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Precision measurements of the absolute wavelengths of the Lyman a doublet
(2p'py _ is 2S) in hydrogen-like argon (Ar 1 7 +), as well as those of some strong
dielectronic satellites, are reported. The Alcator C tokamak plasma was seeded with trace
amounts of argon and the emission spectra were taken with a high resolution, crystal X-ray
spectrometer. In situ wavelength calibration was achieved by utilizing the potassium Ka
lines from a KCl fluorescence source. For the Lya 2 line, a precision of 11 ppm was achieved.
Comparisons of these data with QED predicted wavelengths show good agreement, yield-
ing a test of the is Lamb shift at the 3% level. The precision of these measurements was
limited by uncertainties in the wavelength calibration, with the uncertainties due to the
influence of unresolved satellites being of secondary importance.



I. INTRODUCTION

This paper presents precision measurements of the absolute wavelengths of the Lyman-

a doublet (2p 2 Pa k -+ 1s 2Sf) in H-like argon (Ar 17+) emitted from Alcator C tokamak

plasmas. Previous measurements of absolute is energy levels in medium Z ions (16 < Z <

36) have come primarily from beam-foil experiments 1-5, where corrections for substantial

Doppler shifts limit the attainable precision. More recently, Beyer, et al.6 used an argon

ion recoil technique, eliminating most of the Doppler shift effects. In their work, relatively

strong satellites, due to the decay of doubly excited levels in ionization states lower than H-

like, limited the accuracy of the measurements to a precision of 5 ppm. Tokamak plasmas

are particularly well suited as a source for spectroscopic studies of highly charged ions.

In the plasma conditions of this experiment, satellite lines are not very strong, and the

ions have relatively low temperatures (- 1 keV). The effects of Doppler shifts due to

bulk plasma motions are very small in these Ohmically heated discharges. The Alcator C

tokamak plasma has previously been used as the source in an experiment to obtain the

wavelengths of the Lya doublet in H-like chlorine, and results with precision at the 34 ppm

level were achieved.7 The present work constitutes a continuation of those measurements.

Several improvements have been made in the instrumentation,8 and consequently, the

results presented here, for argon, approach the 10 ppm level of precision, providing a test

of the Lamb shift for the ground state energy of Ar17+ at the 3% level.
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II. EXPERIMENTAL PROCEDURE

In this experiment, the main parameters for the hydrogen working gas plasmas were:

central electron temperature of 1500 eV; central ion temperature of 1100 eV; line average

density of 2.4 x 1014 cm-3 ; toroidal magnetic field of 10 Tesla; plasma current of 460

kA. The discharge was physically limited by molybdenum rings located at the edge of

the plasma. Argon was introduced into the plasma through a fast piezoelectric valve,

which was opened 50 msec after the beginning of each discharge, for a period of 20 msec.

Subsequently, Ar entered the plasma and was increasingly ionized as it diffused into the hot

core of the discharge, where the H-like state had its density maximun. The excited states

of Ar17 + are populated primarily by electron impact excitation from the ground state, and

then decay radiatively back to the ground state. Spectra near A = 3.7 X, which include

the Lyal, 2 doublet, were obtained during the approximately 300 msec quasi-steady-state

portion of the discharges. The data were stored in time bins of 20 msec. The Bragg

crystal spectrometer, which is in the Von Hamos geometry, has been described in detail

previously.8 Absolute wavelength calibration of the spectrometer was achieved with the

use of the potassium Ka lines from a KCl fluorescence source. The KCl was excited with

a primary X-ray beam from a Cu-anode source, operated at an anode voltage of 45 kV

with an emission current of 20 mA.

The experimental procedure was as follows. The argon measurements were taken dur-

ing the steady state portions of 5 consecutive discharges, with the time between discharges

being 8 minutes. Then the spectrometer was turned towards the fluorescence source, and

the potassium calibration was performed, with the accumulated data being read out from

the histogramming memory every 8 minutes. The total collection time for the calibration

was 170 minutes. Finally, Ar measurements were again taken for 5 consecutive discharges.

In this way, any possible effects due to drifts could be monitored and minimized. The total

accumulation time for recording Ar spectra was 3.0 seconds.
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III. RESULTS AND DISCUSSION

All the measured potassium Ka spectra have been added together, and Fig. 1

shows these data, along with the fit used to obtain the absolute wavelength calibration.

Lorentzian line shapes have been fitted to the Kaj,2 doublet data, along with Ka" on

the short wavelength side of Kal and a straight line background. The positions of both

Kal and Ka 2 have been used to obtain the absolute wavelengths in the H-like Ar spec-

trum. The wavelengths of the potassium lines are:6 A(Kai) = 3741.296(5) mA; A(Ka 2 ) =

3744.405(5) mA; A(Ka") = 3739.1(2) mA.

