcwa(r) m %5 e n, (r),

(46)

where w_(r) is defined in Eq. (10), and the summation 5]-:-

extends over all plasma components k=b,e,i. Substituting

Eq; (46) into Eq. (44) then gives

2 -2 5 4re. 0

vifriw) = (0= 205" - [wcej + 2650 50g (T) -—m;l % eknk(r)] . (47)
To sﬁmmarize, Eq. (42) is the electrostatic eigenvalue

equation that determines the eigenfunction 6¢2(r) and the

complex eigenfrequency w for general equilibrium density

profiles ng(r), j=b,e,i. The quantities xj(r,w) and v?(r(w)

are defined in Egs. (43) and (44), and wE(r) and wé}(r) are

determined self-consistently from Egs. (10), (13) and (14).
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B. Eigenvalue Equation for Rectangular Density Profiles

We now simplify the eigenvalue equation (42) for the

perturbations about the equilibrium discussed in Sec. II.B

and illustrated in Fig. 2. The density profiles are assumed
to be rectangular [Egs. (15) - (17)] and there is a neutral
plasma in the vicinity of the anode. The eigenvalue equation

(42) can be expressed as

b (o g '] 5 0By
J

(48)

L

_ 8¢ 2: 1 ) [ ( _ﬂ

= — == | X5 lEsw o + 2w

r 3 w- 2w ar j\j el rj !
rj

where xj(r,w) is defined in Eq. (43).

For the electrons in the cathode region (j=b), referring

to Sec. II.B and Fig. 2, the effective susceptibility is

N

~

‘_ %?_, a<r<ry ,
Vb

Xb(r,w) = (49)

o , r <r<b,
where vﬁ is defined by [Eq. (47)]

Vg(r,w) = (w -~ SLwr_b)Z - [w 2 —ai-chemE(r)]

(50)
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~2 oA~ 2 - . . .
for a<<r<<rb. Here, wpb-4ﬂnbe /me, and wrb(r) is defined in

Eq. (19).

For the plasma ions in the anode region (j=i), the effective

susceptibility xi(r,w) is

0, a<r<r_,
p

Xi(r,(.L)) = . » . (51)
~ 2
“pi
- sy ¥ <r<b
ve TP ’
i
where az = 4mn Z?ez/m and vz is defined by [Eq. (47)]
pi i“i i’ - i . )
2 _ -2 2 |
vi(r,w)-(w lwri) -_wci-+2wcin(r)]
[ Z.m rz--a2 (52
=(ur—2w'i)2-— u)%:+ ; € &32' b
ri ci m; pb r2

for rp«<r'<b. In obtaining Eq. (52) from Eg. (47), we have

made use of charge neutrality [, ~nggr)ej==0] of the anode

j=i,e _
plasma [Eq. (17)]. Moreover, : wri(r) is defined in Eq. (21).

Finally, for the plasma electrons in the anode region

(j=e), the effective susceptibility Xe(r,w) is

0, a<r<r_,
p

Xe(r,w) = ~ 2 _ (53)
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A2 A2 2 ., .
where wpe-—4ﬂnee /me, and Ve 18 defined by [Eq. (47)]

\)i(r,w) = (0=~ ,Q,wr—e) 2. Ewcze - 2wcewE(r)]
T r2-a2 (54)
= (o = -2 _ 2 _~2("b
= (w=to..) Yce T “pb —_;7_—

for r,<r<b. Here w£;(r) is defined in Eq. (20) for the

plasma electrons in the anode region.

To summarize, the eigenvalue equation (48), together
with the definitions in Egs. (19) - (21) and Eqs. (49) - (54)
constitute the final eigénvalue eduation for electrostatic
perturbations about the equilibrium density profiles specified
by Egs. (15) - (17). 1In this regard, within the context of the
present nonrelativistic, electrostatic, cold-fluid model, the
eigenvalue equation (48) is exact. That is, there is no
a priori assumption that the diode aspect ratio is large, that
the density is low, etc. - Therefore, Egs. (48) - (54) have a

wide range of applicability.

The detailed stability propérties predicted by Eg. (48)
are analyzed numerically in Sec. V for a wide range of equi-
librium parameters. In Sec. IV, we investigate Eq. (48) in the
low-~density, low-frequency regime where the solutions are

analytically tractable.
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IV. ION RESONANCE INSTABILITY

DRIVEN BY ANODE PLASMA IONS

A. simplified Eigenvalue Equation

As an'example that is analytically tractable, we consider
the eigenvalue equation (48) for the case of a low-density

anode plasma with

ﬁi, A, << A, (55)
and strongly magnetized cathode electrons with
2 2 o :
wpb(r) << Wag (56)

The equilibrium configuration, effective susceptibilities,
etc., correspond to the rectangular profiles considered in
Secs. IT.B and III.B with the following additional simplifying

assumptions:
(a) The cylindrical diode has large aspect ratio with
) _
LEJ%EL_ << 1. (57)
a ~

(b) We examine Eq. (48) for low—fréquéncy pérturbations

with

lo=s0 ()% <<l . (58) e

ce

(c) The anode plasma extends to the edge of the cathode -

electrons with

r, = Iy (59)

as illustrated in Fig. 5.
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Consistent with Eqs. (56) and (57), the angular rotation
velocity of the cathode electrons can be approximated by [see

