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ABSTRACT

Use is made of the macroscopic cold-fluid-Poisson equations to investigate

the electrostatic stability properties of nonrelativistic, nonneutral electron

flow in a cylindrical diode with applied magnetic field B z. The cathode is

located at r=a and the anode is located at r=b. Space-charge-limited flow with

E (r=a)=O is assumed. Detailed stability properties are investigated analyti-r
cally and numerically for electrostatic flute perturbations with a/az=O.

Particular emphasis is placed on the influence of neutral anode plasma on

stability behavior assuming uniform cathode electron density (nb) extending

from the cathode (r=a) to r=rb, and uniform anode plasma density ( e=Z in )

extending from r=r to the anode (r=b). Depending on the cathode electron

density (as measured by sb=Wpb ce2), the anode plasma density (as measured by
A2 2e

s =w /e ), the diode aspect ratio, etc., it is found that there can be a
e pe ce

strong coupling of the anode plasma to the cathode electrons, and a concomitant

large influence on detailed stability behavior for both the high-frequency

(electron-driven) and low-frequency (ion-driven) branches. Detailed stability

properties are investigated over a wide range of cathode electron density, anode

plasma density, diode aspect ratio, etc.
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I. INTRODUCTION AND SUMMARY

There is a growing literature on the equilibrium and linear

stability properties of sheared, nonneutral electron flow in

1 2-6
cylindrical and planar models of high-voltage diodes with

application to the generation of intense charged particle beams

7 1-6
for inertial confinement fusion. These analyses have repre-

8-11
sented major extensions of earlier work to include the

1 .2-important influence of cylindrical, relativistic, -6 electro-

2-6 .6magnetic 26and kinetic6 effects on stabilityV hehavior at

moderately high electron density. However, none of these treat-

1-6ments has included the influence of active plasma components

in the anode-cathode gap. Indeed, it would be expected that

plasma ions and electrons could interact effectively with the

cathode electrons and modify stability behavior. For example, it

is well established in applications related to heavy ion accelera-

12-14 15tors and electron ring accelerators and in basic theoretical

16-19studies of nonneutral plasma stability properties that the

collective interactions associated with an active ion component

in an electron-rich background can lead to an instability known

as the ion resonance instability12 The strength of the ion reso-

nance instability depends on a number of factors, including ion

density, the relative motion of electron and ion components, and

the strength of the equilibrium self electric fields. As such an

instability may have deleterious effects on stable diode operation

and/or the production of well-collimated ion beams, one purpose

of the present analysis is to investigate detailed properties of

the ion resonance instability in geometry particular to cylindrical

diodes (Fig. 1). In addition, we investigate the stability be-

havior associated with the (high-frequency) interaction of the

plasma electrons with the cathode electrons.
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In the present analysis, we make use of a macroscopic,

cold-fluid model to investigate the electrostatic equilibrium

and stability properties of nonrelativistic nonneutral plasma

in a cylindrical diode with applied magnetic field B As

illustrated in Fig. 1, the cathode is located at r=a and the

anode at r=b, and space-charge-limited flow with E0 (r=a)=0 is
r

assumed. In general, the nonneutral plasma is assumed to

consist of three components: electrons in the cathode region

(j=b), positively charged ions (j=i), and plasma electrons

(j=e). The macroscopic cold-fluid model used in the equi-

librium (Sec. II) and stability (Secs. III-VI) analysis is

based on the continuity and momentum transfer equations for

the density nQ ( ,t) and mean velocity yj( ,t). Moreover, the

electric field (,t)= -Vfl(,t) is determined self-consistently

from Poisson's equation, and a/Dz=O is assumed for both equi-

librium and perturbed quantities.

Under steady-state conditions (3/3t = 0), the equi-

librium analysis (Sec. II) allows for general density profiles

n.(r) (j=b,e,i) and corresponding self-consistent radial

electric field [Eq. (5)]

r

E= 47re. n d (r').r r

a

Moreover, equilibrium force balance in the radial direction

[Eqs. (8) and (11)] can be used to determine the angular

rotation velocity wrj (r) =V 0(r)/r of the j'th component fluid

element. For slow rotational equilibria satisfying w . (r=a)=0,
rj

the rotation velocities are given by [Eqs. (13) and (14)]
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w . (r) [w 2 4 (rw / j=,

rj 2wce ce cewE(r)]l/2 , j=b,e,

- 1 2 1/2 ..Wri(r) W 2+'c [wi+ 4wciw(r)] 3=21 ,
rj ci + ci + ciE

in the regions where n.(r) is non-zero. Here, wE (r) =

0 0
-cEr/rB0 is the xB0 z rotation frequency, w ce= eB 0 /m ec and

Wci = ZieB 0/m c are the cyclotron frequencies, and Z. is the

degree of ionization of the ions. As specific examples,

detailed equilibrium properties are investigated for two cases:

a neutral plasma in the anode region (Sec. II.B and Fig. 2),

and ion-contaminated cathode electrons (Sec. II.C and Fig. 4).

Stability properties are investigated in Sec. III for

small-amplitude electrostatic perturbations about general

equilibrium profiles n?(r), E (r) and W (r). Expressing
I r rj

64(r,O,t) =H6$ (r)exp(ikO-iwt), where Imw> 0 corresponds to

instability, the linearized cold-fluid-Poisson equations give

the eigenvalue equation for 6 k(r) [Eq. (42)] 20

r r X)'rk 1+F Z$ - 1+E )"

2.2
26 E 1 _ P3_ c+ r

r j w-kw - r v.2
rj 3

2 0 2
where w 2(r) =4Tn (r)e./m, .=sgne., the effective suscepti-

bility X.(r,w) is defined by [Eq. (43)]

2
W .(r)

XY(r,w) = 2
v . (r,w)

J

I
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2and v .(r,w) is defined by [Eq. (47)]
J

v (r,)= (w-%r 2 + 2e CJE (r) - 4ire i eknk(r)

The summations E and E are overall plasma components (b,e,i),
J k

and Eq. (42) is to be solved subject to the boundary condi-

tions 6 $ (r=a) = 0 = 6 $ (r=b). The exact eigenvalue equation

(42) is simplified in Sec. III.B for the special case of rec-

tangular density profiles for the cathode electrons and for

the neutral plasma ions and electrons in the -anode region

(Fig. 2). The resulting eigenvalue equation (48), together

with the definitions in Eqs. (19) - (21) and Eqs. (49) - (54),

have a wide range of applicability and are analyzed numerically

in Sec. VI. That is, in Eqs. (48) - (54), there is no a priori

assumption that the diode aspect ratio is large, that the

density is low, etc.

As an example that is analytically tractable, in Sec. IV

(see also Fig. 5) we simplify the eigenvalue equation (48) in

circumstances where the anode plasma density is low [Eq. (55)],

the cathode electrons are strongly magnetized [Eq. (56)], the diode

aspect ratio is large [Eq. (57)], the perturbation frequency is

low [Eq. (58)], and the anode plasma is in contact with the

cathode electrons [Eq. (59)]. This gives the approximate eigen-

value equation [Eq. (66)]

1 [r (1+X) - +X)

2 2

r (Wpb Wce) 6 (r-r
r W -kwE ( (r-rb)'
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where Xi(r,w) is defined by [Eq. (64)]

0 , a <r< rb

Xi(rw) 
2

2 W 2 rb<r <b.
(W-kW ri) - (ci +2w ci 0E)

2Here, E=w E (rb)=wpb /Wce )rb-a)/rb [Eqs. (60) and (62)],
- 2 = 2 ,^2= 2 -w 2W=47n Z e /m , 4pb=4 be /me, and w=(1/2) {-i+[W +pi i I i p ri ci ci

4 1/2
4w E] } (Eq. (61)]. It is clear from Eq. (66) that the

surface-charge perturbation on the cathode electron layer can

couple to the dielectric response of the plasma ions in the

anode region. Solving Eq. (66) for a large-aspect-ratio

diode with (b-a)/a<<l gives the approximate dispersion

relation (Eq. (75)]

+ 
^2

b~~ ~ (tt)2 o+oi E

AA
b W-EXE

where Ab=rb-a and A =b-rb(Fig. 5)', and Ab' rb is assumed. The

dispersion relation (75) is analyzed in Sec. IV and stability proper-

ties are investigated over a wide range of the dimensionless para-

meters~~ - 2/ A(~/m~ /w '2 "2_meters wci E (Z m ce /)pb )rb Ab) and w pi/QE

(Z n /nb b/b ci E). A strong variant of the ion resonance

12instability is found for a wide range of system parameters.
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Although the assumptions in Sec. IV are somewhat restrictive,

the analysis clearly establishes the existence and qualitative

features of the ion resonance instability and the fact that

the plasma ions in the anode region can strongly couple to the

cathode electrons.

