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Abstract

We have solved the dispersion relation for low frequency (w << w )

electrostatic flutelike interchange modes in a mirror cell with a fraction a

of hot electrons, with bulk line-tying to cold (non-emitting) end walls,

using a slab model and the local approximation. It is found that hot

electron interchange modes are more effectively stabilized by line-tying

than MHD interchange modes, because 1) the line-tying is enhanced by a

factor (w/ve)1/2 when the wave frequency w is greater than the cold electron

collision frequency ve; and 2) hot electron interchange modes can be

completely stabilized, rather than merely having their growth rates reduced,

if there is a spread of hot electron curvature drift velocities.

Predictions of the minimum a needed for instability and of the first

azimuthal mode number m to go unstable, and of the scaling of these

quantities with neutral gas pressure, are in good quantitative agreement

with observations of hot electron interchange instabilities in the Tara

tandem mirror experiment, provided a correction is made for the fact that

the modes in Tara are not flutelike, but should have higher amplitude in the

plug than in the central cell. The theory may also explain observations in

EBT and TMX-U. Increasing the ion temperature T. should have a modest

stabilizing effect. In addition to the hot electron interchange modes,

there are also ion driven interchange modes, which are unstable even in the

absence of hot electrons, but which generally have low growth rates, much
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less than MHD growth rates. Even these modes may be completely stabilized

by FLR and line-tying when T. is sufficiently great.
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I. Introduction

Stability to interchange and trapped particle modes2 is an important

requirement for the success of tandem mirrors. In order to avoid resonant

radial transport,3 it is desirable for a tandem mirror to be completely

axisymmetric, or at least to have the non-axisymmetric anchor cells outside

the plug cells ("outboard anchors") so that most particles in the central

cell see only axisymmetric magnetic fields. But axisymmetric tandem

mirrors necessarily have average bad curvature and should be unstable to

interchange modes, while outboard anchors allow the possibility of unstable

trapped particle modes localized in the .axisymmetric central cell and plugs.

5The problem is exacerbated in tandem mirrors with thermal barriers, which

require hot electrons to be localized in plug cells of high mirror ratio

(and hence of especially bad curvature, if they are axisymmetric). Unstable

interchange modes (or trapped particle modes) driven by these hot electrons

might be expected to occur in the plugs of the Tara tandem mirror, which has

outboard anchors, and indeed such modes have been observed in Tara,6 as well

as in EBT.

Hot electron interchange modes differ from the usual interchange modes

described by magnetohydrodynamics, in that their frequency w can be less

than or comparable to the hot electron curvature drift frequency Wdeh. When

this happens, the hot electrons become decoupled from the mode, which
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becomes a stable negative energy precessional mode. The linear theory of

these modes was first worked out (in the electrostatic limit and for W <<

ci) by Krall,8 who found that they become stable when the fraction a of hot

electron (a nhot/n,) is below a critical value acrit = m2Teh/4m ci 2

where m is the azimuthal mode number. Teh is the hot electron temperature,

Rp is the plasma radius. R is the radius of curvature, wci is the ion

cyclotron frequency, and m. is the ion mass. Note that this critical a is

an increasing function of m; as the fraction of hot electrons rises starting

from a low initial value, we would expect that the modes of lowest m would

go unstable first.

In a typical run of Tara, the plug is heated by ECRH, and a component

of hot electrons (Teh 2 200 keV) is formed in the plug, as well as a

component of cold electrons (Tec = 40eV) in the plug and in the central

cell. The cold electron density is sufficient to stabilize hot electron

interchange modes, and as long as the ECRH is on, no hot electron

interchange modes are observed. When the ECRH is turned off, the hot

electrons density in the plug falls very slowly (with a decay time of about

10' sec) because the hot electrons have a very low collisional loss rate

and cooling rate, but the cold electron density falls more rapidly (with a

decay time on the order of 10-3 sec). When the cold electron density has

dropped to some fraction of its original value, an instability is observed
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in the plug and central cell which has phase velocity comparable to the hot

electron curvature drift velocity, and which causes rapid radial losses of

hot electrons. This instability is presumed to be the hot electron

interchange mode, but in one respect its behavior differs from what we would

expect on the basis of the simple theory outlined above; the f irst mode to

go unstable is not at low m, but at m = 9 to 15.

We have found that this behavior can be explained by line-tying, which

can stabilize the low m modes. The earliest theoretical studies of line-

tying ignored the possible existence of a potential sheath at the end walls

and found that complete stabilization of interchange modes would occur if

there was a sufficient density of cold plasma between the mirror throats and

the end walls. This result was used to explain the stability of several

early mirror experiments which had average bad curvature.10 Perkins and

Post 1 1 pointed out that this theory would only be applicable if the end

walls were hot enough to emit a secondary electron current as great as the

end loss current of electrons from the plasma; if the end walls were cold

(as they would be in devices like Tara, in which the field lines fan out by

a large factor before they reach the end walls), they would develop a sheath

which would inhibit line-tying. In this case, Kunkel and Guillory12 showed

that line-tying could not stabilize interchange modes completely, but only

12 k2T
7mhdliT ec

reduce their growth rates, from ymhd to ___ _ , where is the
mi Wci "loss
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axial loss rate. Although this kind of line-tying was invoked to explain

13the relative stability of some early mirror experiments , in other

experiments line-tying has been ineffective unless the end walls are hot

enough to eliminate the sheath. 1 4 For Tara, this kind of line-tying would

only cause a modest reduction in growth rate for the lowest m modes, and

would not explain why the low m modes are not seen at all. Furthermore,

line-tying through a sheath gives rise to a positive dissipative term in the

dispersion relation, and would actually de-stabilize the negative energy

precessional mode 5 (at high m) for arbitrarily small hot electron fraction.

The preceding analysis applies to line-tying of MHD interchange modes.

There are two reasons why line-tying can be more effective in stabilizaing

hot electron interchange modes, and can thus explain the behavior of Tara.

The first reason (which can also be applicable to MHD interchange modes) is

that the mode frequency w is often greater than the electron collision

frequency ve , a situation which Kunkel and Guillory12 did not consider.

When this happens, the line-tying term is enhanced by a factor (iWI,)1/2

(compared to the case w << ve for the same v loss), because only a thin layer

of electrons near the loss boundary in velocity space is able to respond to

the perturbed potential. For hot electron interchange modes in Tara,

16 -1 4 -110 sec and ve ~ 10 sec , so the line-tying term is enhanced by a factor

of 10. This results in a substantial reduction in growth rate, but still

would not completely stabilize the hot electron interchange mode.
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The second reason is that the hot electrons will not all have the same

curvature drift velocity, but will have a spread of drift velocities, due to

their spread in v and v . The hot electron term in the dispersion

relation will then have an imaginary part (coming from the resonant

denominator w - wd) which acts like a negative dissipative term in the

dispersion relation. If the line-tying is strong enough to bring the growth

rate for the hot electron interchange mode down to the drift frequency for a

typical hot electron, then this negative dissipation will start to become

comparable to the positive dissipation of the line-tying term, and (in

contrast to the situation where all hot electrons have the same drift

velocity), the negative energy wave can become completely stable, rather

than just having its growth rate reduced.

When these two effects (w > Pe and the spread in hot electron drift

velocities) are taken into account, we find that even line-tying to cold end

walls can stabilize the hot electron interchange modes at lower m in Tara,

leaving intermediate values of m (comparable to the observed values m : 9 to

15) as the first modes to go unstable as the hot electron fraction a

increases. In addition to explaining the Tara results, it has been

16
suggested that line-tying may play a stabilizing role in TMX-U . It has

been found that when radially segmented floating end plates are used in TMX-

U, radial transport is somewhat reduced, because the radial electric field

is reduced.17 However, the effect is not very dramatic; the radial
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confinement time is only increased by a factor of 1.5. It is possible that,

when the end plates are grounded, line-tying stabilizes interchange or

trapped particle modes, but that these go unstable (causing increased radial

transport) when the end plates are floated (and line-tying cannot occur

between field lines going to different plates); this de-stabilizing effect

of the floating end plates could almost cancel out the stabilizing effect of

reducing the radial electric field. Line-tying was also used as an

explanation for the stability of Elmo (the predecessor of EBT)18, and it may

explain the fact that the first hot electron interchange mode to go

unstable in EBT (which has parameters somewhat similar to Tara) is at m = 7,

rather than at low m. (However, the instability seen in EBT has w > wci, so

.the results of this paper are not directly applicable to EBT; instead, it

would be necessary to look at line-tying of the high frequency hot electron

interchange mode of Berk. 1)

In order to understand the essential features of line-tying of hot

electron interchange modes, we have used a model (see Fig. 1) consisting of

an isolated axisymmetric mirror cell (such as the Tara plug and central

cell) with grounded conducting end walls at either end, outside the mirror

throats. The mode is assumed to be flute-like through the length of the

plasma, with the perturbed potential falling to zero (its value at the end

walls) in the sheaths near the end walls. The radial and azimuthal

variation in the perturbed potential is treated using the local
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approximation, i.e. WKB is used and k is taken to be entirely in the

azimuthal direction, and the radial density scale length is taken as a

constant R . The modes are assumed to be electrostatic (there is no
p

coupling between shear and compressional.motion of the magnetic field

lines2 0 ) and the VB drift is assumed to be that of the vacuum magnetic

field; these assumptions are justified if ft is low enough.