“also Egs. (19) and (24)]

w;;(r) = wg (r)

(60)
~ 2 ~ 2
- wpb r2--a2 zwpb r-a
che r2 Yee Th

for a‘<r<<rb. In Eq. (60), we have approximated (r+a)/r2"—'2/rb

for the case of a large-aspect-ratio diode [Eq. (57)]. Further-

more, from Egs. (27) and (57), we neglect the (slow) r-variation

of wri(r) and approximate

- e 1 5 o ]1/2
Wpi (F) =005 =5 [ 0oy + | Wy + 408 (61)
for r,<r< b, where QE = wE(rb) is given by
82 [r, -a ’
fi, = BB [P . | (62)
Yce 'y

Similarly, the rotation velocity of the electrons in the
cathode region [Egs. (20) and (25)] is approximated by
w o (x) = for rp<r<b.

We now examine the susceptibility factors occurring on the
left-hand side of Eq. (48). Referring to Egs. (49) and (50),
and making use of Eqs. (56), (58) and (60), we find vi=w?2.

Therefore, Xp can be approximéted by
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~ 2
‘ %)' asrsry .
Xy (rrw) = “ce , : _ (63)
l 0

' rb< r<b.

. ~ 2 2 .
Note that |xb| << 1 since Wop << Wge is assumed. similarly,

from Egs. (53) and (54), it can;bé'shown for the electrons

: R g S22

in tbe anode reglon that xe(r,w) o wpe/wce over the range

Xy <r<b. Moreover, !xe| << 1 by virtue of Egs. (55) and (56).
Finally, from Egs. (51), (52),'(61)'and‘(62),'the ion suscepti-

bility xi(r,m) can be expressed as

o, a<r<r,

(64)

X'(rlw) = ~2
* “pi » T <r<b,

‘ ~= 2 2 oA
(w Qwri) —(wci-+2wci9E)

where w£1 and ﬁE are defined in Egs. (61) and (62).

With regard to the fight-hand side of the eigenvalue
equation (48), We retain the pérturbed surface-charge contri—
bution ffom the cathode electrons, which is proportional to
aw;i(r)/ar==—8£ié(r-rb). However, we neglect the perturbed’
surface-charge contributions from the anode blasma electrons
and ions (j=e,i) by virtue of the.low—density assumption in

Eq. (55). Approximating

2
- wop (¥)
(0 + 20 1) = “%T““ (65)

2
wpb(r)
vé(r,w) ce
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on the right-hand side of Eq. (48), and [y | << 1 and [x| << 1
on the left-hand side of Eg. (48), the eigenvalue equation can

be expressed as

2

|2<>
NN

3
ar

il L

r[1~+xi(r,w)]§% 5S¢ [14‘Xi(r,w)]5¢2

r
(66)

~ 2
- 26¢2 (Qpb/wce)
r w --'JLwE(r)

G(r_rb)l

where x. (r,w) is defined in Eq. (64).

To summarize, Eq. (66) is an excellent approximation to
the exact eigenvalue equation (48) in circumstances where the
anode plasma density is low [Eq. (55)], the cathode electrons
are strongly magnetized [Eg. (56)]1, the diode aspect ratio is
large [Eq. (57)], and the perturbation frequency is low [Eqg.
(58)]. It is clear from Eg. (66), that the surface-charge
perturbation on the cathode electrons can couple to the di-

electric response of the plasma ions in the anode region.

B. Dispersion Relation and Analytic Results

In this section, we solve the approximate eigenvalue
equation (66) subject to the boundary conditions 6¢£(r==a)==0=
6¢2(r==b). Referring to Fig. 5, in Region I (a<<r<<rb), Eqg.
(66) reduces to.(l/r)(a/ar)(r36¢2/3r)-—(22/r2)6¢2==0, which has

the solution
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L (67)
x [(;13)2-(.151>£] , a <r«< r -

Moreover, in Region-II (rb<<r'<b), Eq. (66) again reduces to
(1/1) (3/31) (r3se*/sr) - (2%/r%)s¢* = 0. The solution for
6¢£(r) in Region II that is continuous with Eq. (67) at r=r,

and vanishes at r=Db is given by
2
£ _ r\"_ (b
§¢ (r) = A[(B) <r> ]

I
r o\ & ')
@ @)
=] - (= , ¥, <r<b,
[ b -\ b

The remaining boundary condition is obtained by integrating

(68)

Eq. (66) across the surface at r=r, (Fig. 5). Multiplying
Eq. (66) by r and integrating from rb(l-G) to rb(1-+6) with

6-+0+’g1ves

(69)

Equation (69) relates the discontinuity in (86¢2/8r) at r=ry

to the perturbed surface-charge density.
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We define

(70)

where Ab is the width of the cathode electron region and A
is the width of the anode plasma region (Fig. 5). Moreover,

from Egs. (60) and (70),

w (rb)=§ =22 2 | (71)

Substituting Egqs. (67) and (68) into Eg. (69) then gives

5.2 1+ (r, /b) 2%
pi b
- l-(w-za 12 = (w2 +20 8. | 1- (r, /0) 2"
ri ci ci”E b
(72)
l+-(a/rb)2£ Iy zﬁE
-4 2% T K. w-1p.,
l-(a/rb) b Y E

Equation (72) plays the role of a dispersion relation that
determines the complex eigenfrequency w in terms of other system

parameters.

