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Abstract

It is shown that for electrons trapped in a static potential a finite amplitude

frequency-modulated wave induces stochastic motions (and diffusion) in electron orbits

over a significantly larger area of phase-space than a single frequency wave of the same

amplitude. The wavelength of the FM fields is unimportant if it is greater than twice

the width of the static potential. It is proposed that this be used for pumping of mirror

trapped electrons to enhance the confining potential in a tandem mirror cell.



The purpose of this letter is to show that the distribution function of electrons

trapped in a sinusoidal potential well can be significantly modified by using an

electro-tatic wave (ESW) that is frequency-modulated (FM). Previous studies with a

single frequency ESW as a perturbation have shown that the only electrons that exhibit

stochastic motion are those that are near the separatrix of the confining potential or

those that have velocities which are in a narrow range of the phase-velocity of the

ESN\.' 2 In particular, to induce stochasticity in trapped electrons would require a very

large amplitude ESW. In contrast, we will show that an FM wave with appropriately

chosen parameters can lead to stochastic motion over an appreciable portion of phase

space of the trapped electrons for a relatively small, finite amplitude wave. The

appropriately normalized one-dimensional equation of motion for such an electron is:

d'z AW
--g= - sin(z) - E sin ikz - wt - - sin(Wmt) (1)
dt2 I Wm

where c is the strength of the ESW with wavenumber, k, frequency, w, and modulational

frequency, waM. The distances have been normalized to the wavelength of the static

potential and the time to the bounce period of an electron at the bottom of the static

potential well; E measures the strength of the ESW relative to the maximum of the

static potential; Aw is the frequency bandwidth of the FM wave about the carrier

frequency, w. The Hamiltonian corresponding to (1) is:

AW
H = Ho - cos kz - wt - - sin(wmt) (2)

k Wm

where H1o = (A/2) - cos z is the unperturbed Hamiltonian corresponding to the motion

= dz/dt) of an electron in the static field. Here we will be concerned only with the

trapped electrons so that -1 < Ho < 1. The lower limit corresponds to an electron at

the bottom and the upper limit to an electron at the separatrix of the potential well.

We transform H into the action-angle (I - 0) representation of Ho yielding:

7(I, ) Ho(I) - - E JI(-) E V,(k, I) cos(nO - flt) (3)
k t=_00 Wm n=-o

where JI is a Bessel function of order e, I = (8/7r)[E(i) - (1 - K2)K(K)], K and E are

the complete elliptic integrals of the first and second kind 3, respectively, r 2 = 1(1+Ho)

and:
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V,,(k, I) = -f docos 2ksin-' {Ksn(, )- ndj (4)

with Q = 7r/2K(K) being the unperturbed non-linear frequency of the trapped electrons

(0 < Q < 1) and sn is a Jacobian elliptic function 3. The condition for the onset of

stochastic instability is given by the Chirikov resonance overlap criterion 4:

(A IT ?)i, , + (AITRh(
s = ()

Itn' - Ifn

where h , satisfies the resonance condition:

nP(Ia) = II = w - twn (6)

(', n') is the nearest resonance to (i, n) and

(AI T )t = 2 [- (A) ( -- 11/] (7)
k WM (d2/dI) 11t

is the resonance width. We want to find the conditions on w, k, Wm and Aw such that

stochasticity can occur for the smallest possible c. In an experiment this would imply

that, for a given (practical) bandwidth, we want to keep the power requirements for

the FM-ESW to a minimum. An analysis of (4) shows that VI is the largest coefficient

and IVl 0.6 for integer Inj ;> 1 (V_ = (-1)"V.) and for any value of k. Then,

from (7) we see that k should be less than 1. Assuming that only the n = 1 term is

important and that k g 0.5, we find

, f7 K(V/1 - r-9
V1(k,I) ~ 2k / cosh{ 2 K(r) (8)

and (7) is independent of k. From (6) the separation between resonances is proportional

to win. Since 0 < n < 1 for the trapped electrons, we require that Wm < 1 so that

several resonances can occur in the region of interest. This is supported by the exact

numerical analysis of (1) as shown in figures la and lb where the only parameter that

is changed between the two plots is w. 5  For Wm = 0.2 islands are clearly visible