Of course this model is a great oversimplification of what is happening

in Tara. In particular, the modes in Tara are probably not flute-like, but

have higher amplitude in, the plug (where the drive is), although there is

evidence that the mode amplitude is not zero in the central cell. Also, the

main coniribution to line-tying is probably from the central cell (which has

a greater end loss current than the plug), and Vloss in the central cell is

a steep function of radius (being much greater near the plasma edge), so the

local approximation may not be valid. Finally, (especially at low m) the

mode may extend into the anchor, which is not axisymmetric, and which could

stabilize interchange modes without line-tying. Despite the simplified

nature of our model, the numerical results we have found (e.g. for the first

m to go unstable as the the hot electron fraction a increases) are in good

quantitative agreement with observations in Tara, if some corrections are

made based on a reasonable guess for the axial variation of the mode

amplitude. Although this agreement may be somewhat fortuitous, our results

do demonstrate that line-tying should play an important role in determining

the behavior of interchange instabilities in the Tara plug and in
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experiments with comparable parameters, such as TMX-U and EBT, and they

indicate the need for further calculations using more realistic models.

Such calculations are currently in progress.

In Sec. II, the dispersion relation for interchange modes is derived.

It describes two branches of modes that can be unstable: hot electron driven

modes, and ion driven modes. It is shown that in order for a mode to be

completely stabilized by line-tying, both positive and negative dissipation

are needed; if the dissipative terms only have one sign, then all mode

numbers will be unstable.

In Sec. III, the marginal stability condition (hot electron fraction a

as a function.of mode number m) is found for the hot electron driven modes.

Expressions are given for acrit, the minimum a at which any m is unstable,

and for m crit , the first m to go unstable as a reaches acrit. The effect of

higher ion temperature on these modes is considered, and ion FLR is seen to

have only a modest stabilizing effect, in the sense that higher ion

temperature only causes a modest increase in acrit.

In Sec. IV, the ion-driven mode is examined. For Tara plug parameters,

it is shown to be unstable, but with a very low growth rate, much less than

(mhd,i T ./mR R C) . As T. increases, the growth rate remains low and the

mode may become completely stable (due to ion FLR) when T. is sufficiently
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great (about 20 keV). The ion driven mode may have been seen in Tara, 6 but

if so it saturates at a low level and does not have much effect on

confinement.

Section V presents a summary and conclusions, and discusses some

features which could be added to the model to make it more realistic.



13

II. Dispersion Relation

We use a square well slab model for the mirror cell, with a uniform

magnetic field B0 in the z-direction, rising abruptly to B at the mirror

throats and with gradients in density and magnetic field (and curvature of

field lines) in the x-direction. We consider electrostatic perturbations

with k = 0 (because we are using the local approximation) and kz = 0:

(x. y. z, t) = O(' exp(iky - iwt) (1)

The plasma consists of ions, a cold electron component (which does the line-

tying but does not contribute to the drive) and a hot electron component

(which does not contribute to line-tying). Because these modes are

quasineutral, the dispersion relation is of the form

P(1) + P(1) + p)=0 (2)-ec eh i

where p , P ,and P) are respectively the perturbed charge densities of

cold electrons, hot electrons and ions. Each species is assumed to have a

bimaxwellian distribution



14

exp 2- v /2v2 - v 2/2v2
f (v , ) = \ H 5J S11 / (3)

(20)3/2 v2 v(2i) S v 8v11

If desired, a different distribution function could be expressed as a sum of

several bimaxwellian components of different temperatures and densities

(including negative densities to represent a loss cone, for example) 21so

that the results derived here will be easily generalizable. But we do not

expect the behavior of these modes to be very sensitive to the details of

the distribution function.

The perturbed charge density for each species is

((1) 1)w_ i (1)
S PS - - losss

Here is the usual expression for perturbed charge density in a low

frequency electrostatic flute wave in the local approximation22

2 -
)) ( ps 2 w*s

4V 2 1 - dv fs _ (v, v ) (0 Cv s) s Wds(v Z v
SL os '|

(5)
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where wPS and wcs are the plasma frequency and cyclotron frequency for

species s, o* is the diamagnetic drift frequency

W*s = -sgn(q )cy 2 /R w (6)s sp cs

(Rp being the density gradient scale length nldn/dxK and qs being the

charge of species s), and wds(v 1 1 ) is the drift in the y direction due

to VB and curvature. Since we are assuming VB is given by the vacuum field,

we have

2

W ds (v v k ( +v R c - (7)

where R is the radius of curvature. The quantity JW appearing in Eq.

(4) is the perturbation in the loss current due to the wave. We. consider

only end losses (not radial losses), so

(1)W d 1(1) 1 1(1)(8
losss a losss - loss,s

We have assumed that the hot electrons have no end losses. Although

the equilibrium ion endloss current is equal in magnitude to the equilibrium
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cold electron endloss current, we neglect the ion contribution to the

perturbed end loss current, because the wave frequency w is usually much

greater than the ion bounce frequency. Then the dispersion relation is

4-W + M 4() +1r 4(1)=04 1peh 4 pi ec -- 1 0(9wL s

where the first three terms are the usual dispersion relation for low

frequency hot electron interchange modes, and the last term is the line-

tying term.

To evaluate the p terms, we change the variables in the velocity

space integral in Eq. (5) from v and v to u V2/2v and wds (using the

definition in Eq. (7)). The wds integration can be done analytically, in

terms of the Fried-Conte Z function23 In order to do the u integration, we

define a function

00

G(a,b,c) fdu e- J (bvi) (a - cu )-1/2Z(V:- cu) (10)

0
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where vi is taken to have a positive imaginary part (which corresponds to

taking the correct Landau contour in doing the v integral in Eq. (5)).

Then,

2 2

4-1 *1 Gw2 2_

v 2L ds ds cs 2v

where WdA 2kv /R wds S11 c cs.

For the cold electrons, we have w/-doo andkv /W - 0. Then, usingds sI. Cs

lim G(a.0.c) - a (12)a-o

(which easily follows from Eq. (10)), Eq. (11) yields

2 k2 2
SkPec k) pec (1) (13)

ce" p ce

The second term in Eq. (13), the electron polarization drift (or inertia)

term, is small, and will henceforth be neglected.

The hot electron term takes a particularly simple form if T = 2T I, so

for convenience we will assume this. We can also let kvs 1wcs - 0 for the

hot electrons, i.e. we can neglect hot electron FLR effects. (At least this
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is true for the hot electron temperatures typical of Tara; for EBT, hot

electron FLR effects may start to become important, and perhaps should be

included.) Then, using the identity

G(aO,1) = -Z' (va) (14)

we find

2
4 ()= ,,,Ak

4ep ek ddehe
Rp cewdeh

(15)

For the ions, at least for lower ion temperatures, we can take w/ ds

>>1 and kv /wes << 1. Taking an asymptotic expansion of G for large a and

a power series for small b,

G(a,b,c) - 1 + b2 a
2

- (c + I ) a-2
2

we find

2

S Rw.
p Ci

22 2 2 2w2 2
k P kp k i mhd,i (1)

2 2 2 2
WCi WWci c

(16)

(17)
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In deriving Eq. (17), we have adopted the convention that w < 0 and w,

> 0, so that waves propagating in the electron diamagnetic direction will

have w/k > 0. and waves propagating in the ion diamagnetic direction will

have w/k < 0.

The terms on the right hand side of Eq. (17) are respectively the radial

E(~x B0 convection term, the ion polarization drift (inertia) term, the ion

FLR term, and the ion MHD drive term. If there were no hot electrons, no

line-tying, and no ion FLR, then the cold electron radial convection term

(the first term on the right hand side of Eq. (13), which is the only cold

electron term we have kept) would exact.ly cancel the ion radial convection

term, and the dispersion relation, Eq.. (9). would consist only of the ion

polarization drift and ion drive terms, yielding

2 2
2 2 iv v l/ (18)

2R Rp c

Another limit which is sometimes appropriate for the ions is w/wdi--+oo but

kviI/wci of order unity. Then, using

lim G(a,b,c) = -a-1 exp(-b 2/2) 10 (b2/2) (19)
a -+oo
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we find

-1 2 -.- k 2 2 k2 2

4 =r v 1 - 1 + ) exp Ii 2-) (20)
v2 WW2 2

iL - ( Ci Ci )-

This expression is used when the ion Larmor radius is comparable to or

greater than a wavelength, and w >> Wdi'

To find the perturbed electron endloss current J which is neededloss

for the line-tying term in the dispersion relation, we first calculate the

steady state endloss current associated with the equilibrium potential. If

the plasma were at the same potential as the end wall, then the equilibrium

collisional endloss rate of cold electrons would usually exceed the loss

rate of ions; hence the plasma develops a sufficiently large positive

potential (generally a few times the cold electron temperature) to make the

loss rates equal. (It is assumed that the end walls are cold, so they do

not emit any electrons). To find the equilibrium endloss rate of electrons

for a given potential, one must find the magnitude of the source term S

needed to make

df0  0 8 o. = S(v) + F. __ + _ . ._ =0 (21)
dt av 9v ~ 9v
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(where f0 () is the equilibrium electron distribution function, F is the

collisional drag and D is the collisional velocity diffusion tensor) subject

to the boundary condition f0 (v) = 0 at

e- Bwall- eO = 0 (22)

1 2 1 2Here e - m , v = m v2/Bo, and 0 is the potential drop from the plasma
2 2 e

to the wall. This boundary condition is appropriate if the electron bounce

frequency is much greater than the collision frequency. Equation (21) can

24be solved analytically in certain limits by the method of Pastukhov, or it

can be solved numerically.25 Typically one finds

dv S(v) = vloss e exp (-e/T (23)los ec

where L, irn ec 4 e m -1/2 T 3/2, nA is the Coulomb logarithm, Tec is

the cold electron temperature, and nec is the cold electron density. This

implies

(24)Jloss~ Lenecve exp(-e4/T )
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If the potential 0 is perturbed slightly by a wave at a frequency w that is

low compared to the collision rate v ., then the distribution function f

will have time to adjust itself, at each phase of the wave, to be the

solution to Eq. (21) satisfying the perturbed boundary condition, f (v) = 0

at

- Bwall- e( + (1)exp(iky - iwt)] = 0 (25)

and the perturbed endloss current J can be found by taking theloss

derivative with respect to ! of the equilibrium J loss, given by Eq. (24).