For a large-aspect-ratio diode, we Taylor expand
2% 29, 2% _ 29,
[1+ (xy/P)"71/11 = (x /) 771 = b/JLAp and [l+(a/ry ) ""1/11 - (a/r )" "]1=

a/zAb, where

L4
—P
b

r

%A
b1 (73)
a
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is assumed. Equation (72) then reduces to

A r 3.2
1+ g2 - 2
b (w - Q,wri) - (wci + ZwCiQE)
(74)
rb A_p JZ,QE

TR e

"D B _
b W Q,QE

Taking rb/b *1 in Eq. (74) for a large-aspect-ratio diode gives

the approximate dispersion relation

~ 2
1+ §E - ,;_ 5 wpiz -
b (w-—Rwri) —(wci-FchiQE)
| (75)
b w_-SLﬁE
For the speciai case of no ions (6;2 = 0), Eq. (75) gives
the familiar result
w-1h = - B 2Q (76)
E Ab+Ap E

corresponding to stable oscillations on the surface of the
electron layer. For 5;; # 0, however, Eq. (75) can give
instability associated with the coupling of these surface
oscillations to the plasma ions in the anode region.
Making use of the definitions ® 2 ==4nﬁ.22e2/m and _ =

g pi i%i i E
~ 2 . . o o
(wpb/wce)(Ab/rb) [Eq. (62)], two of the dimensionless frequencies
occurring in the dispersion relation (75) can be expressed for a

large-aspect-ratio diode as
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Yoi _ Zime Yce Tb
5.~ m, ~2 B&_' (77
E i wpb b
~ 2 N 2 2
pi _ ZiMe 2iB; Yoo fg
22 m, f ~ 2 2
9] i b pb Ab
R (78)
- Zlni fg Yei

ClL Cl Cl (79)

The dispersion relation (75) is a cubic equation for the complex
eigenfrequency w, valid for a large-aspect-ratio diode within
the context of the assumptions enumerated at the beginning of
Sec. IV.A Making use of Eq. (75), the marginal stability curves
(Imw =0) in the parameter space (wci/ﬁE, GSZ/Qé) are plotted in
Fig. 6 for several values of azimuthal harmonic number £ and for
Ab/Ap==3 [Fig. 6(a)l], Ab/Ap==l [Fig. 6(b)] and Ab/Ap==l/3 [Fig.
6(c)]. For specified %, the regions above the curves in Fig. 6
correspond to instability with Imw > 0, whereas the regions below
the curves correspond to stable oscillations with Imw =0. More-
over, for the choice of system parameters Gci/ﬁE==0.l and Ab/Ap=
1, shown in Fig. 7 are plots of normalized growth rate Imw/ﬁE
[Fig. 7(a)] and real frequency Rew/ﬁE [Fig. 7(b)] wversus 6;?/@;
obtained from Eq. (75). Several features of the stability

behavior are noteworthy from Figs. 6 and 7.
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(a) First, for weakly magnetized ioné with wci/§E~<<l, it
follows from Fig. 6 that instébility can exist over a relatively
wide range of ion density as measured by &;i/ﬁ;.

(b) Typically, for specified wci/ﬁE' Ab/Ap; and harmonic
number ¢, there is a threshold valﬁe of ion density above which
instability occurs. For example, for wéi/§E==0'01 and a rela-
tively thick cathode electron layer witthb/Ap==3, it follows
from Fig. 6(a) that instability occurs when @;i/ﬁét>0.06 for
the %=1 mode, and when apzi/ﬁg> 0.5 for the £ =2 mode. On the
other hand, for wci/ﬁE==0.01 and Ab/Ap:=1/3’ Which corresponds
to a relatively thick anode plasma region and thin cathode
electron layer (see Fig. 5), we £ind from Fig. 6(c) that the
threshold for instability occurs at much lower values of G;i/ﬁé
than the Ab/Ap=§3 case analyzed in Fig. 6(a).

(c) From Eq. (75), it can be shown that the minima in the
marginal stability curves plotted in Fig. 6 occur for G;&/§§==O

and values of wci/ﬁE determined from

2A
—— = [(nz +am /200 4 2(n240n)1/2 ] (80)
A, + A L W .
b "p n=[-ci
QE M

for £=1,2,... . When wéi/ﬁE isbless than the value of
(wci/ﬁE)M for £ =1, it is evident from Figs. 6(a) - 6(c) that
the 2==i,2,... modes switch on sequentially as é;i/ﬁé is

increased. On the other hand, when wci/ﬁE exceeds the value

of (w,;/Qp)y for £=1, it follows from Figs. 6(a) - 6(c) that

selected higher mode numbers have a lower threshold value of
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G;i/ﬁé for instability than the 2£=1 mode. (See also Fig. 7).