As a second example that is analytically tractable, in

Sec. V we investigate the eigenvalue equation (48) in circum-

stances where the anode plasma is not in contact with the

cathode electrons [Fig. 2 and Eq. (81)]. Assuming high-frequency

perturbations [Eq. (83)], unmagnetized ions [Eqs. (82) and (84)],

and low-density electrons [Eq. (85)], it is found that the

cathode electrons and anode plasma electrons combine to give

the diocotron instability driven by electron velocity shear over

the interval a<r<b. For infinitely massive ions, the resulting

approximate eigenvalue equation (86) is solved exactly to

give the dispersion relation [Eq. (93)]

[1 b 1 [1-(a/rb) 2k

2 - .2 2 2

= +P Il
D p b

-W D_9(r b-a )/r2 rP

r2k, [l-(a/rb) 2

r 2 D b-2 2 2r

which determines the complex oscillation frequency w in terms

of geometric factors, the density ratio nf /'b , and the diocotron
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-2frequency wD=Wpb /2w ce. In Sec. V, the dispersion relation (93)

is used to investigate detailed stability properties over a wide

range of system parameters n /nb, rp/a, rb/a, and harominc

number k. In the unstable region of parameter space, it is found

that the instability growth rate can be substantial (in the

range of 0.1 wD), even within the context of the low-density

assumption made in Sec. V [Eq. (85)1.

Finally, in Sec. VI, we make use of the exact eigenvalue

equation (48) to investigate numerically electrostatic stability

properties for the choice of rectangular density profiles

illustrated in Fig. 2. The anode plasma is assumed to be elec-

trically neutral hydrogen plasma (n^ n ). No a priori assumptione
is made that the cathode electron density (as measured by sb=
2 2 2 2W /Wc) or the anode plasma density (as measured by s = /w )pb ce e pe ce

is small. In the absence of anode plasma (s =0 ), the conven-e
tional diocotron instability driven by the cathode electrons

is recovered. At low cathode electron density this instability

is extremely weak (Imw/wce <10 for sb= 0 .1 and s =0), although

the growth rate does become substantial as s is increased to

larger values. In the presence of anode plasma (se#0), the

numerical analysis in Sec. VIshows that both the anode plasma

ions and the anode plasma electrons can have a large influence

on stability behavior, even at low density. Indeed, the

presence of the anode plasma introduces a new low-frequency mode

(ion resonance instability) in which there is a strong coupling

between the cathode electrons and the anode plasma ions. More-

over, the conventional high-frequency stability properties
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calculated for s =0 are significantly modified by the coupling

between the cathode electrons and the anode plasma electrons. For

example, for the parameters chosen in Fig. 12(b), it is found

that Imw/w ce=3.5x10 for s e=0 and s b=0.2, whereas Imw/w ce=102

for s =0.1 and sb=0. 2 . In Sec. VI, the numerical studies of

detailed stability properties are carried out for a wide range of

system parameters sb'se, diode aspect ratio, etc.



10

II. COLD-FLUID EQUILIBRIUM FOR A CYLINDRICAL DIODE

A. Equilibrium Model and Assumptions

We consider here the steady-state equilibrium properties

(/3t= 0) of a cold, nonneutral plasmalbonfined in the cylin-

drical diode configuration illustrated in Fig. 1. The non-

neutral plasma is generally assumed to consist of three

components: cathode electrons (j = b), positively charged ions

(j= i), and plasma electrons (j= e). The plasma electrons may

overlap spatially with the ions, e.g., for the case of a

neutral plasma in the vicinity of the anode (Fig. 2). As

illustrated in Fig. 1, the cathode is located at r=a and the

anode at r= b, where d =b -a is the anode-cathode spacing.

Moreover, the nonneutral plasma is immersed in a uniform applied

magnetic field

B B 0 .()

For simplicity, the present analysis is based on a nonrela-

tivistic, electrostatic, cold-fluid model for each plasma

component (j= b,e,i). In equilibrium (9/9t= 0), the following

simplifying assumptions are also made:

(a) All equilibrium properties are uniform in the z-

direction (a/az= 0), and there is no equilibrium electric

field parallel to B ' i.e., = (x)-^=0. All equilibrium

properties are assumed to be azimuthally symmetric (D/30= 0)

about the diode axis, e.g., the equilibrium density and

azimuthal flow velocity components satisfy
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o 0
n. ) = n.0(r) ,

JI'J

(2)

(x) = V0 (r)e

where g is a unit vector in the 0-direction, and r=(x2 +y2 )1/2

is the radial distance from the axis of symmetry.

(b) Equilibrium diamagnetic effects are assumed to be

negligibly small in comparison with the applied magnetic field

B .That is, the equilibrium azimuthal current n?(r)e V 0 (r)

generally produces an axial self-magnetic field Bs (r). The
z

present analysis assumes that |Bs(r)<<B0 '

(c) In general, the plasma is electrically nonneutral and

there is a corresponding equilibrium radial electric field

(k) = E0 (r)^ (3)

0 k

where E (r) is determined self-consistently from the steady-r

state Poisson equation

1 a[rE (r)] =47e n 0(r) . (4)

Here, the summation is over j =b,ei, where e. =-e for the
)

cathode electrons (j = b) and plasma electrons (j = e). More-

over e =+Zie for the positive ions, where Z is the degree

of ionization.

(d) Space-charge limited flow with E (r=a) = 0 is assumed.r
Integrating Eq. (4) then gives for E 0(r)

r

0 r r '



12

0 0 0Expressing Er =-_ /3r, where $ (r) is the equilibrium electro-r

static potential, we impose the boundary conditions

$ 0 (r=a) =0

(6)

$0 (r= b) =V ,

where the anode voltage V consistent with Eq. (5) and

0
Er (r= a) = 0 is given by

r r" 

V= (b) = - dr'r'n(r') (7)

a a

(e) Finally, within the context of the present nonrela-

tivistic, cold-fluid model, equilibrium radial force balance

on the j-'th component fluid element can be expressed as

0 2
- =ej E (r) + V .(r)BO (8)r J r cZ Oj 0

corresponding to a balance of centrifugal, electric and

magnetic forces in the region where n.(r) is non-zero.
J

In the subsequent analysis, it is convenient to introduce

the equilibrium angular rotation velocity w .(r) defined by

rj

0 Aand the -xB Z rotation frequency wE(r) defined by

0cE (r) 4rre.c r
( - r B dr'r'n (r'). (10)E~r rB 0  B rJ0 a
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Making use of Eqs. (9) and (10), the equilibrium force balance

equation (8) can be expressed as

W 2 (r) + E. .w (r) - EwcjWE(r) = 0, (11)rj j cjwrj i jE

where

_e~ B0

cj mCc ' =sgne.. (12)

Equation (11) generally supports two solutions for w .,

corresponding to fast (r +.) and slow (w r) rotational equi-rj rj

libria. For present purposes, we consider slow rotational

equilibria satisfying w .(r=a) =0. Therefore, in the regions

0where n.(r) is non-zero, Eq. (11) gives
J

Wr .W r) [W 2 e Eww(r)] 1/2 , = b,e (13)rj rj 2 WceLce ce E

for the cathode and plasma electrons, and

=W 1_w+4 (r) ]1/21 j=i, (14)ori = r)= -2 i i + +4ci E(r l/

for the plasma ions. Here, WE (r) is defined in Eq. (10), and

Wce= eB 0 /mec and wci = ZIeB 0/m c are the cyclotron frequencies.