Then

J(1 = ailoss (1) Le2 necYloss 0(1) (26)loss T-
alp Tec

In. Eq. (26), we have neglected a term e (J301 In )p, which isloss ec ec

justified26 if W loss. The line-tying term in the dispersion relation,

Eq. (9). is then 12

. 2
47ri (1) pec Vloss 0(1) (27)
W loss 2

ec

A more rigorous calculation of J(1) would show26 that the right hand sideloss

of Eq. (27) should be multiplied by a factor (1 - w 1ecw).
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If the perturbation in 0 occurs at a frequency w >> Ve. then the

distribution function does not have time to reach a new equilibrium

satisfying Eq. (21) at each phase of the perturbation. Instead, the

perturbation in f e is confined to a narrow region of velocity space near the

loss boundary (given by Eq. (22)). The width of this boundary layer is the

distance in velocity space over which the electrons can diffuse in one wave

period, viz.

v (Tec/m)1/2 (V/W)1/2 (28)

Well within this boundary layer, the collisional loss rate is much greater

-than w-, so Eq. (21) is satisfied subject to the boundary condition

f (v) (v) = 0 (29)e 0- e =

at the perturbed loss boundary, given by Eq. (25). Since the unperturbed

distribution function f0 (v) = 0 at the unperturbed loss boundary, given by

Eq. (22), and since f 0 (v) is a linear function of v close to the loss

boundary, we find

fl) = -e4 exp(iky-iwt) (30)
e ae
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at the unperturbed loss boundary. However, for w >> v, f must fallee

almost to zero at a distance dv away from the loss boundary; see Fig. 2. It

follows that

af f12 f m 1/2e e e(1) 0~v ~ ( 1__. (31)
av dV V, T, ae

near the loss boundary. For w << v , Eq. (30) is also satisfied at the

unperturbed loss boundary, but now f e falls off on a scale (in velocity

space) of the thermal velocity (T5 /m0, so

() M 1/2 af,e )./2 *.(1) ._ (32)
av (Tec a

Since the perturbed endloss current is proportional to af /av at the loss

boundary, it follows from Eqs. (31) and (32) that the perturbed endloss

current should be enhanced by a factor of order (w/v )1/2 when w >> v , i.e.

. 2
41ri )pec loss (1) (33)
W loss 2 ( )1/2

ec e
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A more rigorous calculation of J is done in the Appendix. We
loss

obtain (for w >v L)

41ri (1)=
. .. loss
wL

2
wpec loss

1/2v2e ec

e# 1/4 +RT ec)1/2 -1

ec -

(34)

when B wall<< B (appropriate for Tara). In Eq. (34). R is the mirror ratio

B m/B . We have assumed eo >> T ec which is fairly well satisfied in Tara.

Using Eqs. (9). (13), (15), (17) and (34) we can now write the

dispersion relation for low-frequency electrostatic flute modes in a square

well mirror cell with some hot electrons (T = 2T ) with e >> T with a
l gd d ec

low magnetic field at cold end walls:

W2 + + '2 aWcW [1-W*iI ~mhd~i - __

p deh ( deh

3/2- 1/2-" -1
exp(iri/4)w vlossWciWce e4 1/4 RTec 1/ -

3/ k. v 1+ __ = 0

V7 k2v2  1/2 \Te)L (ec e-

(35)

where a = neh/ (neh+ nec) is the fraction of hot electrons, and

loss= (1-a) vloss is the mean loss rate for all electrons (hot and cold).
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A
Equation (35) is valid for w >> y', W W di' and kv 1w << I If

-L[ ci

kv 1wci > 1, but still w >> ye, and w >> 'di, we use Eq. (20) instead of

Eq. (17) for the ion term, and obtain the dispersion relation

(1-a)wci"

kR
p

2

+

kRp deh

I(k2;±)
10 oc2 2

Z( Wdeh)

exp(ri/4)

v'2| k 2 v2ec

2 2 2 /
Sci2 -k v I+ 2w-i+exp 2

2 2 2kviL ci )

3/2;loss cice e1 RT ec 1/2

1/2 Tec
e

= 0

(36)

If w < W di, we must use the more general expression Eq. (11) for the

ion term, and obtain

(-0e) WciW

kR
p

2 \

2v 2/2 i.l .

2

+

kR pwde,h

3/2 -
exp(7ri/4)w V losswciWce

-2 2 1/2
vec e

2

+ w

k 2 v
Vij

[1(w Iw+I G(Z.. kv
+ iG ,

W di Wdi W ci

e 1 +/4 RT N 1/2- -1
F e I\ec) ~/ -

(37)

where the function G is defined by Eq. (10).

Z" ,

d e h
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If w << Ve (but still w >> vloss), then the line-tying term in Eqs.

(35) - (37) must be replaced by

- 4 -riww 2

Lk 2 W2
pi

8iloss i lloss4" ciwce *ec

k2v
2

ec

(38)

For cold ions and w*ec « W V Le, the dispersion relation is

2 awci"
w --

kR
p

w /
deh deh

+ loss Wci"ce 0

kc

We can see the effect of the spread in hot electron drift velocities by

comparing Eq. (39) to the dispersion relation that we would obtain if we had

used a 6 function distribution for the hot electrons

(40)feh v vi i) = (2rvo) - 5(vii) S(v - v0)

instead of Eq. (3). Then Eq. (5) would yield (for kv0 wce« 1)

2

4 ) = -0(1) Wpeh
eh2

VO2 EW ~~*eh

W-W deh I

(39)
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2k
(1) Opehk

Rp(w-wdeh) 
wce

The dispersion relation (for cold ions and w << me) would then be

lossociwce

2 2
k ec

2
deh) + I'mhd,e

2 2where ymhde a (m/m/ )(v2/2R R).

would have an unstable solution

+
deh

2

If there were no line-tying, Eq. (42)

2 1/2
2 - de hi

Imhd,e- - (43)

2at k < 4/mhd,e cwce 0 , which is the

At k >> 4'lmhdeRcwce/v , Eq. (42) has

hot electron interchange instability.

the stable solutions

' Wdeh (44)

and w ~ 2 = WO /kft~mhd , e/deh ci p 
(5

(41)

= 0 (42)

(45)
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If we include a small line-tying term in Eq. (42), then we find that the

unstable mode at k < 4 7mhd,eRcwce w 2 is not affected much, but the stable

precessional mode given by Eq. (44) acquires a small growth rate

deh + lossWci"ce7mhd (46)

k2v2  2
ec deh

The line-tying, which acts like a positive dissipation, has de-stabilized

the precessional mode, which is a negative energy wave. (The stable mode

given by Eq. (45) is a positive energy wave, and is slightly damped by the

line-tying). If the line tying is made stronger, then the growth rate of

the unstable MHD-like interchange mode at k << 42mhd,e c w / is reduced4~Y~i~,~cce/vo

to

-2 2 2 1/2 -. 2 2 2

2 floss ci ce 1 -losswciwce -mhd,ek vec
L mhd.e

4kAv A 2k2 v losswciwceec ec

but the growth rate never goes to zero, and the modes at higher k remain

unstable. 1 5  This precessional instability at high k is possible because the

wave phase velocity is nearly equal to the drift velocity of the hot

electrons, so that the wave can significantly perturb the hot electrons.