(d) As a general remark, for specified Ggi/ﬁé-and mode
number £, it is evident from Figs. 6(a) - 6(c) that the range
of wci/ﬁE corresponding to instability shifts upward as the thick-
ness of the cathode electron layer is increased relative to the
thickness of the anode plasma region. For example, for G;i/ﬁé==l
and £ =7, it follows from Figs. 6(a) and 6(c) that instability
exists for 0.026-<wci/§E-<0.65 when Ab/Ap==l, and for 0.26
<w ;/fp <1 when Ap/by=3-

(e) In Fig. 7, we plot the normalized growth rate Imw/ﬁE
[Fig. 7(a)] and real frequency Rew/ﬁE [Figf 7(b)]iversus
&;a/ﬁé obtained from Eg. (75) for Ab/Ap==1, wci/ﬁE==0.l,
and 2 = 1,2, ... 5. Referring to Figs. 6(b) and 7(a), we find
that as G;i/ﬁé is increased, the unstable modes switch on
sequentially in the order: ¢ =2, g = 3, =1 and £=4, and
2 =5. Moreover, the growth rates for the ion reéonance
insﬁability inferred from Fig. 7(a) can be substantial. For
example, for £ =3 énd 8;2/§§==0.5, it follows from Fig. 7(a)
that Imw = 0.50= 0.707 <Bpi. Moreover, for % =3 and &pzi/ﬁé =
0.5, the real oscillation frequency is Rew==-1.42ﬁE==-26pi
[Fig. 7(b)].

To summarize, in Sec. IV we have investigated analytically
propérties of the ion resonance instabilitQj&n circumstances
where the anode plasma density is low [Eq. (55)], the cathode
electrons are strongly magnetized [Eg. (56)], the diode aspect
ratio is large [Eq. (57)]1, the perturbation frequency is low

[Eg. (58)], and the anode plasma is in contact with the cathode
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electrons [Eq. (59) and Fig. 5]. Although these assumptions
are somewhat restrictive, thé'analysis clearly establishes
the existence and qualitative features of the ion resonance
instability and the fact that the plasma ions in the anode

region can strongly couple to the cathode electrons.
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V. 'DIOCOTRON INSTABILITY DRIVEN BY ANODE PLASMA ELECTRONS

As a second example that is analytically tractable, we
consider the eigenvalue equation (48) in circumstances where
the anode plasma is not in contact with the cathode electrons,
i.e.,

r > rb. (81)

as illustfated in Fig. 2; In this case, the cathode electrons
and the anode plasma electfons can combine to.give'the dioco-
tron instability driven by electron vélocity shear over the
interval a<r<b. To simplify the analysis and to distinguish
this ihstability from the ion resonance instability discussed

in Sec. IV, we make the following additional assumptions:

~(a) The maximum rotation frequency of the cathode
electrons, wéL(rb)==ﬁE is much higher than the ion cyclotron

frequency, i.e.,

QE >> wci. (82)

(b) Consistent with Eq. (82), we consider high-frequency

perturbations with
w R e (), (83)

and treat the anode ions as a tenuous, unmagnetized plasma

component satisfying

o] >>w o

"y |20 (e ) ] (84)

pi’
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(c) No a priori assumption is made regarding the relative

size of the plasma electron density and the cathode electron

density (ﬁe/ﬁb). However, for present purposes, it is assumed
that

A2 A2 2 )

wpb' Woe << Wi (85)

which corresponds to low-density, strongly magnetized electrons.
Making use of Egs. (82)-(85), it is straightforward to

simplify the eigenvalue equation (48) and the related defini-

tions in Egs. (49)-(54). 1In particﬁlar} fhe iéns are treated

as infinitely massive (miﬁm) and the susceptibilifies xj(r,w)(j=

b,e;i) are approximated by zero. on the left-hand side of Eg. (48).

Moreover, only the cathode electrons and the anode.electrons

contribute on the right-hand side of Eq. (48). Making use of

Eqs. (82)-(85), the eigenvalue equation (48) can then be

approximated by .

1l 3 9 £ 2 2
r3r f3r % -8

r

(86)
A2 ~
- aeet Spp |SE T R SGmr)
r w w - 26 08 2,2 °
ce E b w 29Erb/rp

A2 A 2 ’ A - _ . .
Here, wpb-4ﬂnbe /me, and QE-wrb(rb)-wE(rb) is defined by

[Egs. (22) and (24)]

A r2 -a2 |
Qg =y —]9-2— , . (87)
)
where ~ 2
“pb (88)
w. =
D 2wce
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is the effective diocotron frequency in the absence of an
internal conductor (a=0). It is cleaf from Eg. (86) that
the two source terms on the right-hand side correspond to

sur face-charge perturbétions'at the surface of the cathode
electron layer (r==rb) and the anode electrons (r==rp). Also
note in Eq. (86) that no a priori assumption has been made
that the diode aspect ratio is large. That is, Eg. (86) is
valid for arbitrary b/a>-l;'

Referring to Fig. 2, the eigenvalue equation (86) reduces
to the vacuum eigenvalue equation r_l(a/ar)(r36¢%/8r) -
(22/r2)6¢l==0Awithin the cathode electron iéyer'(a§;<rb), in
the vacuum region (rb<r<rp), and within the anode plasma (rp<r§b).
Therefore, the solution to Eq. (86) that satisfies 6¢2(r=a)= 0 =

6¢£(r=b) is given trivially by

JCRCIREESS

Br¥ + C/rg’, rb<r<rp, (89)

o[B - (9] - =per e

Two of the boundary conditions required in Eq. (89) are con-

§¢6% (r)

tinuity of 6¢2(r) at\r==rb and at r:=rp, i.e.,

lim a¢“(rb- €) = 1im <sq>“(rb+ e),
e+0+ e+0+

(90)

lim 6¢2(r -e).