B. Neutral Anode Plasma

As a first equilibrium example, we consider the case

illustrated in Fig. 2. The cathode electrons (j= b) are

assumed to have the rectangular density profile

nb= const. , a < r < rb
0

nb(r) = (15)

0 , rb <r<b.
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Moreover, there is a neutral plasma in the vicinity of the

anode with ion density profile

0, a< r< rp

n9(r) = (16)

n. = const., rp < r < b.

The electrons are assumed to provide complete charge neutrali-

zation in the region r < r <b with

n0 (r) = Z.n0(r)'. (17)
e i

Making use of Eqs. (15) -(17), Poisson's equation (4) can be

integrated to give

-27rnbe 2 2
r (r -a ), a<r<rb',

E = (18)

r(r -,2T ba 2 2
r (rb -a ), rb<r<b.

Defining e'2 = 47rre2/m , and making use of wE (r) =-cE /rB 0 '

Eqs. (13) and (18) give for the electrons in the cathode

region

2 2 1/2

W (r) = W -Iwce - 2W2b (ta2 /, a<r<rb (19)

On the other hand, from Eqs. (13) and (18), the plasma elec-

trons in the anode region have equilibrium rotation velocity
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2 2 1/2
-+ 2 ^2 r b -a

re ~2 ce ce pb r p

and from Eqs. (14) and (18), w ri (r) is given by

Zrm2r-a 2 1/2

Wr 1 ci + [2 + Zm P2b r2 , r <r<b (21)

for the plasma ions in the anode region. The rotation

velocities w rj(r)(j=b,e,i) are illustrated schematically in

Fig. 2.

It is convenient to introduce (for a< r<-rb)

^ 2

WE 2 b r -2  (22)
E 2ce r

in Eq. (19). For

-2 2 22wb (b-a 
(pb b < l (23)

ce b

it is clear from Eq. (19) that wrb can be approximated by

Wrb (r) = wE (r), a<r<rb' (24)

where wE(r) is defined in Eq. (22). For a large-aspect-ratio

diode with (r2 - a 2)/r << 1, note that Eq. (23) is easily(b- )rb,

satisfied even at moderately high electron densities with

2 22Wp <W Making use of Eq. (23), the angular velocity of

the plasma electrons is given by the approximate expression

2
rb

W r (r) = E ' p < r <b ,(25)
r
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where

2 r2 -a 2

. E E (rb (26)
ce rb

Moreover, Eq. -(21) can be expressed as

r2 r2 1/2
W. (r) = -W+[w+4ciE ] ,.4 rp<r<b. (27)

For strongly magnetized ions with E W ci/4, Eq. (27) reduces

to the ( x g rotation frequency

2

rb
Wri(r) =E ,rp < r< b. (28)

On the other hand, for weakly magnetized ions with $EWci /4,

Eq. (27) reduces to

- /2 rbW.(r) = (wci Q E) -F , r < r <b. (29)

In both cases, for a diode with moderately large aspect ratio,

2 2
(b-a) /a <<l, Eqs. (27) - (29) exhibit only a weak variation

of W (r) with r over the anode plasma region (r <r<b).ri p

Figure 3 shows a plot of Wr versus E /w ci for the caseE c

rp=rb and r=r b* Note from Eq. (26) that E /W is related to

other equilibrium parameters by

m. 2 r2 -a 2

S_ b (30)
ci Zime 2 wce rb

Therefore, the region E /wci>>l in Fig. 3 corresponds to

sufficiently high density of the cathode electrons that the

inequality



17

2 /2 2 Z
pb rb -a Z

2w 2  2 . (31)
ce rb

is satisfied.

C. Ion-Contaminated Cathode Electrons

As a second equilibrium example, we consider the case

illustrated in Fig. 4 where the cathode electrons are partially

neutralized by a positive ion background.2 In particular, it is

assumed that n (r) has the rectangular profile

nb =const. , a <r< rb'

nb(r) = (32)

0 , rb< r<b,

and that the ion density profilen 0 (r) is related to n (r) by

o 0
Zn 0 (r) = f nb(r) , (33)

where f= const. is the fractional charge neutralization. There

is not a second component of electrons in the present equi-

librium example, i.e., ne (r) = 0. Making use of Eqs. (32) and

(33), we determine E (r) from Eq. (5). This gives

-27erb 2 2
(r -a ), a<r<rb'

r (34)
-2__r__ 2

(rb-a ), rb <r<b.
r

Therefore, from Eq. (10), WE (r) is given by
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^ 2 2)

WE(r) = 2wopb (r2_2 (35)
ce r

over the interval a<r<rb. For wE(r)<<ce /4, it follows from

Eq. (13) that the angular rotation velocity of the cathode

electrons can be approximated by

Srb(r) = WE(r), a<r<rb, (36)

where wE(r) is defined in Eq. (35). Finally, defining
2( 2 /2 2 2 22E (r b) pbce) (1-f) (rb-a )/r ,. and making use of

Eqs. (14) and (35), the ion rotation velocity can be

expressed as

2 211/2

r (rb-a )

The rotation velocities in Eqs. (36) and (37) are illustrated

schematically in Fig. 4. In contrast to Eq. (27), where the

ions in the anode region satisfy Wri (r) ~const., we note from

Eq. (37) that wri (r) generally has a strong dependence on r for

the case where the cathode electrons are partially charge

neutralized by the background ions.
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III. ELECTROSTATIC EIGENVALUE EQUATION

A. General Eigenvalue Equation

We now investigate stability properties for electrostatic

perturbations about the general class of cold-fluid equilibrium

profiles described in Sec. II.A. The stability analysis is

based on the nonrelativistic cold-fluid equations of continuity

and momentum transfer together with Poisson's equation for the

perturbed electric field 6E(,t)= V6(l,t). Flute perturba-

tions with a/az= 0 are assumed, and all perturbed quantities

are expressed as

00
6$(r, ,t) = 6i (r)exp(ike -iwt),

where k is the azimuthal harmonic number, and w is the complex

eigenfrequency, with Imu>O corresponding to instability. For

electrostatic perturbations about a cylindrically symmetric

0
equilibrium characterized by density profiles n.(r)(j=b,e,i),

J
radial electric field E (r) [Eq. (5)], and equilibrium rotationr

velocity w rj(r) [Eqs. (11), (13) and (14)], the linearized con-

tinuity and cold-fluid momentum transfer equations are given by 2 0

-i (w-k ) 6nP + - (rn16V. ) + n 6V. =0, (38)
rj J r 3r j jr r j jO

-i(W-kw -.)6V. -(e. .+2w.)6V.k =_ e - 6$k, (39)rj jr j cj rj j0 m. @r

-i(w-kw .)6V.0 + + 1 - (r2w -. ) 6V k =_ - ik6p2  (40)
rj je 1 cj r ar ,rj r m r
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Here, 6n (r), 6Vjr (r) and 6V (r) are the Fourier amplitudesjjr je

for the perturbed density, radial flow velocity, and azimuthal

flow velocity, respectively, and the notation is otherwise

identical to Sec. II.A. Moreover, the perturbed potential

amplitude 6$ (r) is determined self-consistently in terms of

6n (r) from Poisson's equation

r u$ -6$= - 4x6k n , (41)

where the summation is over all plasma components j=b,e,i.

After some straightforward algebra that utilizes Eqs.