( n = 1 islands at I ~ 1.35, 2.18 and n = 2 islands at I ~ 0.74 ) and there is no

stochasticity except near the separatrix ( I ~~ 2.55 ) where it is expected. However,

when wm = 0.05 there appears a wide region of stochasticity in the trapped-electron
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region for 0.1 ( I < 1.2. The remanants of n = 1 islands at I ; 0.38, 0.74 and 1.06

are still discernable even though their width in 4-space is considerably diminished. For

Wm = 0.01 there is no clear island structure left and the whole region for I < 1.2 is

stochastic.

These conditions on k and Wm help determine the range in which w should lie.

Since Aw < 1 (a usual experimental constraint) and Wm < 1, and, since the onset of

stochasticity will occur near the maximum value of JI(Aw/wm) in (7), we conclude

from the properties of Bessel functions and (6) that 0 < w < 1 + Aw. With these

restrictions on w, k and Win, the threshold for onset of stochasticity is found to be

q7,1 a WM for wm < Aw. The constant of proportionality basically depends on w

and Aw. For instance, when w = 0.9, Aw = 0.1, E7,1 -z 0.27wm n. This dependence

of ETJI on wm is supported by the numerical results. As the amplitude is increased

above threshold the region of stochasticity widens in I-space. If we choose w = 0.9,

Wi = 0.01, Aw = 0.1, k = 0.2, E = 4 X 10-3 connected stochasticity appears over the

region 0 < I < 1.65. This is in excellent agreement with the results obtained from the

exact numerical integration of (1). For E > 0.03, the approximate analysis with just

n = 1 breaks down. The exact analysis indicates that the region of stochasticity now

encompasses all trapped electrons while the n = 1 analysis shows that there still exists

a region of coherent motion for the trapped electrons. This implies that the higher

order (n > 1) contributions have become important. The bandwidth, Aw, plays a role

in determining the width of the region in I-space that goes stochastic. For a fixed C,

increasing Aw increases the width of the stochastic regime. However, we fix Aw = 0.1

as that is about the maximum bandwidth that would be experimentally reasonable.

Once there is a region of connected stochasticity, we can determine the quasilinear

diffusion coefficient for electrons in that region either from the Vlasov theory for the

electron distribution function or from the two-point correlation function of dI/dt. The

two approaches give the same diffusion coefficient:

DQL = 1 7TE2 V2(k, Iln)
I,? Idu - (9)EJ Wk r, (m |M)d0/dIJ&n

where Al is the width in I-space of the stochastic region and the sum is over those I

and n such that I& is in the stochastic region. This is compared with the numerically
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evaiuatrd diffusion coefficient, DNUM = <(61)2 > /(26t) where <> indicates an

average over the number of initial conditions (usually taken to be 1000) which lie

within the stochastic region, and 61 is the change in I in a time 6t r. = 27r/wm; Tm

is the time scale over which the electrons have sampled the entire bandwidth of the FM

wave. In figure 2 we have plotted DN1Nf and DQL versus E for two different values of

wOm. For values of E beginning near the threshold for onset of stochasticity and going up

to about two orders of magnitude above threshold, the diffusion is almost quasilinear.

However, for c > 4 X 10-3 significant deviations of DNUM from DQL take place with

D NU A< DQL. The change in the slope of DQL for wm = iO- around , 10-4

is due to the increase in Al as c is increased. For 4 X 10-3 < K 2.4 X 10-2 the

width Al remains almost constant. (So as to avoid numerical difficulties encountered

for electrons very close to the separatrix of the static well, the highest value of C we

look at is just below the value for which the whole trapped region becomes stochastic).
Hence, over a large range of c, DN'M does not behave like DQL. Further, as Wm is

decreased DNUMI is found to decrease; 6 e.g. for E > 5 X 10-, DNUM for Wm = 10-2

is greater than DNUM for wm = 10~3 as shown in figure 2. As Wm -+ 0 we approach

the single frequency ESW limit when there is no diffusion in the region of interest for

the range of F considered here.