lim 6% (r_-¢) o

. p
€—)-O+ €+0+
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The two remaining boundary conditions are obtained by multi-
plying Eq. (86) by r and integrating across the discontinuities

at r=1r, and at r==rp. This readily gives

lim r -53? sq;"] I 'a'af so¥
e+0+ , Iyt € r,"e

(91)
w
2 D
= 286 r,) ——— ,
ol b" .28
E
and
lim ’ [r %m“] - [r -§’r— a¢’L]
‘€+0+ rp+ € N rp-e _
(92)
n w
= -2060" (x )= D :

A 2,2
n - :
b W lQErb/rp

Substituting Eq. (89) into Egs. (90)ﬁ(92), after some straight-

forward algebra we obtain the dispersion relation .

. (b)zz . [1.- (a/rb)“] |
"\ + 2 3.2
o) w/wD'-z(rb-a )/rb
' 22
(A_/A, ) [1-(b/xr_)""] ' \2% .
=1+ D 5 \29 5 1 - 51) | (93)
. r
w/qD—l(rb—a )/rp P
A W ¢ R EY2 S h
L R N
rp w/wD-Z(rb-a )/rb
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Equation (93) can be used to determine the cémplex oscillation
frequency w over a wide range of system parameters ﬁe/ﬁb, rb/a,
rp/a and b/a. For the special case where the anode electrons
are in contact with the cathode electrons (rp==rb); Eg. (93)
supports only stable oscillations with Imw=0. This is expected
since for r =ry the electron density profile is monotonic
over the entire interval a<r<b (Fig. 2).21

For rp>1:b, the linear dispersion relation in Eq. (93) has
been solved numericaliy for the complex eigenfrequency w.
Typical numerical results are summarized in Fig. 8 where (a) the
normalized growth rate Imw/wD and (b) the real oscillation fre-
guency Rew/wD 6btained from Egq. (93) are plotted versus rp/a for
the choice of parameters b/a =2, rb/a==1.5, density ratio
ﬁe/ﬁb==0.l, and several values of the azimuthal mode number §%.
Several points are noteworthy from Fig. 8. First, the maximum
growth rate can be a substantial fraction of the diocotron
frequency Wry thereby indicating a strong instability. Second,
for each vaiue of 2, the range of rp/a corresponding to insta-
bility (Imw > 0) is relatively narrow. Evidently, from Fig. 8(a),
high mode numbers £ are excited when the anode piasma boundary
(rp/a) approacheé the boundary of the cathode electrons (rb/a=‘
1.5). In the limit, however, instability ceases (Imw=¥0) when
rp==rb. Finally, from Fig. 8(b), for.specified value of harmonic
number £, the real frequency of the unstable mode is almost
independent of rp/a.

Shown in Fig. 9 are plots of (a) the marginal stability~

boundaries in the parameter space (rp/a, 2), and (b) the maximum
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growth rate and the corresponding real oscillation frequency
obtained from Eq. (93) for ﬁe/ﬁbs=0.2 and parameters otherwise
identical to Fig. 8. The cross-hatched region in Fig. 9 (a)
corresponds to instability (Imw > 0). The dashed curve in Fiqg.
9(a) represents the conditions for maximum growth rate. For
the choice of parameters in Fig. 9, only mode numbers satis-
fying % >4 exhibit instability. As shown in Fig. 9(b), the
real oscillation frequenéy is.linearly proportional to £,
although the maximum growth rate saturates quickly with
increasing %.

In order to illustrate the dependence of stability behavior
on the density ratio ﬁe/ﬁb, in Fig. 10 are plotted (a) the mar-
ginal stability boﬁndafies in the parameter space (rp/a, ﬁe/ﬁb),
and (b) the maximum growth rate and the corresponding real
oscillation frequency obtained from Eq. (93) for & =5 and para-
meters otherwise identical to Fig. 8. From Fig. 10(b), for this
choice.of system parameters, we note that the maximum growth
rate occurs for density ratio ﬁe/ﬁb==0.4. That is, the insta-
bility growth rate does not continue to increase for ﬁe/ﬁbg;0.4.

Finally, the dependence of stability properties on the
location of the boundary.of the cathode electrons,(rb/a) is
illustrated in Fig. 11, where (a) the marginal stability |
boundaries in the parameter space (rp/a, rb/a), and (b) the
maximum growth rate and corresponding real oscillation frequency
are presented for ﬁe/ﬁb==0.2 and parameters otherwise identical
to Fig. 10. The dashed curve ianig. 11 (a) corresponds to maxi-

mum growth rate. Evidently, from Fig. 11(b), for b/a=2 and
1.5.