(38) - (40) to express 6n in terms of 6$ , Poisson's equation

20
(41) can be expressed as

1 r ( 1+Z-a -L 6$'t -2 1  X 9

(42)

_Z6$ 1 a P cj + 2w )

r w - 9,w 3r 2rj

20 2
where w . (r) = 4rn(r)e./m ., and the effective susceptibility

pJ J J J

X.(r,w) for component j is defined by

2. (r)
X. (r,w) = - (43)

V (r,w)

where

v (r,w) = (w-w )2_ j(C +2w ) W + (r2-2 j cj rj [sjcj r r rj~j(4

For general equilibrium profiles n.(r), the rotation velocities
J

Wrj (r) occurring in Eqs. (42) and (44) are determined self-
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consistently from Eqs. (13) and (14) for plasma components

j=b,e,i. The eigenvalue equation (42) for 6$ must of course

be solved subject to the boundary conditions

4 (r = a) = 0 = (r = b) (45)

at the cathode (r =a) and anode (r= b). Making use of the

equilibrium force balance equation (11) and Poisson's equation

2(4), the expression for v (r,w) in Eq. (44) can be further

simplified. In particular, it can be shown that

EjW + 2w jC W + (r 2w(i+2bi*7j) 1 i c r(46)

2 4ne.
=2 . + 2e wj(r) - enC) j cj E m. k ekr)

j k

where wE (r) is defined in Eq. (10), and the summation
k

extends over all plasma components k= b,e,i. Substituting

Eq. (46) into Eq. (44) then gives

v2 (rw W-W 2. _r[ 4ire.0v:(r,w) = (w-9wr 2 1 +2s .(r) 2 = ekn (r. (47)) rj 1 c) )c)E m. k k

To summarize, Eq. (42) is the electrostatic eigenvalue

equation that determines the eigenfunction 6t (r) and the

complex eigenfrequency w for general equilibrium density

profiles n 0 (r), j=b,e,i. The quantities X.(r,w) and v?(r,w)

are defined in Eqs. (43) and (44), and w E(r) and W ~.(r) are

determined self-consistently from Eqs. (10), (13) and (14).
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B. Eigenvalue Equation for Rectangular Density Profiles

We now simplify the eigenvalue equation (42) for the

perturbations about the equilibrium discussed in Sec. II.B

and illustrated in Fig. 2. The density profiles are assumed

to be rectangular [Eqs. (15) - (17)] and there is a neutral

plasma in the vicinity of the anode. The eigenvalue equation

(42) can be expressed as

J2r + X1 4- + EX. .6$P

(48)

r ar (-j cj + 2w ,

rj

where Xj(r,w) is defined in Eq. (43).

For the electrons in the cathode region (j=b), referring

to Sec. II.B and Fig. 2, the effective susceptibility is

2
!pb., a < r < rb'

V 2
b

Xb (r,w) =(49)

0 r b < r< b,

where vb is defined by [Eq. (47)]

2 2 ~ 2 2 -ww(~
Vb(r,w) = (W - wrb 2 ce - pb - 2wce E (r)

(50)

2 2 2 2 (r2a2
=(W-kw ) 2 [W 2 A2 - _= o trb ce ~ pb "pb 21W r

I
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- 2 "2for a < r < rb. Here, wob = 4nbe /m e, and w rb(r) is defined in

Eq. (19).

For the plasma ions in the anode region (j=i), the effective

susceptibility Xi(r,w) is

0, a <r < rp,

X (r,w) .= (51)

"2

- ,r <r<b2 p

^ 2 " 22 2where W, = 47n.Z e /m., and v. is defined by [Eq. (47)]

2 (r)
v .(r, w) (w-P i) 1 =+2 ci WE(r

(52)
____ 2 2___

W- 2- 2 Z im e ^ 2 rb-a(- ri) ci m. Wpb 2
1r

for rp <r < b. In obtaining Eq. (52) from Eq. (47), we have

made use of charge neutrality no(r)e =0] of the anode

j=1 ,e
plasma [Eq. (17)]. Moreover, ri -(r) is defined in Eq. (21).

Finally, for the plasma electrons in the anode region

(j=e), the effective susceptibility Xe (r,w) is

Xe (r,w) =

0, a < r < rp

2.

-- , r < r<b
2 pe

(53)
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2 ^ 2 2where W = 4Trn e /m e, and v is defined by [Eq. (47)]

2 -w)=(W-)W 2 W 2  2 W (r)
e r re ce ceE Ir)

2 2(54)
H 2 2 2 b-f

ere ce pb (

for r P< r < b. Here w re (r) is defined in Eq. (20) for the

plasma electrons in the anode region.

To summarize, the eigenvalue equation (48), together

with the definitions in Eqs. (19) - (21) and Eqs. '(49) - (54)

constitute the final eigenvalue equation for electrostatic

perturbations about the equilibrium density profiles specified

by Eqs. (15) - (17). In this regard, within the context of the

present nonrelativistic, electrostatic, cold-fluid model, the

eigenvalue equation (48) is exact. That is, there is no

a priori assumption that the diode aspect ratio is large, that

the density is low, etc. Therefore, Eqs. (48) - (54) have a

wide range of applicability.

The detailed stability properties predicted by Eq. (48)

are analyzed numerically in Sec. V for a wide range of equi-

librium parameters. In Sec. IV, we investigate Eq. (48) in the

low-density, low-frequency regime where the solutions are

analytically tractable.
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IV. ION RESONANCE INSTABILITY

DRIVEN BY ANODE PLASMA IONS

A. Simplified Eigenvalue Equation

As an example that is analytically tractable, we consider

the eigenvalue equation (48) for the case of a low-density

anode plasma with

jn << b ,(55)

and strongly magnetized cathode electrons with

2 2
pb ce (56)

The equilibrium configuration, effective susceptibilities,

etc., correspond to the rectangular profiles considered in

Secs. II.B and III.B with the following additional simplifying

assumptions:

(a) The cylindrical diode has large aspect ratio with

(ba2(b a) << . (57)
a

(b) We examine Eq. (48) for low-frequency perturbations

with

(r) |2 2 (58)jwobrI ce

(c) The anode plasma extends to the edge of the cathode

electrons with

r = rb (59)

as illustrated in Fig. 5.
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Consistent with Eqs. (56) and (57), the angular rotation

velocity of the cathode electrons can be approximated by [see

also Eqs. (19) and (24)]

Wrb(r) = E(r)
(60)

.2 2
2 2 2

pb r -a pb r-a
2 ce r2  ce rb

for a <r <rb. In Eq. (60), we have approximated (r +a)/r 2 2/rb

for the case of a large-aspect-ratio diode [Eq. (57)]. Further-

more, from Eqs. (27) and (57), we neglect the (slow) r-variation

of W (r) and approximate

wIr(r)= - =1 +w[2. + 1/2 (61)ori ri 2~~ci + ci +4ci E (1

for rb <r <b, where E WE (rb) is given by

A2/
S 2 (rb_ a. 

(62)

Similarly, the rotation velocity of the electrons in the

cathode region [Eqs. (20) and (25)] is approximated by

W re(r) = 0E for rb < r < b.

We now examine the susceptibility factors occurring on the

left-hand side of Eq. (48). Referring to Eqs. (49) and (50),

and making use of Eqs. (56), (58) and (60), we find v 2 =W2
b ce

Therefore, Xb can be approximated by
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^2
, a< r< rb

Xb(r,w) = ce (63)

0 , rb< r< b.

Not tatlx « snc -2 «w2d
Note that IXbI << 1 since w << oce is assumed. Similarly,

from Eqs. (53) and (54), it can be shown for the electrons

-2 2in the anode region that Xe (r,w) w pe /W ce over the range

rb < r< b. Moreover, IX << 1 by virtue of Eqs. (55) and (56).

Finally, from Eqs. (51), (52), (61) and (62), the ion suscepti-

bility Xi (r,W) can be expressed as

0,a <r <rb'

(64)
Xi(r,w) = 2

_pi, rb<r<b, -
- 2 2

ri ci ci E

where wri and QE are defined in Eqs. (61) and (62).

With regard to the right-hand side of the eigenvalue

equation (48), we retain the perturbed surface-charge contri-

bution from the cathode electrons, which is proportional to

2 ^2pb (r)/r=pbUr -rb). However, we neglect the perturbed

surface-charge contributions from the anode plasma electrons

and ions (j= e,i) by virtue of the low-density assumption in

Eq. (55). Approximating

2 2
pb (-w +2w)- b (65)
2 (r,) ce rb Wvbrw)c
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on the right-hand side of Eq. (48), and IXbI << 1 and IXel<< 1

on the left-hand side of Eq. (48), the eigenvalue equation can

be expressed as

T r 1+Xi (r,) $ - 2 +Xi(rw)$

2 (66)
6$ (Wpb ce 6
r W -WE(r) (r-rb

where Xi(r,w) is defined in Eq. (64).