Apart from the change in diffusion as Wm is decreased, there is a marked difference

in < J 2 > as a function of time for the two values of win. In figure 3 we plot < 12 >

versus time for w7m = 10-2 and Wm = 10-3 while keeping E = 8 X 10-3, k = 0.2,

w = 0.9, and Aw = 0.1. For wm = 0.01, < J 2 > increases until it saturates. The

increase implies diffusion while the saturation implies that the distribution function has

been flattened in the stochastic region. The time required to flatten the distribution

function is between 2 rm and 4 rm. But, for Wm = 10-3, < J 2 > oscillates with time

(with a period rm) over the entire I-space that satisfies the Chirikov resonance overlap.

The small changes in < 2 > for every rm time step are reflected by the significantly

lower diffusion coefficient in figure 2 for this case relative to the case of Wm = 10-2.

For the lower value of Wm the distribution function takes a longer time to flatten out.

It is intersting to note that for wm = 10-2, < 12 > never has the large oscillatory

behavior as in the case of W, = 10-3 even though the width in I-space over which

resonance overlap occurs is approximately the same in the two cases. We have observed
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the same trend in < 12 > for all ( > 4 X 10- 3 for the two values of wi.

In conclusion, we find that an FM-ESW can induce stochastic motion in electrons

trapped in a static well for very small amplitudes by an appropriate choice of wave

frequency and modulational frequency. The stochastic motion occurs in phase-space

far away from the phase velocity of the FM wave and becomes independent of the

wavelength of the ESW if it is longer than twice the dimensions of the static well.

The frequency of the ESW has to be close (approximately within the bandwidth of the

FM wave) to the bounce frequency of the electrons whose motion is to be perturbed.

The modulational frequency has to be about one percent of the frequency. For larger

modulational frequencies it is difficult to produce stochastic motion for reasonable

amplitudes of the FM-ESW while for smaller modulational frequencies there is very

little diffusion and it takes a very long time to flatten the distribution function. The

diffusion is most effective (essentially quasilinear) for amplitudes about one to two

orders of magnitude above threshold. Larger amplitudes lead to a decrease in the

effective diffusion constant, as compared to the quasilinar diffusion.

Finally, we suggest that the FM-ESW can be used for enhancing the confining

electrostatic potential in the plug region of a tandem mirror plasma by stochastically

modifying the electron distribution function in that region7 . The time required to

flatten the electron distribution function is smaller than the electron-electron collisional

time. Since the bounce frequency of the electrons in the plug region is in the range

of ion-cyclotron frequencies, a regular antenna used for exciting waves in this range

of frequencies can also excite an electric field along the d.c. magnetic field which can

penetrate into the plasma 8 . A single antenna usually launches a large portion of the

input power near small wavenumbers which is ideal for affecting the trapped electrons

as our calculations indicate. The passing electrons from the central cell would be hardly

affected as far as their motion along the d.c. magnetic field is concerned.
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and with Profs. A. Lichtenberg and M. Lieberman. This work was supported in part

by National Science Foundation Grant ECS 82-13430 and in part by Department of
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Figure Captions

Figure la Surface of section plot in I- 0 space for E = 8 X 10-3, w = 1, k = 0.2, Aw = 0.1
and .;,, = 0.2.

Figure lb Same as figure la except that wm = 0.05.

Figure 2 Diffusion coefficients, DQL (Eq. 9) and DNUM, versus e for w = 0.9, k = 0.2,
AW = 0.1, and for (a) Wm = 10-2. (the solid line being DQL and the points
denoted by + being DN'UiA1); (b) Wm = 10-3 (the dashed line being DQL and the
points denoted by ® being DNU Al).

Figure 3 < I2 > versus time for c = 8 X 10-3, 0.9, k = 0.2, Aw = 0.1 and
(a) w,,, = 0.01; (b) w,, = 0.001.
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