11

fi,/fi =0.2, the strongest instability occurs for r /a
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VI. NUMERICAL RESULTS

In this section, we make use of the exact eigenvalue equa-
tion (48) and the related definitions in Egs. (49)-(54) and
Egs. (19)-(21) to investigate numerically the stability proper-
ties for electrostatic perturbationé about the equilibrium
density profiles illustrated in Fig. 2. No a priori assumption
is made that the anode plasma density or cathode electron density
is low or that the eléctrons are strongly magnetized. In solving
Eg. (48), we impose the boundary conditions 6¢£(r=a)=0=6¢£(r=b),
and the anode plasma between r=rp aﬁd r=b is assuméd to be

hyrdogen plasma with
.m_
Z, = 1 and ﬁg = k. (94)

Typical numerical results are illustrated in Figs. 12 and

13 for the choice of geometric factors

Iy fE
- = 1.2, 2 = 1.4 and

PO

= 1.6, (95)

corresponding to a moderate aspect ratio diode. The stability

results in Fig. 12 correspond to the high-frequency (electron-driven)

branch (Sec. V), whereas Fig. 13 illustrates sfabiliﬁy behavior
for the 1ow—frequency branch (ion resonance instability}zin which
the anode plasma ions couple strongly to the cathode electrons
(Sec. 1IV).

Beginning with the high-frequency branch, the normalized real

frequency Rew/wc and the growth rate Imw/wce obtained from Eq. (48)

e
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are plotted in Fig. 12 versus normalized cathode electron density
~2 2 ~2 2 . _

sb—wpb/wce for values of se_wpe/wce ranging from se—O (no anode

plasma) to se=0.5 (dense anode plasma). The numerical plots are

presented for azimuthal mode numbers =4 [Fig. 12(a)}, =8

[Fig 12(b)] and #=12 [Fig. 12(c)].

For no anode plasma (se=0) and low-density cathode electrons

é2<<l), it is clear from Fig. 12 that the instability

=0 2
(sb—wpb/w
growth rate is extremely small (Imw/wce<10_4 for sb<0.l). More-
over, for sb<<l and se=0, the real oscillation frequency in
Fig. 12 connects smoothly onto the énalytic result [see Eq. (93)

with ne=O]

A2 ' 24

w 2 [1-(x, /b)) 7]
Rew - _Bb 1o [1 -2 })- b [1-(a/r ) 2*1 1. (96)
Yoe 2“’ce ré [l-(a/b)zzl b’

As the cathode electron density (sb) is increased for Se=0’ it is

clear from Fig. 12 that the growth rate and real frequency in-

2

ce UP to 0.7.

crease monotonically, at least for values of &;;/w
In addition, Rew and Imw increase with mode number & for the
range of { presented in Fig. 12. The se=0 results in Fig. 12 are
consistent with earlier_numericai studies of electrostatic |
stability properties carried out for rectangular cathode electron
density profile in Ref. 1. |

For non-zero anode plasma density (se#O), it is clear from
Fig. 12 that the instability growth rate and real oscillation
frequency are enhanced relative to the se=0 case.v This is due

to a coupling between the plasma electrons and the cathode

electrons. Evidently, this coupling can be particularly strong
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in the low-density regime (Sec. V). For example, for £=8 and

_~2 2 _ . . — -4
sb—wpb/wce—O.Z it follows from Fig. 12(b) that Imw/wce-3.SXI0

2 for s =a2,M)2=0.l.

_. 2 2 _ _ -
for se—wpe/wce—o, whereas Imw/wce—lxlo e ¥pe’Yce

This correéponds to a thirty-fold increase in the growth rate
produced by the étrong interaction of the anode electrons with
the cathode electrons. As Sy and S, are increased further, the
growth rate is still enhanced relative to the se=0 case, but not
by the same large factors as in the low-density regime. For
the parameters chosen in Figs. 12(a)-12(c), we also note that
the enhancement in growth rate as se.is increased is more
pronounced'at larger %-values, whereas the enhancement in real
oscillation freqﬁency as s is increased tends to be weaker at
larger f-values.

We now consider Fig. 13 where the humerical results
obtained from Eq. (48) are presented for both the low-frequency
(ion-driven) branch as well as the high-frequency (electron-
driven) branch. In Fig. 13, and throughout the remainder of this
paper (Figs. 14 and 15), the high-frequency and low-frequency
solutions are labeled by the numbers 1 and 2, respectively. Shown
in Fig. 13 are plots of the normalized real frequency Rew/mce and
.growth rate Imw/wce for the mode number £=8 and geometric para-
meters specified by rb/a=l.2, rp/a=l.4 énd b/a=l.6 [Egq. (95)].
In Fig. 13(a), the real frequency and growth rate are plotted

_"2 2 . . . A~ A
versus sb--wpb/wce for fixed density ratio ne/nb—O.S. On the other

hand, in Fig. 13(b), the real frequency and growth rate are
2

' . . A A . ~ 2
plotted versus density ratio ne/nb for a f;xed value of Qpb/wce—

0.4. Several features of the stability behavior are evident
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from Fig. 13. First, the real oscillation frequency for the
ion-driven branch (curve set #2) is about an brder—of-magnitude
lower (or somewhat less) than the real oscillation frequency
fortﬂuahigh—frequency branch (curve set #1), at least for the
range of parameters analyzed in Fig. 13. Second, for fixed
density ratio ﬁe/ﬁb=0.5 and increasing values of a;i/wce' it is
clear from Fig. 13(a) that the growth rate for the ion resonance
instability increases monotonically (albeit slowly), whereas the
growth rate for the high-frequency branch exhibits‘a secondary
maximum for s =0.25 (see also Fig. '12). On the other hand, for
fixed value of ﬁ;i/wé2=0.4 and increasing density ratio ﬁe/ﬁb,
we find from Fig. 13(b) that the growth rate for the ion
resonance instability increases rapidly and begins to level off
at Imw=0.0045uw__ for ﬁe/ﬁbg0.3, whereas the growth rate for the
high-frequency branch increases slowly over the entire interval
O<ﬁe/ﬁb<0.5. Another important feature evident from Fig. 13
is that the growth rate of the ion résonance instability can be
substantial. 1Indeed, the growth rates of the two branches are
comparable over most of the parameter range analyzed in Fig. 13(b).
- This is a very important result, since the ions participate as an
active component for the low-frequency branch (curve set #2), and
would be expected to exhibit a strong nonlinear response to the
instability. |