To summarize, Eq. (66) is an excellent approximation to

the exact eigenvalue equation (48) in circumstances where the

anode plasma density is low [Eq. (55)], the cathode electrons

are strongly magnetized [Eq. (56)], the diode aspect ratio is

large [Eq. (57)], and the perturbation frequency is low [Eq.

(58)]. It is clear from Eq. (66), that the surface-charge

perturbation on the cathode electrons can couple to the di-

electric response of the plasma ions in the anode region.

B. Dispersion Relation and Analytic Results

In this section, we solve the approximate eigenvalue

equation (66) subject to the boundary conditions 6$9 (r= a) = 0=

6$P(r= b). Referring to Fig. 5, in Region I (a <r <rb) , Eq.

(66) reduces to (l/r) (D/ar) (r6P /Dr) - (k2 /r2 ) t = 0, which has

the solution
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6$(r) = a

(67)

a <r< r

Moreover, in Region II (rb < r< b), Eq. (66) again reduces to

(1/r)(3/3r) (r6$ /Yr) - (2/r 2)6 = 0. The solution for

6 P2 (r) in Region II that is continuous with Eq. (67) at r= rb

and vanishes at r =b is given by

2. (r) =A -(

-1 (68)

x~ ~ ,b rk b r < b.

The remaining boundary condition is obtained by integrating

Eq. (66) across the surface at r= rb (Fig. 5). Multiplying

Eq. (66) by r and integrating from rb(l -6) to rb(l +6) with

6 + 0+ gives

^2

rb l- 2 _ 2 +] 2-.
I(W W ri (ci+ 2 wi EJ r=rb

(69)

r 6$(rb) 2
-r 6$= I b) p

b Dr I o- T__wErb) WceL ]r=rb ~ 0

Equation (69) relates the discontinuity in (M6o /Dr) at r= rb

to the perturbed surface-charge density.
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We define

rb - a=Ab

(70)
b - rb p'

where Ab is the width of the cathode electron region and Ap
is the width of the anode plasma region (Fig. 5). Moreover,

from Eqs. (60) and (70),

2
_ p A b

E (rbb )IE w r' (71)

Substituting Eqs. (67) and (68) into Eq. (69) then gives

^ 2 2k
k 1pi1+ (rb/b)

-( - kw-ri 2- + 2w E)] - (rb/b)22

(72)
2Y.

1+ (a/r b) rb E
2- 22. k

- - (a/rb) Ab E

Equation (72) plays the role of a dispersion relation that

determines the complex eigenfrequency w in terms of other system

parameters.

For a large-aspect-ratio diode, we Taylor expand

[1+ (rb/b) 2P]/[l - (r b/b) 2k b/A p and [l+.(a/rb) 2ZJ/[1 - (a/rb) 2t

a/kAb, where

b << (73)b 'a
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is assumed. Equation (72) then reduces to

+ p b _p i
A b -2 2

ri ci ciE

(74)

r A E
b p E
b Ab - E

Taking rb/b ~l in Eq. (74) for a large-aspect-ratio diode gives

the approximate dispersion relation

^2

1 +- b)- I Wpi
- 2 2

ri ci ci E

(75)
A

A -o E

- E

For the special case of no ions ( = 0), Eq. (75) gives

the familiar result

W - E A + A E (76)

corresponding to stable oscillations on the surface of the

electron layer. For w2  0, however, Eq. (75) can give
pi

instability associated with the coupling of these surface

oscillations to the plasma ions in the anode region.

^2 2 A

Making use of the definitions w . =4in.Z.e /m. and Q =
pl 1 1 1E

2
(Wpb /ce b /rb) [Eq. (62)], two of the dimensionless frequencies

occurring in the dispersion relation (75) can be expressed for a

large-aspect-ratio diode as



32

W- Z-m W 2rci ie ce b
.7.7 li-I (77)
E 1 pb b

2 2 2
pi _ iM Z n ce b

b2 m 2 2
E i b opb b

(78)
n rb cii i b ci

nb b nE

Moreover, from Eq. (61), w/E is given by

W ri cr E is ive by21

+ 4 (79)- ^2

nE QE QE QE

The dispersion relation (75) is a cubic equation for the complex

eigenfrequency w, valid for a large-aspect-ratio diode within

the context of the assumptions enumerated at the beginning of

Sec. IV.A Making use of Eq. (75), the marginal stability curves

(Imw= 0) in the parameter space (wi QE' 2i/n ) are plotted in

Fig. 6 for several values of azimuthal harmonic number k and for

A b p =3 [Fig. 6(a)], Ab/A p =1 [Fig. 6(b)] and Ab /Ap =1/3 [Fig.

6(c)]. For specified k, the regions above the curves in Fig. 6

correspond to instability with Imw> 0, whereas the regions below

the curves correspond to stable oscillations with Imw =0. More-

over, for the choice of system parameters Wci E =0.1 and Ab /Ap

1, shown in Fig. 7 are plots of normalized growth rate Imw/P E

[Fig. 7(a)] and real frequency Rew/QE [Fig. 7(b)] versus W /$

obtained from Eq. (75). Several features of the stability

behavior are noteworthy from Figs. 6 and 7.
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(a) First, for weakly magnetized ions with ci /E <<l, it

follows from Fig. 6 that instability can exist over a relatively

-2 '2wide range of ion density as measured by O 2 2

(b) Typically, for specified w C/E' b /AP, and harmonic

number 2, there is a threshold value of ion density above which

instability occurs. For example, for w ./$ = 0.01 and a rela-ci E

tively thick cathode electron layer with Ab/Ap =3, it follows

from Fig. 6(a) that instability occurs When /n2 > 0.06 fory o cus WpiE
the k= 1 mode, and when w 2/2 > 0.5 for the k= 2 mode. On the

pi E
other hand, for wci E=0.01 and A/Ap =1/3, which corresponds

to a relatively thick anode plasma region and thin cathode

electron layer (see Fig. 5), we find from Fig. 6(c) that the

'2 '2threshold for instability occurs at much lower values of ( /, E

than the Ab /Ap =3 case analyzed in Fig. 6(a).

(c) From Eq. (75), it can be shown that the minima in the

^ 2 ^'2marginal stability curves plotted in Fig. 6 occur for p ./0E =0
pi E

and values of ci/ E determined from

2 A_ = ( [ ( /2 + 4 T) 1 2 _+ ( 2 + 2 ) 1 / 2 (8 0 )

b + p 
n = w i M

for 2= 1,2... . When w ci /QE is less than the value of

(WCi E )M for 2 =1, it is evident from Figs. 6(a) -6(c) that

-'2 ^2
the P=1,2,... modes switch on sequentially as o ./QE is

increased. On the other hand, when i E exceeds the valueci/QE

of (Wci / )M for k =1, it follows from Figs. 6(a) -6(c) that

selected higher mode numbers have a lower threshold value of
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" 2 ^"2
W i/QE for instability than the P=1 mode. (See also Fig. 7).

2 ^2
(d) As a general remark, for specified w /0 E and mode

number 2, it is evident from Figs. 6(a) - 6(c) that the range

of Wci E corresponding to instability shifts upward as the thick-

ness of the cathode electron layer is increased relative to the

thickness of the anode plasma region. For example, for 2 /2 = 1

and k =7, it follows from Figs. 6(a) and 6(c) that instability

exists for 0.026 <w ci /QE < 0.65 when Ab /Ap= 1, and for 0.26

<Wci E < when Ab p 3.