This picture suggests that if the hot electrons had a spread in drift

velocities, the precessional mode would be stabilized, since the wave phase
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velocity could not match all of the drift velocities. The MHD-like

interchange mode, at low k, could also be stabilized if the line-tying term

were to bring the growth rate I below /Ideh

From Eq. (39), appropriate when the electrons have a bimaxwellian

distribution and hence a spread in drift velocities, we find that, with no

line-tying, we recover the MHD-like interchange instability with

2 2 1/2
eh + eh 

(48)
"mhd~e= 2 R R

pc /

at k«y R w /v i atw Wamhd,e c ce eh i.e. a deh" 'mhde

d ce e2, the growth rate is much lower, but the mode remains

unstable, with

3
£ Wi + 2V'ri 7mhde (49)

kR 43
p Wdeh

This unstable mode corresponds to the stable positive energy wave, given by

Eq. (45), that we found for a 5 function hot electron distribution. With a

spread in drift velocities, this mode becomes unstable, because the resonant

interraction with hot electrons drifting at the phase velocity provides a
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negative dissipation (i.e. a negative imaginary term in the dispersion

relation from the imaginary part of Z'(w/Ad '
Odeh

So with either a spread in drift velocities alone (negative

dissipation) or line-tying alone (positive dissipation), there are unstable

modes at all k. In contrast, when we have both line-tying and a spread in

drift velocities, i.e. both positive and negative dissipative terms, then it

is possible to achieve complete stabilization, rather than just a reduction

in growth rate, because the positive dissipation can dominate for the

positive energy wave, and the negative dissipation can dominate for the

negative energy wave.
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III. Marginal Stability Condition

To show explicity that complete stabilization is possible, we now find

the condition for marginal stability. For Tara parameters, the solutions to

the dispersion relation Eq. (35), divide neatly into hot electron driven

2
modes (for which the ion drive term -1mhd, i is negligible) and ion driven

modes (for which the ion inertia term w2 is negligible, and the ion

drive term is important). For the hot electron driven modes, Eq. (36)

(which reduces to Eq. (35) without the mhd,i when kv /w << 1) is always

a good approximation to the dispersion relation. Marginal stability of the

hot electron driven mode will occur when the real and imaginary parts of Eq.

(36) are both satisfied, for real w. (Note, however, that using Eq. (36)

eliminates the ion driven modes, which may still be unstable when the hot

electron driven modes are stable. The ion driven modes will be examined in

Sec. IV). The real part of Eq. (36), for real w, is

ci" w ci,- Re Z +

p "deh wdeh p

22 / ( 2/ 2 2 2 -
ci (*il -k (kv

+ -1 + exp I2 1 i2
22 - 0 2
k j vci "ci -
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/w2loss "ci"ce eO A (RT 1/2

d 2i1/2 T e
22vec 2ve (ele

and the imaginary part of Eq. (36) is

w ciw
-2V~ a

kR
p(del

/2
exp

h wdeh ,

3/2 -

+ w3/losswci ce

2kv 
2  1/2

ec 0

e 1/4 1 + RT 1/2 -1

T e)

Eliminating a-from Eqs. (50) and (51) yields an equation for w

k2
exp(

wci2
I

0 uji2

+ losswci ce

2k2v 2 v1/2ec e

A 3/2
deh

2r1/2

e 
1/4

ex(e) [ 1 deh
Re Z' 0

( deh

= 0 (50)

= 0 (51)

wci +

kR
p

c i 
+ I * i j

2 
.

(52)

+RT 1/ - 3/2
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Equation (52) may be solved for w numerically or (in certain limits)

analytically, and the result put into Eq. (51) to find the value of the hot

electron fraction a which will make the hot electron driven interchange mode

marginally stable, for a given k. For a above this value, the mode will be

unstable, while for a below this value, it will be damped. We will first

give some analytic results for the marginally stable a(k), and show that the

assumptions we made (that the ion drive term is negligible, that w >> v ,

and that w >> wdi) are justified for Tara parameters. We will then show the

results of some numerical calculations of the marginally stable a(k), and

discuss the relation between these results and the observations of hot

electron interchange modes in Tara.

For kv /Wci << 1, Eq. (52) reduces to

2 + V losswciWce eo 1/4 RTec 1/2 -1 3/2

w 2k2v2 1/2 T ecec 'eLj

A3/2
"deh
- exp ( - Re Z(= 0 (53)

2ir1/ 1de -deh ReZ deh

For k sufficiently small, the first two terms of Eq. (53) can be neglected,

and Eq. (53) reduces to
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,13/2
3/2 wdeh =0 (54)
S1./2 W i

2r deh deh wdeh

A
which has the solution w = 0.7 wdeh. Then, from Eq. (51), marginal

stability occurs when

- 1/2 R 1/4 RT 1/2 -1

a~0.23 loss ce eh p e [1 + ec (55)
1/2/2 1/2k1/ 2  Tec L e
e ec c

where we have made use of the definition of Wdeh, following Eq. (11).

In this regime. where line-tying plays a dominant role, the modes at low k

are more easily stabilized (i.e. they require a higher hot electron fraction

a to be unstable) than modes at higher k. Note that in the Tara plug, Teh~

200 keV, R ~ 10 cm, B0 ~ 4kG, Rc ~ 103 cm, and in the central cell (which

dominates the line-tying) Tec ~ 40 eV, and nec ~ 2 x 1011 cm-3 , so Wdeh ~ 2

x 105 sec for m = 1 (i.e. kR = 1) and proportionally higher for higher m,

while V ~ 2 x 10 sec i. Hence we are justified in assuming w >> ve for

all modes in this regime.
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This regime breaks down when k is sufficiently large that either the w2

term or the wIwg|) term in Eq. (53) becomes comparable to the last two

terms. For cold ions, wlwg is always zero, so Eq. (55) stops being valid

when w1/2 A 1/2 - 2v 2 1/2,whe w W dh > Vloss Wci Wce /kec Vie ,or

-2/5 1/5 3/5

k > loss "ci c 11 _ -
v 2/5 v 4/5 1/5 m
eh ec e

Above this value of k, w << wdeh, and Eq. (53) reduces to

(56)

2 V lossWciwce deh3/2

47r1/2 k2 2 1/2
vec Le

e 1/4 R + 1/2 -1

Tec -

and Eq. (51) yields

- 1/2 3/4 3 /2 1/8
0.62 lossk veh p e

1/47 v W 1/2 W1/4 R3/4 T e
e ec ci ce c (

S RT 1/2 -1/2

1 + e__

- (e#p

In this regime, modes at higher k are more easily stabilized than modes

at lower k, because line-tying (which is stronger at low k) no longer

dominates the dispersion relation, and the higher k modes are more weakly

coupled to hot electrons. It follows that the most difficult mode to

(57)

(58)
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stabilize (the first mode to go unstable as a increases) will be at roughly

the intermediate value of k between the two regimes, given by Eq. (56). i.e.

2/5 A 1/ 5  m /5
k cit Q 077 loss Wci1 c(

r 2/5 4/5 1/5 m e
eh ec "e

ep 1/10 - + RTec 1/2 1 -2/5

Tec
ec )

(59)

and this mode will first go unstable at

- 4/5 6/5R m.1/ 5

Vloss veh p ( (e

2/5R 3/5 8/5 m Tec
e c ec

F RT 1/2- -4/5
1/5 ec

) L+ -~)

which is the point where Eq. (58) crosses Eq. (55). This result is only

valid if the ions are cold enough so that Iwijj < w at k = kcrit. This is

true if

T < Teh Rp/R (61)

or T. < 1 keV in Tara. If T. is higher than this, then instead of Eq. (57),

we have

'9crit = 0.30 (60)
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-3/2 1/4 RT8  1--3/2\ 1/2- -1
WlW.iI -loss ci cewdeh 1eO_+ ec=0

41/2 k2 2 1/2 Tec (
ec e

when

- 2/5 4/5 1/5 2/5 2/5

k > "loss W ci W ce Rp veh

V.4/5v 4/5 R1/5 1/5
1 ec c e

Then Eq. (52) yields

k2(v 2 + y 2

2w
C3.

for marginal stability (valid for a << 1).

are more easily stabilized, so again the most

occurs at the boundary between this regime

(55) is valid, i.e.

- 2/5 4/5 1/5f 2/5v 2/5

k it 0.39 loss Wci Wce p eh eo 1/10

r 4/5 v 4/5 R 1/5 1/5 T )
i ec c e

In this regime, higher k modes

difficult mode to stabilize

and the low k regime where Eq.

[ RT e 1/2 -2/5
1 ec) )/

(65)

(62)

(63)

(64).
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and

4/5 2/5 R4 /5 M 2/5 1/5 RT 1/2 -4/5

ri ~.43 gloss i p eh e ec
crit -= 0.4 --

2/5 v 8/5 R2/5 me T ec eo
e ec c

(66)

It may be seen from Eq. (64) that if acrit (given by Eq. (66)) is much less

than 1, then i 1 for k < kcrit , and we were justified in assuming

kv /w << 1 in deriving Eq. (53) from Eq. (52). If 2 W W i for k

Skcrit (given by Eq. (66)), then we were justified in neglecting the ion

drive term in Eq. (54). The condition for this is

M 1/4 7 /4 R
T. << i eh loss p (67)

T R 1/2 1/2
ec c e

In steady state operation, the loss rate vloss must be equal to the

ionization rate no<av>, where n0 is the neutral density and <av> is the

electron ionization cross-section for atomic hydrogen (since most hydrogen

molecules are dissociated before penetrating very far into the plasma)

averaged over the electron distribution. (In fact the hot electron

interchange mode is seen in Tara after the ECRH is turned off, when the

central cell electron density is falling at a rate comparable to n0 <av>, so
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loss may be somewhat greater than n0<v>.) In Tara, n0<av> is typically

3 -1 11 -3
around 10 sec (for n0 = 10 cm , corresponding to a neutral gas

pressure of 3 x 10-6 torr). In this case, Eq. (67) becomes T << 100 keV,

which is satisfied for Tara. At the lowest gas pressures, and at the

highest ion temperatures that are expected when neutral beams are used in

the plug (T. = 10 keV), Eq. (67) may be only marginally satisfied. In this

case, there is no longer a clear cut distinction between hot electron driven

modes and ion driven modes, and it is necessary to solve the full dispersion

relation, Eq. (37), without making any approximations (except for W >> Ve).