A fegion of strong ion resonance instabilitykis also
illustrated in Fig. 14 where £he normalized real  frequency Rew/wce

2

=0 2
are plotted versus Sb_wpb/wce for mode

and growth rate Imw/wce

number £=8, fixed density ratio ﬁe/ﬁb=0.5, and diode aspect ratio
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increased from a/(b-a)=1.67 (in Figs. 12 and 13) to a/(b-a)=
4.76 (in Fig. 14). For the parameter range analyzed in Fig. 14,
the real frequency of the two branches differ by less than a
factor of two. On the other hand, the growth rateiof the ion
resonance instability (curve set #2) is substantially larger
than the growth rate of the high-frequency branch (curve set #1)
over a wide range of cathode electron density (sb§0.4).

.»The strong dependence of instability growth rate and real
oscillation frequency on diode aspect ratio was evident ffom
the analytic studies of the two branches presented in Secs. IV
and V. This is further illustrated in Fig. 15, where the
normalized real frequency Rew/wce and growth rate Imm/wce-
obtained from Eq} (48) are plotted versus normalized diode

thickness A defined by
A =22 (97)

As in Figs. 12-14, the relative thickness of the cathode electron
layer, the vacuum region, and the anode plasma, each correspond
to one-third of the total.cathode-anode spacing. That is, in

Fig. 15,

rb r
=2 =1+zA, B=1+% 4. (98)
a a

Wi
Wi

Moreover, %=8 and fixed density ratio ﬁe/ﬁb=0.5 are assumed in

s . V _A2 2_ N . _ » «
Fig. 15, with s —wpb/wce—0.4 in Fig. 15(a) and sb—0.7 in Figqg.

b
15(b). Comparing Figs. 15(a) and 15(b), it is found that the

plots of the real oscillation frequency for both branches and
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the growth rate for the ion resonance instability (curve set

#2) are relatively insensitive to increasing the cathode electron
density from sb=&;;/wéi=0.4 [Fig. lS(a)j to &;;/w;;=0.7 [Fig.
15(b)]. On the other hand, there is a significant increase in
the growth rate of the high-frequency branch (curve set #1) as

Sy, is.increased. In addition, for the parameter range analyzed
in Fig. 15, there is an abrupt increase in the growth rate of

the ion resonance instability as A is increased, with Imw begin-
ning to level off at Imwz0.005wce for AR0.5. Moreover, it is
evident from Fig. 15 that the growth rate of the high—frequéncy
branch exhibits a secondary maximum (for A=0.l1) as A is increased.
Although the detailed physical reason for this growth enhance-
ment (secondary maximum) is not understood at the present time,
the reader will recall from the analytic studies in Sec. V

that the instability growth rate of the high-frequency branch
exhibits a very sensitive dependence on the geometric factors

rb/a, rp/a and b/a.
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VII. CONCLUSIONS

In this paper, we have made use of the macroscopic cold-
fluid-Poisson equations to investigate collective instabilities
driven by anode plasma ions and electrons in a nonrelativistic
cylindrical diode with applied magnétic field Boéz' Following
a review of equilibrium properties (Sec. II), the electro-
static eigenvalue equation is derived (Sec. III) and investi-

gated analytically (Secs. IV and V) and numerically (Sec. VI)

assuming flute perturbations with 3/3z=0. Particular emphasis -

is placed on the influence of the anode plasma on stability
behavior assuming qniform cathode electron density (ﬁb)
extending from r=a to.r=rb, and uniform anode plasma density
(ﬁe=Ziﬁi) extending from r=rp to r=b. Depending on the cathode
electron density (és measured by sb=651/wéi), the anode plasma
density (as measured by.se=ﬁ52/w;2), the diode aspect ratio,
etc., it is found that there cén be a strong coupling of the

- anode plasma to the cathode electrons, and a concomitant large
influence on detailed stabiiity behavior. In particular, the
presence of the anode plasma ions introduces a new low-frequency
mode (ion resonance instability) in which there is a stfong

coupling of the anode plasma ions to the cathode electrons

(Secs. IV and VI). Moreover, the conventional high-frequency

stability properties calculated for se=0 are significantly modi-. .

fied by the coupling between the cathode electrons and the
anode plasma electrons (Secs. V and VI). For example, for b/a=

1.6, rb/a=l.2, rp/a=l.4, 2=8 and sb=0.2, it is found that
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- -4 - 102 -
Imw/wce—B.SXlO for se—O, whereas Imw/wce—lo for se—O.l,

corresponding to a thirty-fold increase in instability growth

rate [Fig. 12(b)].
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FIGURE CAPTIONS

Cylindrical diode configuration With cathode located
at r=a and anode at r=b. Equilibrium flow is in the
e-direction, and the equilibrium space-charge density
Z:ng(r)ej'produces a radial electric field Eg(r)

J[Eq- (51.