(e) In Fig. 7, we plot the normal-ized growth rate Imw/Q2E

[Fig. 7(a)] and real frequency Rew/0 E [Fig. 7(b)] versus

" 2 Q"2(7)frA/ =1 / =0,
W p/QE obtained from Eq. (75) for Ab p ' Wci E

and k = 1,2, ... 5.. Referring to Figs. 6(b) and 7(a), we find

that as ^2 /2 is increased, the unstable modes switch on
pi E

sequentially in the order: k =2, k =3, Z= 1 and k =4, and

k = 5. Moreover, the growth rates for the ion resonance

instability inferred from Fig. 7(a) can be substantial. For

example, for 2=3 and 0.5, it follows from Fig. 7(a)

that Imw =0. 5QE =0.707 W . Moreover, for k= 3 and W2 2 =

0.5, the real oscillation frequency is Rew~-l.420E -2pi

[Fig. 7(b)].

To summarize, in Sec. IV we have investigated analytically

properties of the ion resonance instabilit in circumstances

where the anode plasma density is low [Eq. (55)], the cathode

electrons are strongly magnetized [Eq. (56)], the diode aspect

ratio is large [Eq. (57)], the perturbation frequency is low

[Eq. (58)], and the anode plasma is in contact with the cathode
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electrons [Eq. (59) and Fig. 5]. Although these assumptions

are somewhat restrictive, the analysis clearly establishes

the existence and qualitative features of the ion resonance

instability and the fact that the plasma ions in the anode

region can strongly couple to the cathode electrons.
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V. DIOCOTRON INSTABILITY DRIVEN BY ANODE PLASMA ELECTRONS

As a second example that is analytically tractable, we

consider the eigenvalue equation (48) in circumstances where

the anode plasma is not in contact with the cathode electrons,

i.e.,

r > r (81)
pb

as illustrated in Fig. 2. In this case, the cathode electrons

and the anode plasma electrons can combine to give the dioco-

tron instability driven by electron velocity shear over the

interval a<r<b. To simplify the analysis and to distinguish

this instability from the ion resonance instability discussed

in Sec. IV, we make the following additional assumptions:

(a) The maximum rotation frequency of the cathode

electrons, wr (rb) =QE is much higher than the ion cyclotron

frequency, i.e.,

>> W . . (82)

E ci

(b) Consistent with Eq. (82)., we consider high-frequency

perturbations with

W W rb (rb), (83)

and treat the anode ions as a tenuous, unmagnetized plasma

component satisfying

I >> oci' pi' ri(rp). (84)
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(c) No a priori assumption is made regarding the relative

size of the plasma electron density and the cathode electron

density (fi b/fi . However, for present purposes, it is assumed

that

2 2 2
pb' wpe < ce, (85)

which corresponds to low-density, strongly magnetized electrons.

Making use of Eqs. (82)-(85), it is straightforward to

simplify the eigenvalue equation (48) and the related defini-

tions in Eqs. (49)-(54). In particular, the ions are treated

as infinitely massive (m i+o) and the susceptibilities Xj(r,w) (j=

b,e,i) are approximated by zero on the left-hand side of Eq. (48).

Moreover, only the cathode electrons and the anode electrons

contribute on the right-hand side of Eq. (48). Making use of

Eqs. (82)-(85), the eigenvalue equation (48) can then be

approximated by

r- $--r6-rra ar r0 2
r

(86)
2

k W 6 (r-rb n 6(r-r

r -
ce E b W-U ~r /r

2 2A
Here, wpb 47nbe /m e and Q E =rb(r b WE (rb) is defined by

[Eqs. (22) and (24)]

2 _ 2

E WD rb a(87)

r b

where 2

D 2wpb (88)
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is the effective diocotron frequency in the absence of an

internal conductor (a= 0). It is clear from Eq. (86) that

the two source terms on the right-hand side correspond to

surface-charge perturbations at the surface of the cathode

electron layer (r = rb) and the anode electrons (r = rp ). Also

note in Eq. (86) that no a priori assumption has been made

that the diode aspect ratio is large. That is, Eq. (86) is

valid for arbitrary b/a> 1.

Referring to Fig. 2, the eigenvalue equation (86) reduces

to the vacuum eigenvalue equation r-1 (D/r) (rM6$ /Dr) -

(k2 /r2 )6$ =0 within the cathode electron layer (a<r<rb) , in

the vacuum region (rb<r<rP), and within the anode plasma (r p<r<b).

Therefore, the solution to Eq. (86) that satisfies 6z (r=a)= 0 =

6$ (r=b) is given trivially by

A k- )t , a<-r < rb'

6#A (r) = Br + C/r rb < r < r p (89)

D - , 0 v) rP < r < b.

Two of the boundary conditions required in Eq. (89) are con-

tinuity of 6$ z (r) at r =rb and at r =r , i.e.',

lim 61 (rb- £) = lim 6$ (rb + E),

+ Es-0+ 
(90)

lim 6$ (r - 6) = lim 60 (r -s).
E:4-0 + pC *+ p
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The two remaining boundary conditions are obtained by multi-

plying Eq. (86) by r and integrating across the discontinuities

at r = rb and at r = r . This readily gives

i >r $r rb+ E - r b- F (91)

WD
2,6 (rb) b

E

and

lim r -6 [r 60
+(+ pL J + C r-E

(92)

£ n eWD
= -22. (r )n D2nb W tErb/rp

Substituting Eq. (89) into Eqs. (90)-(92), after some straight-

forward algebra we obtain the dispersion relation

2k
b -(a/rb) 2I

(/)2] [1 + 2/] b 2 r
/ D - D(r - _ a ) /r b

[1 - (b/r) 2k a
r22 D -a )/r - ( )22 / r

+ - ( a/rb) J
2£b 2t1- arb 2k 2

r2,W/WD£,(rb_a 2)/rb2
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Equation (93) can be used to determine the complex oscillation

frequency w over a wide range of system parameters e/nb, r b/a,

r /a and b/a. For the special case where the anode electrons

are in contact with the cathode electrons (rp =rb ) Eq. (93)

supports only stable oscillations with Imw =0. This is expected

since for rp = rb the electron density profile is monotonic

over the entire interval a<r<b (Fig. 2) 21

For rp> r b' the linear dispersion relation in Eq. (93) has

been solved numerically for the complex eigenfrequency w.

Typical numerical results are summarized in Fig. 8 where (a) the

normalized growth rate Imw/wD and (b) the real oscillation fre-

quency Rew/wD obtained from Eq. (93) are plotted versus r p/a for

the choice of parameters b/a =2, rb/a =1.5, density ratio

ft /f b=0.1, and several values of the azimuthal mode number Z.

Several points are noteworthy from Fig. 8. First, the maximum

growth rate can be a substantial fraction of the diocotron

frequency w D, thereby indicating a strong instability. Second,

for each value of k., the range of r p/a corresponding to insta-

bility (Imw> 0) is relatively narrow. Evidently, from Fig. 8(a),

high mode numbers k are excited when the anode plasma boundary

(r p/a) approaches the boundary of the cathode electrons (rb/a=

1.5). In the limit, however, instability ceases (Imw =0) when

rp = rb. Finally, from Fig. 8.(b), for specified value of harmonic

number k., the real frequency of the unstable mode is almost

independent of r p/a.

Shown in Fig. 9 are plots of (a) the marginal stability

boundaries in the parameter space (r p/a, k), and (b) the maximum
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growth rate and the corresponding real oscillation frequency

obtained from Eq. (93) for n /nb = 0 .2 and parameters otherwise

identical to Fig. 8. The cross-hatched region in Fig. 9(a)

corresponds to instability (Imw> 0). The dashed curve in Fig.

9(a) represents the conditions for maximum growth rate. For

the choice of parameters in Fig. 9, only mode numbers satis-

fying Z> 4 exhibit instability. As shown in Fig. 9(b), the

real oscillation frequency is linearly proportional to k,

although the maximum growth rate saturates quickly with

increasing k.