Marginal stability curves a(k) have been found numerically from Eqs.

(51) and (52). In all cases we assumed T 2T for the hot electrons and

the ions (so T 2 T + T 5 T ), and usedTh = 200 keV, T 40 eV,

Rp = 10 cm, Rc = 10 m, 0 = 100V, mirror ratio R= 6, and B0 = 4kG. The cold

11 -3
electron density (needed to find v ) was held fixed at 1.5 x 10 cm , and

the loss rate vloss was held fixed at n0 <av> with <av> = 10-8 cm3 sec ,

independent of a, in order to make Eq. (53) independent of a. (Actually nec

and <av> should depend weakly on a, and an iterative process should be used

to solve Eqs. (51) and (52) for a and w). The results are shown in Fig. 3

(for n0 = 3 x 10 cm-3, corresponding to a neutral gas pressure of
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- 5 10 - 3 -6
10 torr) and Fig. 4 (for n0 = 3 x 10 cm3 , corresponding to 10 torr).

The scale on the horizontal axis gives kR , which corresponds to the

azimuthal mode number m in a cylindrical plasma. In each figure, marginal

stability curves are shown for three different ion temperatures, T. = 100

eV, 1 keV and 10 keV. As expected, higher n0 (which means a higher end loss

current, and stronger line-tying) results in greater stability, i.e. in a

higher hot electron fraction a needed for instability. At T = 100 eV, the

critical a (the lowest a at which any k is unstable) is acrit = 12% for n0

11 -3 10 -33 X 10 cm , while acrit = 2% for n 0 = 3 x 10 cm . The first mode to go

11 -3
unstable when a reaches acrit is mcrit = 5 for no o 3 x 10 cm and mcrit

10 -3
= 2 for n0 = 3 x 10 cm . As expected, increased line-tying causes an

increase in mcrit, since it is the low m modes that are most effectively

stabilized by line-tying. These numerical results are comparable to the

approximate analytic results (which neglected factors of order unity) for

the cold ion regime, given by Eqs. (59) and (60) (where kcrit is equivalent

to mcrit/R ). As we also expected, increasing the ion temperature results

in greater stability (higher a crit) and in lower m crit, due to ion FLR

(which is more effective at stabilizing high m). At T = 10 keV, for n0 = 3

11 -3  10 -3
X 10 cm , a crit = 22% and m crit = 1, while for no = 3 x 10 cm , crit
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4% and mcrit = 0.5 (or, since m = 0.5 is not possible, a = 6% at m = 1).

These results are comparable to the estimates given by Eqs. (65) and (66),

which should be valid for T > Teh Rtp A ~ 1 keV. However (as we would

expect from the analytic results), raising T. has a fairly weak stabilizing

1/

effect. From Eq. (66), acrit scales only as T ./ 5 when T >> Teh R /R c, and

from Eq. (60), acrit is independent of T. for T << Teh Rp C. Marginal

stability curves have also been calculated from Eq. (37), which includes the

ion drive term and does not assume w >> wdi. The results for acrit and

mcrit are nearly the same (although there are some differences at m >>

m crit), except for n0 = 3 x 10 1cm-3 at T. = 10 keV, for which we were

unable to find any marginally stable modes. In this case Eq. (67) is not

satisfied, so there is no clean distinction between hot electron driven

modes and ion driven modes.

A direct comparison between these results and the observations of hot

electron interchange modes in Tara is possible only if the modes in Tara are

electrostatic and flutelike, extending throughout the length of the machine.

In this case, the hot electron fraction a should be interpreted as nehV p

(npVp + ncc Vcc), where neh is the hot electron density in the plug, np and

ncc are the total electron densities in the plug and in the central cell,

and V and Vcc are the volumes of the plug and central cell. Since n V <<
p cp p
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"Cc cc, the effective a is approximately neh p/ncc cc. As ncc drops (but

neh remains almost constant) after the ECRH is turned off, the effective a

will increase, and we would expect the instability to appear (at m = mcrit)

when a reaches acrit, i.e. when ncc reaches (neh/acrit) p V cc ). For neh

5 x 1010cm-3 VC /Vp = 20, and acrit = 0.12 (corresponding to n0 = 3 x 10

cm -3, T = 100 eV, the lower curve in Fig. 3), we expect the m = 5 mode to

10 -311 -3go unstable first, at ncc= 2 x 101 0cm3 . In fact, for n0 = 3 x 10 cm

T. = 100 eV, the instability typically has m ~ 9 to 15, in fair agreement

with the predicted mcrit = 5, but it first appears at ncc~ 2.5 x 10 cm-3

about 10 times higher than our model predicts. This discrepancy is most

likely due to the modes in Tara not being very flutelike. Although a

detailed calculation of the axial mode structure is still in progress and

will be reported in a future paper, we note that the modes will be flutelike

if there are enough electrons passing between the center cell and the plug.

In particular,the fraction of passing electrons in the central cell,

n pass/n cc, must satisfy

pass Lp/nccLcc >> k2Tec i ci2 (68)

and

npass L p/nccLcc v vloss(wve)./2 (69)
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Equation (68) is the usual condition for trapped particle modes to be

flutelike2 (and hence not to have MHD-like growth rates) ; Eq. (69) is an

analogous condition that must also be satisfied when line-tying (with w >>

V e ) is included in the dispersion relation for trapped particle modes. In

Tara, n passL /nccLcc is about 2 x 10 For m = 10 and w = 2rx 106

sec' (a typical mode number and frequency observed in Tara), and vloss = 3

-1 11 -3 2 2x 103 sec (appropriate for n0 = 3 x 10 cm ), we find k Tecm iWci

10-and loss /(WV/e)1/ 2 x 10-2 . Since Eq. (68) and (69) fail to be

satisfied by a factor of 5 or 10, we expect the modes to be localized in the

plug, but to still have a substantial amplitude in the central cell, perhaps

10% or 20% of their amplitude in the plug. (Probes in the central cell of

Tara see RF bursts at the same time as the bursts are seen in the plug, so

there is evidence that the mode amplitude is not zero in the central cell,

but it has not yet been possible to measure the relative amplitude in the

central cell and plug. There is also evidence6 that there is some non-zero

mode amplitude in the anchor, but less than in the plug, since turning on

the anchor reduces the central cell electron density needed for stability.)

The line-tying term will be reduced by OW /0 (1), where (1 is the average
p

perturbed potential seen by electrons whose turning points are near the end

walls, and O is the perturbed potential in the plug. Furthermore, the
p

cold electrons in the central cell, where the mode amplitude is lower, will
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not be as effective at stabilizing the mode as they would be if the mode

were flutelike, so the effective a will be greater than neh V p/ n c cc' So

p1 ccc
it is not surprising that the instability occurs when ncc ~ 2.5 x 10 cm 3

about 10 times higher than our model would predict if the modes were

flutelike.

A more direct comparison may be made between our model and the results

27of a single cell mirror experiment by Brown et.al. , who observed hot

electron interchange modes that presumably were flute-like. In that

experiment, hot electrons were produced by short pulse ECR heating of a

lithium plasma (created by contact ionization) in a background of a neutral

noble. gas, at a magnetic field of 3kG. Typical hot electron parameters

after heating were neh = 1012 cm- 3 T = 10 keV, and Rp = 0.5 cm. The

magnetic mirrors were 15 cm apart in a 25 cm r.f. cavity which terminated

the plasma.- A mirror ratio R = 1.5 created an unfavorable curvature of

R c= 50 cm. The hot electrons drove an unstable interchange mode which

caused a sudden drop in plasma density a few growth periods after the ECRH

pulse; while the mode was growing, background neutrals were ionized,

producing a substantial cold electron population with Tec ~ 10eV. The mode

was stabilized, and the density stopped falling, when the hot electron

fraction a fell to a certain level. In a typical run, using krypton at

5 x 10-5 torr as the background gas, the loss rate vloss was measured to be
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9 x 10 3sec-I after the plasma stabilized, and a was found to be 0.17. There

is some evidence that most of the lithium ions were lost in the dump of

plasma associated with the instability, and that when stability was reached,

most of the ions were krypton. But there may also have been some lithium

ions present, and some unknown fraction of krypton ions that were doubly

ionized. If there are several ion species present with different mass m.

and charge qi, then mI/qi should be replaced by <m /qi> in the dispersion

relations, Eqs. (35) - (37), and in the expressions for the marginally

stable a and kcrit* If the composition is 50% Kr', 25% Li+, and 25% Kr++

then <mI /q> ~ 60 m./e. where m. is the mass of a proton. Using this figure

to find wci and mi/me, and using Eq. (23) to find ve for the cold electrons

at nec = 5 x 1012cm-3 , and using ei/Tec ~ v,/Vloss) 6, we find from Eq.

(59) that kcrit R ~ 4 x 10- 2 . Since the smallest possible k (the m = 1

-i
mode) has k ~ RP >> k crit we must use Eq. (58) to find the a for marginal

stability, and we obtain a = 0.30, which is within a factor of 2 of the

observed value, a = 0.17. For a pure Li+ plasma, we would obtain a = 0.10.