The results of the argon measurements are shown in Fig. 2, which depicts the Lya

doublet, as well as several satellite lines due to doubly excited He-like argon; the standard

notation from reference 9 is used to designate the lines. Figure 3 shows the results of an

iterative least-squares fit to the data of Fig. 2, in the region around the Lya doublet. The

line widths are dominated by thermal Doppler broadening (A/A AD e 1000). To account

for the presence of satellites, five lines, in addition to Lya 1 and Lya 2 , were fitted to the

spectrum, with the positions and heights of each as free parameters. The line widths were

also free parameters, except that the two Lya lines were forced to have a single width, also

a free parameter. Once again a straight line background has been included. All lines are

taken to be Gaussian in shape, consistent with the facts that the intrinsic Lorentzian line

width is negligible, and that the instrumental spectral response (A/A A1 = 3000) has only

a small influence on the line shapes. The weak line near A = 3739 mA is due primarily to a

2p-4d transition in Mo 2+. Spectra taken under similar plasma conditions, but without Ar

in the plasma, show that this is the only Mo line which appears in this spectral region. It is

well resolved from the Lya doublet, and so has negligible effect on the measured positions

of the argon lines.

The results of the measured argon Lya wavelengths are summarized in table 1. The

main uncertainties come from fitting the potassium calibration lines and from extrapolat-

ing the results to the positions of the Ar lines. These errors lead to estimated uncertainties
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of ±0.035mA for Lya 2 and t0.07mA for Lya 1 . The next most important error contribu-

tion is the uncertainty in the fits to the argon lines themselves, which is due primarily to

the influence of unresolved satellite lines combined with the Doppler widths, and is at the

level of ±0.02mL. The overall uncertainty is at the level of ±0.04mA, or about 11 ppm, for

Lya 2. One further possible influence on the line positions from the tokamak source must

be considered, namely Doppler shifts due to bulk plasma convection. All measurements

reported here were made during Ohmically heated discharges; no neutral beam heating has

been used. As such, it can be expected that any toroidal or poloidal drifts should be small

(vT < 106 cm/sec, vp < 10 5cm/sec).11 Since the spectrometer views the plasma along a

major radius in the horizontal midplane, toroidal rotation would primarily contribute a

second order Doppler shift, which is negligible at these velocities. Furthermore, the instru-

ment can be scanned vertically, on a shot-by-shot basis, to look for any evidence of the

influence of poloidal flows on the line positions. This has been done, and shifts have not

been detected, at least down to the level of .02 mA, corresponding to vp < 2 x 10 5cm/sec.

The precision of the results presented here represents approximately a threefold im-

provement over the previous Cl results from Alcator C,7 and approaches that of the results

of Beyer et al.6 in Ar, obtained using the ion recoil method. In the latter case, the overall

quoted precision is 5 ppm, with the dominant uncertainty due to the modelling and sub-

traction of the fairly strong satellites. Satellites play a much smaller role in the results

reported here. Although the overall precision is about a factor of two less than in the

recoil measurements, the intrinsic uncertainty in the X-ray line positions due to satellites

is probably somewhat smaller. The comparison is therefore an interesting one, and the re-

sults from Ref. 6 are also shown in Table 1. The present results are in excellent agreement

with theory10 for the positions of each of the individual lines; the agreement for the fine

structure splitting is also reasonable.

Table 2 lists the fitted wavelengths for the strongest satellites to the Lya lines, as well

as theoretical wavelengths for these lines from Ref. 12. Note that there is a systematic
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shift of a little less than 1 mA for each of the lines. In the work of Ref. 12, the QED

effects have not been included in the wavelength calculations. From table 1, the measured

shift in Lya 2 is 1.287(40) mA.

IV. CONCLUSIONS

In summary, the absolute wavelengths of the Lyman-a doublet in Arl7+ have been

measured on the Alcator C tokamak. The line positions are in excellent agreement with

the predictions of QED theory; the measured fine structure splitting is also in reasonable

agreement with theory. The strongest satellites, due to doubly excited Arl+, also show a

shift to longer wavelength, when compared with predictions which ignore the QED effects.
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Table 1. Comparison of experimental measurements for the Ar17 + Lya doublet with

relativistic quantum theory, including reduced mass effects (Dirac) and QED theory, both

from Ref. 10. The results of Beyer et al. (Ref. 6) are also included for comparison. All

wavelengths are given in mA.

Transition A(Dirac) A(QED) A(this experiment) A (Ref. 6)

Lyal : 2 pj -+ 1s 3729.827 3731.101(1) 3731.142(70) 3731.105(19)2 2

Lya 2 : 2pj -+ 1si 3735.227 3736.516(1) 3736.514(40) 3736.522(19)2 2

Fine Structure Splitting 5.400 5.415 5.372(40) 5.417

Table 2. Wavelengths (in mA) of some strong satellites near Lyman-a. The theoretical

wavelengths come from Ref. 12, and do not include any QED corrections.

Transition A (this experiment) A (theory)

T : 2s2p IP 1 -+ s2s 1 So 3755.26(10) 3754.4

Q : 2s2p 3 P 2 -+ 1s2s 3 Sj 3761.06(15) 3760.3

J : 2p 2 1D2 -- 1s2p IPi 3771.79(20) 3770.9
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Figure 1. The measured potassium Ka fluorescence spectrum with Lorentzian line fits of

Kai, Ka2 and the satellite Ka".
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Figure 2. The measured argon spectrum with the Arl 7 + Lyman-a doublet and several
strong satellites identified. The satellite identification follows the conventions of reference
9.
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Figure 3 (a). A portion of the spectrum in the vicinity of the Ar1 7+ Lya doublet together
with the Gaussian line fits.
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Figure 3(b). Same as Fig. 3(a) but on a semi-logarithmic scale.