In order to illustrate the dependence of stability behavior

on the density ratio e /ib' in Fig. 10 are plotted (a) the mar-

ginal stability boundaries in the parameter space (r P/a, e I '

and (b) the maximum growth rate and the corresponding real

oscillation frequency obtained from Eq. (93) for k= 5 and para-

meters otherwise identical to Fig. 8. From Fig. 10(b), for this

choice of system parameters, we note that the maximum growth

rate occurs for density ratio f eb ~ 0.4. That is, the insta-

bility growth rate does not continue to increase for nb /fi > 0.4.e b 'xf
Finally, the dependence of stability properties on the

location of the boundary of the cathode electrons (rb/a) is

illustrated in Fig. 11, where (a) the marginal stability

boundaries in the parameter space (r /a, rb/a), and (b) the

maximum growth rate and corresponding real oscillation frequency

are presented for ne /fib = 0. 2 and parameters otherwise identical

to Fig. 10. The dashed curve in Fig. 11(a) corresponds to maxi-

mum growth rate. Evidently, from Fig. 11(b), for b/a =2 and

e/flb= 0.2, the strongest instability occurs for rb/a ~1.5.
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VI. NUMERICAL RESULTS

In this section, we make use of the exact eigenvalue equa-

tion (48) and the related definitions in Eqs. (49)-(54) and

Eqs. (19)-(21) to investigate numerically the stability proper-

ties for electrostatic perturbations about the equilibrium

density profiles illustrated in Fig. 2. No a priori assumption

is made that the anode plasma density or cathode electron density

is low or that the electrons are strongly magnetized. In solving

Eq. (48), we impose the boundary conditions 6$ (r=a)=0=6$k (r=b),

and the anode plasma between r=r and r=b is assumed to be
p

hyrdogen plasma with

m e 1
Z. = 1 and - = - (94)1 m. 1836

Typical numerical results are illustrated in Figs. 12 and

13 for the choice of geometric factors

r brb
= 1.2, R = 1.4 and = 1.6, (95)a a a

corresponding to a moderate aspect ratio diode. The stability

results in Fig. 12 correspond to the high-frequency (electron-driven)

branch (Sec. V), whereas Fig. 13 illustrates stability behavior

for the low-frequency branch (ion resonance instability? 2in which

the anode plasma ions couple strongly to the cathode electrons

(Sec. IV).

Beginning with the high-frequency branch, the normalized real

frequency Rew/wce and the growth rate Imw/wce obtained from Eq. (48)
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are plotted in Fig. 12 versus normalized cathode electron density

A2 2 A 2 2
sb pb /Wce for values of se=pe /Wce ranging from se= 0 (no anode

plasma) to se= 0 .5 (dense anode plasma). The numerical plots are

presented for azimuthal mode numbers k=4 [Fig. 12(a)], P=8

[Fig 12(b)] and Z=12 [Fig. 12(c)].

For no anode plasma (s =0) and low-density cathode electronse
2 2

(sb pb /Wce<l), it is clear from Fig. 12 that the instability

growth rate is extremely small (Imw/w <10~4 for s <0.1). More-ce b
over, for sb<<l and s e=0 , the real oscillation frequency in

Fig. 12 connects smoothly onto the analytic result [see Eq. (93)

with n =0]

^2 2 P
Rew pb P a 2) [1- (r b/b) I ] (/ 2k 196

- 22 2P, -a/b . (6
ce ce r b fl- (a/b) ]

As the cathode electron density (sb) is increased for s =0, it is

clear from Fig. 12 that the growth rate and real frequency in-

crease monotonically, at least for values of W /Wc up to 0.7.

In addition, Rew and Imw increase with mode number k for the

range of k presented in Fig. 12. The s =0 results in Fig. 12 are

consistent with earlier numerical studies of electrostatic

stability properties carried out for rectangular cathode electron

density profile in Ref. 1.

For non-zero anode plasma density (s 30), it is clear from

Fig. 12 that the instability growth rate and real oscillation

frequency are enhanced relative to the s e=0 case. This is due

to a coupling between the plasma electrons and the cathode

electrons. Evidently, this coupling can be particularly strong
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in the low-density regime (Sec. V). For example, for k=8 and

sbwpb Wce=0.2 it follows from Fig. 12(b)- that Imw/w ce=3.5xl0~

2 2 -2 ^ 2 2for se =wpe /W ce=0, whereas Imw/w ce=lxl0 for s e=Wpe / ce=0.1.

This corresponds to a thirty-fold increase in the growth rate

produced by the strong interaction of the anode electrons with

the cathode electrons. As sb and se are increased further, the

growth rate is still enhanced relative to the s =0 case, but note

by the same large factors as in the low-density regime. For

the parameters chosen in Figs. 12(a)-12(c), we also note that

the enhancement in growth rate as s e s increased is more

pronounced at larger t-values, whereas the enhancement in real

oscillation frequency as s e is increased tends to be weaker at

larger i-values.

We now consider Fig. 13 where the numerical results

obtained from Eq. (48) are presented for both the low-frequency

(ion-driven) branch as well as the high-frequency (electron-

driven) branch. In Fig. 13, and throughout the remainder of this

paper (Figs. 14 and 15), the high-frequency and low-frequency

solutions are labeled by the numbers 1 and 2, respectively. Shown

in Fig. 13 are plots of the normalized real frequency Rew/c andce

growth rate Imw/wce for the mode number Z=8 and geometric para-

meters specified by rb/a=l. 2 , r p/a=1.4 and b/a=1.6 [Eq. (95)].

In Fig. 13(a), the real frequency and growth rate are plotted

2 2 fo Oversus sb=w pb /ce for fixed density rat n e /nb=0.5. On the other

hand, in Fig. 13(b), the real frequency and growth rate are

plotted versus density ratio n^ /b for a fixed value of - 2 2e

0.4. Several features of the stability behavior are evident
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from Fig. 13. First, the real oscillation frequency for the

ion-driven branch (curve set #2) is about an order-of-magnitude

lower (or somewhat less) than the real oscillation frequency

for thehigh-frequency branch (curve set #1), at least for the

range of parameters analyzed in Fig. 13. Second, for fixed

density ratio /fi b=0.5 and increasing values of 2 /W2, it is

clear from Fig. 13 (a) that the growth rate for the ion resonance

instability increases monotonically (albeit slowly), whereas the

growth rate for the high-frequency branch exhibits a secondary

maximum for sb=0. 2 5 (see also Fig. 12). On the other hand, for

fixed value of W pb/w=.4 and increasing density ratio n e/nb

we find from Fig. 13(b) that the growth rate for the ion

resonance instability increases rapidly and begins to level off

at Imw~0.0045wce for ^/eb(0 *.3, whereas the growth rate for the

high-frequency branch increases slowly over the entire interval

O<n b <0.5. Another important feature evident from Fig. 13

is that the growth rate of the ion resonance instability can be

substantial. Indeed, the growth rates of the two branches are

comparable over most of the parameter range analyzed in Fig. 13(b).

This is a very important result, since the ions participate as an

active component for the low-frequency branch (curve set #2), and

would be expected to exhibit a strong nonlinear response to the

instability.

A region of strong ion resonance instability is also

illustrated in Fig. 14 where the normalized real frequency Rew/wce

and growth rate Imw/wce are plotted versus sb=Wb /Wce for mode

number k=8, fixed density ratio n'/ eb=0.5, and diode aspect ratio
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increased from a/(b-a)=1.67 (in Figs. 12 and 13) to a/(b-a)=

4.76 (in Fig. 14). For the parameter range analyzed in Fig. 14,

the real frequency of the two branches differ by less than a

factor of two. On the other hand, the growth rate of the ion

resonance instability (curve set #2) is substantially larger

than the growth rate of the high-frequency branch (curve set #1)

over a wide range of cathode electron density (s b<0 .4).

The strong dependence of instability growth rate and real

oscillation frequency on diode aspect ratio was evident from

the analytic studies of the two branches presented in Secs. IV

and V. This is further illustrated in Fig. 15, where the

normalized real frequency Rew/w and growth rate Imw/wce

obtained from Eq. (48) are plotted versus normalized diode

thickness A defined by

A = b-a (97)
a

As in Figs. 12-14, the relative thickness of the cathode electron

layer, the vacuum region, and the anode plasma, each correspond

to one-third of the total cathode-anode spacing. That is, in

Fig. 15,

=+1A, 1 =l+ A. (98)
a 3~A a 1  3

Moreover, k=8 and fixed density ratio eA b=0.5 are assumed in

Fig. 15, with sb /W 2e=0.4 in Fig. 15(a) and sb= 0 .7 in Fig.Sb=pb ce b

15(b). Comparing Figs. 15(a) and 15(b), it is found that the

plots of the real oscillation frequency for both branches and
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the growth rate for the ion resonance instability (curve set

#2) are relatively insensitive to increasing the cathode electron

density from sb W2b /W=0.4 [Fig. 15(a)] to W2 /W2=0.7 [Fig.