19
The theory of Berk , which uses a monoenergetic hot electron distribution

and ignores line-tying, and which Brown et.al. used to explain their

results, gives a = 4 for the same mixture of ion species, (taking Teh I 0

and T ehL= 10 keV) and a = 0.5 even for pure Li+, in much worse agreement
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with the experiment. At higher gas pressures, up to 2 x 10- 4torr, the

measured Y increases, so we would expect from Eq. (58) that a would

increase, but the experimentally observed a remains nearly the same.

However, there is reason to believe that some anomalous loss process, other

than classical end losses, may be operating at these higher pressures, and

the anomalous loss rate could have a different dependence on the potential P

than classical end losses, so our line-tying model would not be applicable.

The results using gases other than krypton seem not to scale with mi as one

would expect from Eq. (58), but the marginally stable a was measured by a

different, more indirect method in these cases, and the interpretation of

these results is uncertain. This indirect method was also used to measure

the dependence of the marginally stable a on Teh, and it was stated in Brown

27 1.7et.al. that a goes as Teh , while Eq. (58) would predict that a would go

as T / Because of the indirect method used, and the spread in data

points, a could go as Teh3/4 within the range of uncertainty of the

experiment. 28
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IV. Ion Driven Modes

In addition to the hot electron driven interchange modes discussed in

Sec. II, the dispersion relation Eq. (37) also describes ion driven

interchange modes. (Equation (36), which was the basis for the results

given in Sec. III, does not include ion driven modes, because it does not

A
have an ion drive term). If W >> Wdi, then Eq. (35) may be used. Because w

<< Wdeh for these modes, the negative dissipation from the hot electrons

will always be negligible compared to the positive dissipation from the

line-tying, and W if w > cdi) the ion driven modes will always be unstable.

If w < Wdi, (in which case Eq. (37) must be used), then the ion term will

have a resonant part which acts like a negative dissipation, and the ion

driven modes may be stable; this can be true for all k only if T. is rather

high (tens of keV, for Tara parameters). Both Eq. (35) and Eq. (37) assume

W >> V ; if this is not true, Eq. (38) must be substituted for the line-

tying term in Eq. (35) or Eq. (37). For Tara parameters we find w >> Ye for

the ion driven modes, except for the lowest mode numbers m at low T. (less

than a few hundred eV).

Using Eq. (35) with w << Wdeh, the dispersion relation is
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2 +)ci + 2W + - +mhd, ikR
p

3/2 -1/2- -1
exp(ri/4) w V/lossciucee 1/4 RTec)+ eo+ _._I + 0 (70)

1/2 k 2 V 2 V 1/2 Tc eO
ec e

At low -loss and low ion temperature

4/3 2/3 2/3 - -4/3Ti < v* Tec7mhd,e 
(loss

or T < 100 eV for Tara parameters, the line-tying term in Eq. (70) is

always small. Then we find that at kv /wci = a 1 the ion FLR term wlwI~

and the hot electron term a w ci/kR p cancel, and w = iymhd,i (This result

assumes a << 1, otherwise kv 1w > 1 and Eq. (70) will not be valid).

This MHD growth rate only occurs over a narrow range of k, viz. jkvi /Wci -

R1/2 ( /Rc)1/2 Well outside this range of k, the mode is nearly

stable, with a small growth rate due to the line-tying term
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2 ci
w mhd i (

3 - W 4 Tc/2 -- 1
-1 + Imhd,ivloss cioce e +/4 RTe

v 2 v 1/2 Tec eo
ec e

a ci -5/2

kR
p

(72)

At higher ion temperature, the line-tying term is greater than the ion

inertia term (the w2 in Eq. (70)), and is important when kv /wci ~ a 1/2

(when the ion FLR and hot electron terms cancel), but is still small

compared to the ion FLR and hot electrons terms when they do not cancel. In

this case the maximum growth rate is -

2/3 1/3 4/3 e 2/ e, -1/6 + RT 1/2 2/3

yma ec e 1 + (T 2/

R2/3 2/3 2/3 Tec
p c loss c

<< "mhd.

(73)

and occurs in a narrow range around kv W = 1/2 iz.

jkv /1w ci -1/2 i

c max

(74)
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but well outside this range of k the growth rate is much smaller, given by

Eq. (72), except at very low k, viz. k < v 2 o w R 2 vm /R v4 vc a3 m 2
hii lossci p c ece

where

expri3)-y4/3 1/3k4/3v 4/3emhdi Me ec

2/3 2 / 3  2/3 (e1/Te)/6Vloss Wci 1Wce (eT)

+1 TRTc )1/2 
2/3

(eO

(If this w is less than ve, then Eq. (75) must be modified). At still

higher ion temperatures,

T 27/3 2/3 v 2/3 2/3 M /3 .
T. ec e ec C.*

4/3 4/3 ( 1/3 mR Vloss (eO/T I m

RT 1/2 4/3

ec

or T. > 1 keV for Tara parameters, the line-tying term is important over a

broad range of k, up to

R2/7 .. 2/7

k p ci loss

max R1/7 v4 /7  v 4/7
c i e ec

2/7 1/2 2/7

e Te

(77)

(75)

(76)
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In this regime, Eq. (75) is valid for k << km, Eq. (72) is valid (with

W*i>> aWci/kR p) for wci i >> k >> km, and the maximum growth rate

v 4 V / v 4/7 m 2/7 1/14 RT 1/2 2/7
je ec e eo 1 + ec

2 R6/7- 2/7 mi T eO mhd,i
Rp Rc Yloss e

(78)

occurs at k ~ k. (For kv. 1w .> 1, Eq. (72) shows w < wdi, and Eq. (70)max ij. ci i

is not valid). The hot electron term is always negligible.

All of the results following from Eq. (70) are only valid if w >> wdi'

and kv 1wci << 1. These assumptions are both violated, for the fastest

growing modes, if the ion temperature is very high, viz.

3T R 2/3 v 2/3 m \1/3 1e -1/3 1 RT 1/2 4/3
T. ec c e ec 1 e 1  + (79)

R 4/3 4/3 m T ec eP
p loss

or T. > 20 keV for Tara parameters. In this case we must use Eq. (37) for

the dispersion relation, but we may neglect the hot electron term.
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The growth rate and real frequency of the ion driven mode as a function

of k have been found numerically for various values of T , a, and n0 (where

we set ;loss = no<av>, and set <av> = 108 cm3 sec ). Figure 5 shows the

case T 100 eV, n0 = 3 x 1010 cm 3  a = 0.1. This case falls into the low

T. regime defined by Eq. (71). The maximum growth rate is Ymhd.i, but

outside of a narrow range of m (= kR ), from 9 to 15, the growth rate is

very small. Figure 6 shows the case T. = 100 eV, n = 3 x 1011 cm , a =

0.1. where the maximum growth rate should be given by Eq. (73). Here -ymax <

'hd,i' and again the modes have growth rates comparable to -y only over a

limited range- of m, from 8 to 17. Figure 7 shows the case T = 5 keV,n 0

11 -3
3 x 10 cm , a = 0.1, where the maximum growth rate should be given by Eq.

(78). Here the instability occurs over a broad range of m, from 1 to 3, but

the growth rate is much less than 7mhdi. In all of these cases we might

expect the ion driven modes to saturate nonlinearly at a low level, and not

to be harmful to confinement, because they have -f << 1mhdi, or because the

instability is worst at high m. This is consistent with the fact that these

modes do not seem to affect confinement in Tara, although the m = 1 mode may

have observed at a low amplitude.6 However, the modes are linearly

unstable, so it is possible that they will adversely affect confinement in

some regime.
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Finally, Fig. 8 shows the case T = 20 keV, n0 = 3 x 10 cm 3 , C =

0.1. In this case, w < wdi for all modes numbers; the m = 1 mode is

marginally stable, while all modes with m > 1 are damped. Thus we expect

the ion driven mode to be completely stable when T. > 20 keV, for n0 = 3 x

11 -3
10 cm . From the stability analysis of the hot electron driven mode

described in Sec. III, we would also expect the hot electron driven mode to

11 -3be stable for all m, at T = 20 keV and n0 = 3 x 10 cm , if a < 0.3

(compare Fig. 3). However, the marginal stability curves given in Figs. 3

and 4 are based on a dispersion relation, Eq. (36), which neglects the ion

drive term, and that approximation is starting to break down when T = 20

11 -3
keV at n0 = 3 x 10 cm . Preliminary calculations of the hot electron

driven mode using Eq. (37), which includes the ion drive, suggest that acrit

for the hot electron driven mode is not much affected by the ion drive term

11 -3
when T = 20 keV and n0 = 3 x 10 cm , but that this mode can be unstable

(for sufficiently high m) even when a = 0, if T. is somewhat greater, or n0

is somewhat smaller. (In this regime, the "hot electron driven mode" is

really driven by the ions). Thus, if n0 = 3 x 10 1 cm 3 and a < 0.3, there

appears to be a range of T (perhaps 20 keV to 50 keV) where all interchange

modes are stable, but this range of stability vanishes if n0 is lower (say

11 -3
n< 10 cm ) or a is higher. This conclusion is somewhat uncertain
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because of the preliminary nature of our numerical analysis of the

dispersion relation (there may be unstable solutions that we have

overlooked), and also because the ion Larmor radius is only about a factor

of 3 smaller than the plasma radius at T. = 20 keV, so the local

approximation, on which the dispersion relation is based, may not be valid.
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V. Summary and Conclusions