Plots of equilibrium density ng(r) and angular velocity
wé}(r) versus r obtained frgm Egs. (15) - (17) and Egs.
(19) - (21). Eléctrons in the cathode region have é
rectangular density profile extending from r=a to r=r, .
The plasma in the anode region is electrically neutral

. 0 __0 _ -
with Zini(r)-ne(r), and extends from r—rp to r=b.

Plot of wri(rb) versus QE/wci = (mi/zime)(wpb/che) x

(w2 .2y, 2 ; ~ . -
[(rb—a )/rb] obtained from Eq. (27) for»r.p—r‘b and r ry -

Plots of equilibrium density ng(r) and angular velocity
wé}(r) versus r obtained from Egs. (32) and (33) and
Egs. (36)'and (37). The cathodé electrons are partially
charge neutralized by positive ions with,Zing(r)=fng(r),

where f=const.=fractional charge neutralization.

Model density profiles used for electrostatic stability

analysis in Sec. IV. The anode plasma density is low

with ﬁi’ ﬁe <<»ﬁb [Eq. (55)1, and the anode plasma

extends to the edge of the cathode electrons with’rp=rb

[Egq. (59)].
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Fig. 8.

Fig. 9.

Fig. 10.

52

Plots of marginal stability curves in the parameter

2 ~2 02 .
space (wci/QE, wpi/QE) obtained from Eqg. (75) for

'several values of harmonic number 2 and (a) Ab/Ap==3,

(b) Ap/A =1, and (c) Ap/A =1/3. Regions above
the curves are unstable (Imw > 0), and regions below
the curves. correspond to stable oscillations

(Imw=0).

Plots of (a) normalized growth rate Imw/ﬁE and

(b) normalized real oscillation frequency(Rew-ZﬁE)/ﬁE
A2 A2 . . —

versus wpi/QE obtained from Eq. (75) for Ab/Ap-l,

wci/§E==0.l, and several values of harmonic number £.

Plots of (a) the normalized growth rate Imw/wD, and

(b) real oscillation frequency Rew/wD versus rp/a

obtained from Eq. (93) for b/a=2, ry/a=1.5, fi_/f, = 0.1

and several values of harmonic number £.

Plots of (a) the marginal stability boundaries in the
parameter space (rp/a, ), and (b) the maximum growth
rate and corresponding real oscillation frequency
obtained from Eq. (93) for ﬁe/ﬁb==0.2 and parameters
otherwise identical to Fig. 8. The dashed éurve in

Fig. 9(a) corresponds to maximum growth rate.

Plots of (a) the marginal stability boundaries in the
parameter space (rp/a, ﬁe/ﬁb), and (b) the maximum
growth rate and cofrésponding real oscillation

frequency obtained from Eq. (93) for 2 =5 and
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parameters otherwise identical to Fig. 8. The dashed

curve in Fig. 10(a) corresponds to maximum growth rate.

Plots of (a) the marginal stability boundaries in the

' parameter space (rp/a, rb/a), and (b) the maximum

growth rate and corresponding real oscillation fre-
quency obtained from Eq. (93) for ﬁe/ﬁb=0.2 and para-
meters otherwise identical to Fig. 10. The dashed -

curve in Fig. 1l1(a) corresponds to maximum growth rate.

Plots of normalized real frequence Rew/mce and growth

2

ce obtained from Eq. (48) for

e N2
rate Imw/wce versus wpb/w ’
the high-frequency branch assuming rb/a=l.2, rp/a=1.4
and b/a=1.6. Stability results are presented for

several values of s _=u 2/%)2 ranging from s =0 to s =
e pe’ ce e e

0.5, and for (a) %=4, (b) %2=8, and (c) %=12.

Plots of normalized real frequency Rew/wce and growth

rate Imw/wce obtained from Eq. (48) assuming £=8,
rb/a=l.2, rp/a=l.4 and b/a=1.6. Plots are versus (a)
A2 2 AN ’ A A A2 2_
wpb/wce,for ne/nb-Q.S, and (b) ne/nb,for wpb/wce—0.4.
Both the high-frequency branch (labeled by 1) and

the low-frequency branch (labeled by 2) are displayed.

Plots of normalized real frequency Rew/wce and growth

_ ‘ ~ 2 2
rate Imw/wce versus wpb/wce

obtained ffom Eq. (48) for
=8, /0 =0.5, r /a=1.07, r /a=1.14 and b/a=1.21.
Both the high-frequency branch (labeled by 1) and the

low-frequency branch (labeled by 2) are displayed.
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Plots of normalized real frequency Rew/wce and growth
rate Imw/wce versus A=(b-a)/a obtained from Eq. (48)
for 2=8, A_/A =0.5, and (a) apﬁo/wc2e=o.4, and (b)
Q;i/w;2=0.7. In Figs. 15(a) and 15(b) it is assumed
that (rb-a)/a=A/3 and (rp—a)/a=2A/3. Both the high-
frequency branch (labeled by 1) and the low-frequency

branch (labeled by 2) are displayed.
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