15(b)]. On the other hand, there is a significant increase in

the growth rate of the high-frequency branch (curve set #1) as

sb is increased. In addition, for the parameter range analyzed

in Fig. 15, there is an abrupt increase in the growth rate of

the ion resonance instability as A is increased, with Imw begin-

ning to level off at ImWO0.005W for A 0.5. Moreover, it isce

evident from Fig. 15 that the growth rate of the high-frequency

branch exhibits a secondary maximum (for AL0.1) as A is increased.

Although the detailed physical reason for this growth enhance-

ment (secondary maximum) is not understood at the present time,

the reader will recall from the analytic studies in Sec. V

that the instability growth rate of the high-frequency branch

exhibits a very sensitive dependence on the geometric factors

rb/a, r P/a and b/a.
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VII. CONCLUSIONS

In this paper, we have made use of the macroscopic cold-

fluid-Poisson equations to investigate collective instabilities

driven by anode plasma ions and electrons in a nonrelativistic

cylindrical diode with applied magnetic field B Az Following

a review of equilibrium properties (Sec. II), the electro-

static eigenvalue equation is derived (Sec. III) and investi-

gated analytically (Secs. IV and V) and numerically (Sec. VI)

assuming flute perturbations with 3/az=O. Particular emphasis

is placed on the influence of the anode plasma on-stability

behavior assuming uniform cathode electron density (fib)

extending from r=a to r=rb, and uniform anode plasma density

(fie=zifi.) extending from r=rp to r=b. Depending on the cathode

electron density (as measured by sb=W /.c ), the anode plasma

density (as measured by s = /Wc2), the diode aspect ratio,

etc., it is found that there can be a strong coupling of the

anode plasma to the cathode electrons, and a concomitant large

influence on detailed stability behavior. In particular, the

presence of the anode plasma ions introduces a new low-frequency

mode (ion resonance instability) in which there is a strong

coupling of the anode plasma ions to the cathode electrons

(Secs. IV and VI). Moreover, the conventional high-frequency

stability properties calculated for s e=0 are significantly modi-

fied by the coupling between the cathode electrons and the

anode plasma electrons (Secs. V and VI). For example, for b/a=

1.6, rb/a=l. 2 , r p/a=1.4, k=8 and sb= 0 .2 , it is found that
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ImW/ ce= 3.5xl0-4 for se =0, whereas Imw/wce=10-2 for se=0.1,

corresponding to a thirty-fold increase in instability growth

rate [Fig. 12 (b)].
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FIGURE CAPTIONS

Fig. 1 Cylindrical diode configuration with cathode located

at r=a and anode at r=b. Equilibrium flow is in the

0-direction, and the equilibrium space-charge density

n(r)e. produces a radial electric field E0 (r)
j J Jr
[Eq. (5)].

Fig. 2 Plots of equilibrium density n,(r) and angular velocity
J

Wrj (r) versus r obtained from Eqs. (15) - (17) and Eqs.

(19) - (21). Electrons in the cathode region have a

rectangular density profile extending from r=a to r=rb.

The plasma in the anode region is electrically neutral

with Z n (r) = n 0 (r), and extends from r=r to r=b.
e p

Fig. 3 Plot of ori (rb) versus UE' ~ci =(mi/Zime) ( /2oce
2 2

[(rb-a )/r ] obtained from Eq. (27) for rP=r and r=rb.

Fig. 4 Plots of equilibrium density n?(r) and angular velocity
J

W .(r) versus r obtained from Eqs. (32) and (33) andrj
Eqs. (36) and (37). The cathode electrons are partially

charge neutralized by positive ions with Z n (r)=f n (r),

where f=const.=fractional charge neutralization.

Fig. 5 Model density profiles used for electrostatic stability

analysis in Sec. IV. The anode plasma density is low

with ni, n << n ̂b [Eq. (55)], and the anode plasma

extends to the edge of the cathode electrons with rp=rb

[Eq. (59)].
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Fig. 6. Plots of marginal stability curves in the parameter

^ 2 2
space (WciE' piQ E) obtained from Eq. (75) for

several values of harmonic number 2 and (a) Ab /Ap =3,

(b) Ab /Ap =1, and (c) Ab /Ap=1/3. Regions above

the curves are unstable (Imw> 0), and regions below

the curves. correspond to stable oscillations

(ImW = 0).

Fig. 7. Plots of (a) normalized growth rate Imw/E and

(b) normalized real oscillation frequency (Rew-PQE)/QE
.2 -'2

versus W ./Q E obtained from Eq. (75) for Ab p '

Wci E = 0.1, and several values of harmonic number 2.

Fig. 8. Plots of (a) the normalized growth rate Imw/wD, and

(b) real oscillation frequency Rew/wD versus r p/a

obtained from Eq. (93) for b/a =2, rb/a =1.5, e e/n b=0.

and several values of harmonic number Z.

Fig. 9. Plots of (a) the marginal stability boundaries in the

parameter space (r /a, 2), and (b) the maximum growth

rate and corresponding real oscillation frequency

obtained from Eq. (9 3) for f ,b= 0.2 and parameters

otherwise identical to Fig. 8. The dashed curve in

Fig. 9(a) corresponds to maximum growth rate.

Fig. 10. Plots of (a) the marginal stability boundaries in the

parameter space (r p/a, f /fib ), and (b) the maximum

growth rate and corresponding real oscillation

frequency obtained from Eq. (93) for k = 5 and
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parameters otherwise identical to Fig. 8. The dashed

curve in Fig. 10(a) corresponds to maximum growth rate.

Fig. 11 Plots of (a) the marginal stability boundaries in the

parameter space (r p/a, rb a), and (b) the maximum

growth rate and corresponding real oscillation fre-

quency obtained from Eq. (93) for n' e/nb=0.2 and para-

meters otherwise identical to Fig. 10. The dashed

curve in Fig. 11(a) corresponds to maximum growth rate.

Fig. 12 Plots of normalized real frequence Rew/wce and growth

2 2rate Imw/wce versus pb/W ce obtained from Eq. (48) for

the high-frequency branch assuming rb/a=1. 2 , r p/a=1.4

and b/a=l.6. Stability results are presented for

2 2several values of s =W /Wce ranging from s =0 to s =

0.5, and for (a) t=4, (b) k=8, and (c) t=12.

Fig. 13 Plots of normalized real frequency Rew/wce and growth

rate Imw/w obtained from Eq. (48) assuming k=8,ce

r /a=l.2, r /a=1.4 and b/a=l.6. Plots are versus (a)b p
2 /W , for -/b=0.5, and (b) i /b, for w /W =0.4.

Both the high-frequency branch (labeled by 1) and

the low-frequency branch (labeled by 2) are displayed.

Fig. 14 Plots of normalized real frequency Rew/w ce and growth

-'2 2rate Imw/wce versus wpb /Wce obtained from Eq. (48) for

L,=8, e/b=0.5, rb/a=1.07, r /a=1.14 and b/a=1.21.

Both the high-frequency branch (labeled by 1) and the

low-frequency branch (labeled by 2) are displayed.
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Fig. 15 Plots of normalized real frequency Rew/wce and growth

rate Imw/wce versus A=(b-a)/a obtained from Eq. (48)

for k=8, ne/nb=0.5, and (a) w b /Wce=0.4, and (b)

2 2
Wpb /Wce0.7. In Figs. 15(a) and 15(b) it is assumed

that (rb-a)/a=A/3 and (r p-a)/a=2A/3. Both the high-

frequency branch (labeled by 1) and the low-frequency

branch (labeled by 2) are displayed.
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