A dispersion relation has been found for low frequency interchange

modes (w << wci) in a plasma with hot electrons (which can have curvature

drift frequency greater than the wave frequency w) and including the effects

of bulk line-tying to cold (non-emitting) conducting end walls, using a slab

model and the local approximation. We have found that hot electron

interchange modes are more easily stabilized than MHD interchange modes for

two reasons: 1) if w is much greater than the electron collision frequency

Ve,, which is often true with hot electron interchange modes, the line-tying

is enhanced by a factor of about (w/Ve )1/2 .'because only a thin layer of

cold electrons near the loss boundary, of width v ~ .(T eh e 1/2 e 1/2

in velocity space, can respond to the wave; 2) if the hot electrons have a

spread of drift velocities, then those electrons whose drift velocity

Wd (v, v ) is resonant with the wave (w = wd) can provide a negative

dissipation, which, together with the positive dissipative effect* of line-

tying to a cold end wall, can completely stabilize hot electron interchange

modes. This result is in contrast to MHD interchange modes, which have w >>

Wd, and can have their growth rates reduced by line-tying, but cannot be

completely stabilized.
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The fraction a of hot electrons needed for marginal stability has been

found as a function of azimuthal mode number m (defined as kR in the slab

model), for a range of ion temperatures T. and neutral densities n0 relevant

to the Tara tandem mirror. (The neutral density enters because the electron

end loss rate, which affects the line-tying, is assumed to be equal to the

ionization rate n0 <av>.) We find that the a needed for marginal stability

reaches a minimum (called acrit ) at an intermediate value of m (called

m crit), because lower m modes are more effectively stabilized by line-tying,

and higher m are more decoupled from the hot electrons (as well as being

stabilized by ion FLR, if T. > 1 keV). For T = 100 eV and n0 = 3 x 101

cm-3 (corresponding to 10-5 torr of gas pressure), which are typical of Tara

operation without neutral beams, and using other parameters appropriate to

Tara, we find acrit 0.12 and mcrit = 5. These results are in fairly good

agreement with the observed fraction of hot electrons at the onset of

instability in the Tara plug, and the observed values of m at which the

instability occurs, provided a reasonable estimate is made of the relative

mode amplitude in the central cell and plug. (Our model assumes the mode is

flute-like, but the conditions for the mode to be flute-like are not

satisfied in Tara, and we estimate that the mode amplitude is 5 or 10 times

higher in the plug than in the central cell). At T. = 10 keV, appropriate

for the Tara plug with neutral beams, mcrit is somewhat lower (because ion

FLR stabilizes the higher m modes), and acrit is somewhat higher, but not
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very much higher; ion FLR has only a weak stabilizing effect. At lower

10 -3
neutral density, n0 = 3 x 10 cm , line-tying is of course weaker, and

both a crit and mcrit are lower (because line-tying preferentially stabilizes

low m modes). This is also consistent with obervations on Tara6 , which

suggest that the hot electron interchange modes have lower m when the

neutral density is lower.

At the very least, these results show qualitatively that line-tying

should be important in Tara (as well as in TMX-U and EBT, which have

somewhat comparable parameters), and indicate the need for more

sophisticated models which can be compared quantitatively with experiments.

In EBT, the outer field lines can be described as a single cell mirror 'with

end walls at the mirror throats, so the assumption that the modes are

flutelike should be valid. However, the ion term should be generalized to W

> Wci (which is simple to do for cold ions), and the line-tying term should

be derived for Bwall = B..., instead of B wall<< B as we have assumed. Hot

electron interchange modes in- EBT are observed7 at m ~ 7, and the lower m

modes may well be stabilized by line-tying. For Tara, the most important

change to be made in the model is to allow the mode to have a different

amplitude in each cell (central cell, plug, anchor, fan) so that the modes

will be hot electron trapped particle modes rather than interchange modes.

Work on this model is in progress. In the central cell of Tara, the neutral

density is much greater on the outer field lines than it is on axis, so a
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radial normal mode analysis may be necessary, rather than making use of the

local approximation. At the higher ion temperatures expected when neutral

beams are used, R in the plug should be significant, and electromagnetic

effect (coupling between shear and compressional motion of field lines,

bending of field lines) could be important; these should be included in the

model. When w >> v , nonlinear effects can be important if the perturbed

potential 0 is greater than the width of the boundary layer, which is

(Ve/w)/20 10V in Tara. If 0 is much less than 0, an analytic

treatment of the nonlinear behavior may be feasible. The modes observed in

Tara have amplitudes in this range, so it would be of interest to see

whether such an analytic nonlinear model would predict a saturation

amplitude in agreement with the observations.

Our theory has also been compared to the results of Brown et.al. 27, who

measured the hot electron fraction a needed for marginal stability in a

single cell mirror experiment. Their results were in good agreement with

our theory (within a factor of 2). at low neutral gas densities, where we

believe that classical end losses were dominant. At higher densities, where

the agreement was not so good (off by a factor of 3 or 4). there was reason

to believe that losses were dominated by an anomalous -process, not included

in our line-tying model.
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In addition to the hot electron driven interchange modes, we have also

found ion driven interchange modes which are unstable even if there are no

hot electrons. With low ion tempreature and weak line-tying, these modes

can have MHD-like growth rates, but (if there are at least a few percent hot

electrons) only over a narrow range of high azimuthal mode numbers m; at

lower m the growth rates are much lower. With higher ion temperature and

stronger line-tying, the growth rate is a broader function of m, but the

maximum growth rate is well below the MHD growth rate. In either case,

there is reason to hope that these modes will saturate at a low level, and

not do much harm to confinement. When the line-tying is strong enough

(neutral density n0 > 10 1 cm 3 for Tara parameters) and the hot electron

fraction is not too large (a < 0.3 for Tara), there may be a range of ion

temperatures (perhaps 20 keV to 50 keV) where both.the ion driven mode and

the hot electron driven mode are stable at all mode numbers m.
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Appendix A - Derivation of Perturbed Particle Loss Rates

We analyze here the line-tying term in the regime w >> ve. The

collision operator for electrons near the loss boundary is

C(f) a a f + 1+ I a (i - 4 ) af
e 2 -- - 4 

2 ax 2x ax 3 calp

where f(x, y) is the cold electron distribution function,

(Al)

v

v 
0

A v

2T e 1/2
v0 =--

m,

and ve was defined after Eq. (23). We consider an equilibrium magnetic and

potential profile in which the wall is located in a fan region where the

magnetic field Bwall is small compared to the mirror cell field B0 (see Fig.

(1)). We denote the potential in the mirror cell by 0, the potential at the

mirror throat by "th' and set the potential to be zero at the wall.
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The (x, A) coordinate system is related to the (e, A) coordinate system

as follows

1 = mv2 + O=
2

1

2

2m 2
1=1

B 2

I MV 02 2 + qO
2

2MV 0 a A2

B

We assume that the density is negligible except in the central region and

therefore the collision operator acts only in this region. We therefore

specify that the (x, A) coordinate system refers to the velocity and pitch

angle of particles while in the central region.

1/2 /2 1/2

S2)\mv0/

A
2pB 0 1/2

2mV0 )

The loss cone boundary in (x,/) coordinates is shown in Fig. (9). where

for convenience we define
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2 eth
x0

Tc

ec

Particles in region (a) pass through the mirror cell into the fan while

particles in region (b) are trapped in the mirror cell. We assume that the

density is higher in the mirror cell than in the fan and that all collisions

occur in the mirror cell. The loss boundary of the passing particles is the

line x = 0, assuming B wall/ B0 << 1. The loss boundary of the central cell

trapped electrons is

2
A2 R-1 XO A 2
A= -. + ... A * (x) (A2)

B. 2R Rx2

A
for x > x0

The equilibrium loss rate of electrons through the loss boundary is

d fd' f dt d3v C (A3)- -n = C - 0 ) W
at B B 3v

0

where f0 is the equilibrium distribution function. In our model this

reduces to
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00

an = 4
at 0

1

dx x2  dp C(f 0
0

1 af

- f d/A
2x0  A X

A*

x
A

0
+ 4l rv 0 dx D + DA af0I A

XO

2

2

DA=L

xD =

2

1

(1...

R > 1, x ~ A
x-,- > x

D ~
2R

2
110
A4

xO

A2

2
XO

where

(A4)

A

For

(A5)
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and thus D << DA.
x A

We now consider the perturbation of the particle loss rate due to the

fluctuating potential 0. The perturbed distribution function f can be

written

q + h (A7)

where q = - e is the electron charge. In the high bounce frequency limit h

is constant along a field line, h = h Cey) and satisfies

(9f 0 f0
(wd) h (w - wf) q - + iC(q - + h). (A8)

ae (96

where e = mV2 + qO and the overbar signifies a bounce average. In the
2

bulk of the distribution function the collision operator can be ignored

giving-

(*) - af 0h = h = . . .q -. (A9)
w -od96
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In the boundary layer we assume that the quantity h0 and the adiabatic

response qO af0 /Oe vary slowly. We therefore evaluate them at the loss

boundary which in (e,A) coordinates corresponds to the line e = 0 for

passing particles. We note that the term

A _0 kc 0(A
W, __ = - _ __ (A10)

ae qBO ar

vanishes at e = 0 since f0 vanishes at e = 0 for all r. We further make the

assumption that the curvature and grad B drifts are small compared to w (or

to the E x B drift frequency wE). Finally, we retain only second derivative

terms in the collision operator since we assume the perturbed distribution

varies rapidly,

C((f) = + (1 - 2) 82h (All)
3 2 3 A22x 8x x a14

where V = rm Ve lCrm + r ). (Here rm is the time an electron near the loss

boundary spends in the mirror cell and rf is the time the electron spends in

the fan.) The contribution of the boundary layer to the perturbed density is

given by integrating Eq. (A8) over velocity space. The contribution from

the boundary layer is
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d3v h d3 V C(1)
oRn~ary w-wE

A

1 
x= xj- 4r Ah 0

V f dIy _
2 .X 0  8x

A A
00

+ iV 4v f dx' (1 ); (U12)

where the integral proportional to D 8h/&x has been neglected. To proceed

we must calculate h in the boundary layer. We first note that at the wall

where B wall = 0 both the equilibrium and the perturbed potential vanish and

that the total particle energy equals the particle's parallel kinetic

energy. Since f ,(t e, A) vanishes at the wall for particles with finite

(1)parallel velocities f must vanish on the unperturbed loss boundary = 0

at the wall. f () = twall' 6 = 0). Since 0 vanishes at the wall,

(i t = wall' e = 0) is equal to h(e = 0) at the wall and therefore

h(e, A) vanishes on the boundary e = 0. Note that in the central region

this implies that fC1. = qO1'aF0/3e on the boundary e = 0 which is
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equivalent to forcing f + F0 to vanish on the "perturbed" boundary

In general the boundary condition on f s(t, is that it vanish on

the unperturbed loss boundary, (e,, 1,) at the axial point t = e+ where

the equilibrium parallel velocity of particles vanishes,

E,- AB(I=t,) - qO (t=t*) = 0. If 0 had been flute-like through the

central region and fan, the boundary condition would be that h vanish along

the loss boundary of region (a) which corresponds to particles with zero

parallel velocity at the wall. The requirement that f vanish on the

.boundary of region (b) at the mirror throat, however, implies that

h = - q00 0/ae, where 00 is the flute value of in the central

region and fan. The loss boundary (b) corresponds to particles confined in

the central region with zero parallel velocity at the mirror throat; these

particles' parallel energy is not affected by an electrostatic perturbation

that is flute-like through both the central region and fan region. For the

specific problem at hand we assume that 0) drops to zero before the mirror

peak and thus the boundary condition for particles in both region (a) and

(b) is that h(e, y) = 0 along the unperturbed loss boundary.
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Away from the boundary the non-adiabatic perturbed response, h, goes

over to the collisionless solution h0 . The appropriate solution near the

loss boundary of passing particles therefore, is

A3 - 1/2A
h = h0 { 1 -'exp [ - ( -2ixo(w - wE)lv) (x0 - x)} (A13)

where the branch cut in the square root is taken along the negative real

axis.

Thus the contribution of the passing particle loss boundary to the

perturbed density is

1 x x
IV 41r d ah

(w- E) N ax

A

A3 Of2 X X 1S-21(w-w E )x 0 /2O m 4rv dA af 0

E E) 2Tec 0  rm + rfL 0 Ox

(A14)

We note that the expression in square brackets is the equilibrium loss rate

through the x = x0 loss boundary. We show in Appendix B that the ratio of

the loss rate through this boundary to the total loss rate in the limit

A 1/2 -1> x 0 and R >> I is approximately (1 + (RT ec/eq5) ) .Thus the
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contribution to the perturbed density due to the perturbed loss through this

boundary (assuming rm rf) is

J d3v h O2iw-wE 311/2 qO loss (A15)

dary (w-wE 2  2T ec [1 + (RT eC 1/2

A A1
We now consider the perturbed loss through the boundary y = Here it is

convenient to define the boundary layer variable = - . Retaining only

second derivatives the collision operator in these variables is

2 )2 2

C(f (1)) = . ._,_ + 1 - X )
23 A 3 3 R 2

A
For x > o > xo the second term dominates. Thus

this boundary is

2 (1)_ . (A-16)
2.

the solution for h along

h = h0 { 1 - exp((-iw/vD (x))' /2J}0 (A17)

where

y' = (e - qth max
h = q~w a0

W-0 E af
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D (x) = I -
3 R 2

The derivative with respect to e is taken at constant r and constant

A = mv /2B. Changing back to (xjA) coordinates and using the relation,

af x 2 Ofaf0 X0 1 o 0
-- - = 0 (A18)

ax R3 A* 1

on the boundary A = j, (x), .gives

( Of0  -_ 0(A19)

$ xA2 2T p2 \AS

A A
The contribution to the perturbed density from the loss boundary 4 =a* is

then

f d3v h = i fd 3  C(fP')

wE

00 2 =
41riz/ 1 1 ( 9) h

f 1
W-Z;E A Rxx 2 ay

XO
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00

= 4riv dx -(

xoRx

21/2

_2 D ( /) (qEw 1 1 1x2 0x ~ ~ ~ ~ ~ I )(T x)(-E e

(A20)

In the limit > x0 this expression is approximately equal to

J3 ./iw
d v h i
0= ', *AA

The quantity in

boundary. Thus

1/2 11
A_3_ 1 1 m d I I

RX0 -41r dx
2T) 2(W-E2 R A2 r+ R X

ec (- E
0

brackets is the equilibrium loss through the /A =A

the order of magnitude of this contribution is

A 3 1/2

d h =i

= *

1/2
q w 1 1 (RT/e5) -

2T 7- 2]loss
2Tcw- 2 R A2 RT /
ec (w E 0  1 + _T( e= jJ

afl

(A21)

loss

(A22)

We note that this is smaller than the contribution from the x = xO boundary

by a factor of (eO/T ec) and we therefore neglect the contribution from the

A= A boundary. Thus, the expression for the perturbed particle loss rate

is given by Eq. (A15).
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Appendix B - Relative Loss Rates of Mirror Trapped and Passing Species

We justify in this appendix, the estimate made after Eq. (A14) for the

relative magnitude of the loss rates for particles loss through boundary (a)

and boundary (b). We wish to consider the solution to the equation

C(f0 ) = 0 where C(f0 ) is given by Eq. (Al). Referring to the phase space

shown in Fig. 9 we see that away from the boundary C(f0 ) = 0 is solved by

balancing the energy drag with energy diffusion and setting af0 am. = 0.

Near the boundary the diffusive terms dominate. We can estimate the scale

distances, Ax and A, over which this happens by examining when the

diffusive terms are comparable to the drag term. Along boundary (a) we

estimate

^A2

1 af nnexp(-x 0  4(2

2x ax 2x dx

which implies

'dx ~ (B-2)
2x

0

Thus the total loss through boundary of region (a), I' is approximately

A 2 -
vnO ex(0 ) R.
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We estimate the slope in /I along the boundary of region (b) by

balancing the pitch angle diffusion with energy drag

1 0  n0exp 0
2

x2 2x AO A 3XO
1

2fg

2 A38 . s

oexp(- A 2

A2

which gives

A
4 ~

01/2
RxO

(B-3)

Neglecting the energy diffusion through boundary (b) we estimate the length

in x, axb, along the boundary (b) over which pitch angle diffusive flow is

appreciable. Near the loss boundary the energy and pitch angle diffusion

terms balance. This gives

A 2n0exp 0  1

2x 3  2  A3
X (6Db) 0

1
R

A2
n0exp(- 0 2

(2

~ R1/2 1

X4

2

2x3 2

or
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which matches smoothly to the energy scale length along boundary (1) given

by Eq. (B-2). Thus the flow through boundary (b) is approximately

00

Ao x
x

0b -

9f 0

a74

1

.0(

1 O 0

R 4p

A 2
n0ex(- 0 )

A 1/2
0

Thus the ratio of flow through boundary (a) to the total flow is

a

a b

1

1/2
1+

XO

1

1/
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Figure Captions

Fig. 1. Axial profiles of the model equilibrium magnetic field B(z), solid

line, and the potential O(z), dashed line.

Fig. 2 The equilibrium electron distribution function f0 (v) and the

perturbed electron distribution function f(l)(V) for v = 0,

showing the boundary layer of width dv (defined by Eq. (28)) which

occurs when w >> v.

Fig. 3. Marginal stability curve of the hot electron driven interchange

mode, for high neutral density (n0 = 3 x 1 0 11 cm-) , for

T. = 100 eV, 1 keV and 10 keV.

Fig. 4. Marginal stability curve of the hot electron driven interchange

mode, for low neutral density (n0 = 3 x 1010 cm- 3), for

T. = 100 eV, 1 keV and 10 keV.
-1

Fig. 5. Real frequency wr and growth rate y of ion driven mode, for n0 = 3

10 -3
X 1010 cm , T= 100 eV, = 0.1.

Fig. 6. Real frequency wr and growth rate of ion driven mode, for n0 = 3

11 -3X 10 cm , T. 100 eV, 0.1.
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Fig. 7. Real frequency wr and growth rate - of ion driven mode, for no = 3

x 10 cm-3, T. = 5 keV, a = 0.1.

Fig. 8. Real frequency wr and growth rate -y of ion driven mode, for n0 = 3

11 -3
x 10 cm-, T= 20 keV, a=0.1.

Fig. 9. Loss boundary (shaded line), electrostatically trapped region (a)

and magnetically trapped region (b) in (x, A) phase space.
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