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ABSTRACT

The detailed influence of an untrapped-electron population on the sideband
instability in a helical wiggler free electron laser is investigated for small-
amplitude perturbations about a constant-amplitude (as = const.) primary elec-
tromagnetic wave with slowly varying equilibrium phase 6 . A simple model is
adopted in which all of the trapped electrons are deeply trapped, and the equi-
librium motion of the untrapped electrons (assumed monoenergetic) is only weakly

modulated by the ponderomotive potential. The theoretical model is based on the
single-particle orbit equations together with Maxwell's equations and appro-
priate statistical averages. Moreover, the stability analysis is carried out in
the ponderomotive frame, which leads to a substantial simplification in deriving
the dispersion relation. Detailed stability properties are investigated over a
wide range of dimensionless pump strength B /rbck0 and fraction of untrapped
electrons f = Au b. When both trapped and untrapped electrons are present,
there are generally two types of unstable modes, referred to as the sideband

mode, and the untrapped-electron mode. For fu = 0, only the sideband instabil-
ity is present. As fu is increased, the growth rate of the sideband instability
decreases, whereas the growth rate of the untrapped-electron mode increases
until only the untrapped-electron mode is unstable for fu = 1. It is found that

the characteristic maximum growth rate of the most unstable mode varies by only
a small amount over the entire range of f u from fu = 0 (no untrapped electrons)
to fu = 1 (no trapped electrons). This suggests that it is a serious oversight

to neglect an untrapped-electron component when calculating the detailed linear
and nonlinear evolution of the beam electrons and the radiation field.

Permanent address: Plasma Fusion Center, Massachusetts Institute of
Technology, Cambridge, MA 02139.



2

I. INTRODUCTION AND SUMMARY

Free electron lasers (FELs),1 4 as evidenced by the growing experi-

mental5- 22 and theoretical 23-70 literature on this subject, can be

effective sources for coherent radiation generation by intense relativistic

electron beams. Recent theoretical studies have included investigations

of nonlinear effects 23-47 and saturation mechanisms, the influence of

finite geometry on linear stability properties,48-53 novel magnetic field

geometries for radiation generation, 48,54-58 and fundamental studies of

stability behavior. 59-70 One topic of considerable practical interest is

the sideband instability36 which results from the bounce motion of electrons

trapped in the (finite-amplitude) ponderomotive potential. Both kinetic 23-25

and single-particle36-47 models of the sideband instability have been

developed, and numerical simulations 39-47 have been carried out. However,

with the exception of the recent kinetic formalism developed by Davidson

et al.,23-25 the analytical treatments have consistently neglected the effects of

any untrapped-electron population.

The purpose of the present analysis is to investigate the detailed

influence of untrapped electrons on the sideband instability. Small-

amplitude perturbations are assumed about a constant-amplitude (a = const.)
5

primary electromagnetic wave with slowly varying equilibrium phase 6 .

Moreover, we adopt a simple model in which all of the trapped electrons

are deeply trapped, and the equilibrium motion of the untrapped electrons

(assumed monoenergetic) is only weakly modulated by the ponderomotive

potential. The theoretical model (Sec. II) is based on the single-particle

orbit equations together with Maxwell's equations and appropriate statis-

tical averages. 36,37 Like our recent treatment37 of the sideband instability
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(which neglects the effects of untrapped electrons), the present analysis

is carried out in the ponderomotive frame, which leads to a substantial

simplification in the analysis.

The theoretical model and assumptions are described in Sec. II. A

tenuous, relativistic electron beam propagates through a constant-amplitude

helical wiggler magnetic field with wavelength X0 = 21T/k 0 = const., nor-

2malized amplitude aw = eBw/mc k0 = const., and vector potential specified

by [Eq.(1)]

mc2

A(x) = - - a (coskozix + sinkoz

The model neglects longitudinal perturbations (Compton-regime approximation

with 60 ~ 0) and transverse spatial variations (a/ax = 0 = a/3y). Moreover,

the analysis is carried out for the case of finite-amplitude primary

electromagnetic wave (ws ,ks) with right-circular polarization and vector

potential specified by [Eq.(2)]

in2

A (xt) = a (z,t) {cos[ksz - st + 6s(Zt)]

- sin[ksz - wst + 6s(z t)]W ,

where the normalized amplitude S(z,t) and wave phase 6 s(z,t) are treated

as slowly varying (Eikonal approximation). A detailed investigation of the

sideband instability simplifies considerably if the analysis is carried out

in the ponderomotive frame37,71,72 moving with velocity [Eq.(3)]

v = "s
ks + k0



4

In the ponderomotive frame ("primed" variables), the nonlinear

evolution of a s(z',t') and 6'(z',t') is described by Eqs.(5) and (6).

Here, correct to lowest order in (w's ) s/3t') << 1, energy is con-

served in the ponderomotive frame (dy/dt' = 0), and the axial orbit
3

e (t') = k'z (t') solves Eq.(13), where k (ks + k0)/ p is the wave-

2 2 -2
number of the ponderomotive potential, and yp = (1 - vp/c ) 2. Moreover,

the real oscillation frequency w' and wavenumber k' are related by the
5 5

dispersion relation (7). In obtaining Eqs.(5), (6), (7), and (13), it

is assumed that all electrons have zero transverse canonical momentum,

i.e., P'. = 0 = P'..xj

In Sec. III, Eqs.(5), (6) and (13) are used to investigate the in-

fluence of untrapped electrons on the sideband instability for small-

amplitude perturbations about a primary electromagnetic wave with constant

amplitude a = const. (independent of z' and t'). The trapped and untrapped
5

electrons are treated as distinct components. Moreover, the principal

assumptions in the present analysis are the following (Sec. III.A).

(a) All of the trapped electrons are deeply trapped with a sharply

defined energy y = = [1 + (aw - )2 I. This implies that the

trapped electrons are spatially localized ("bunched") near the bottom of the

ponderomotive potential (Fig. 2). The average density of the trapped electrons

in the ponderomotive frame is nT = n yp
(b) All of the untrapped electrons have a sharply defined energy

y' = j' > j' = [1 + (aw + a)21, where j'' is sufficiently large that

the motion of the untrapped electrons is only weakly modulated by the

ponderomotive potential (Fig. 2). The average density of the untrapped

electrons in the ponderomotive frame is n' = 6/

(c) Consistent with (a) and (b), we assume that the perturbations

0
are about a quasi-steady equilibrium state characterized by as = const.
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(independent of z' and t') and 36 /at' = 0. However, a slow spatial
0

variation of the equilibrium phase 6 is required [Eq.(41)]

Following a discussion of the quasi-steady equilibrium state (Sec.

III.B), we analyse the linearized wave and particle orbit equations

(Sec. III.C), and derive the dispersion relation (70) for small-amplitude

perturbations in the ponderomotive frame (Sec. III.D). Here, it is

assumed that the perturbed amplitude 6 s(z',t'), the perturbed phase

6'(z',t'), etc., vary as

exp(-i(Aw')t' + i(tk')z'

where Im(Aw') > 0 corresponds to instability (temporal growth). The dis-

persion relation (70) relates Aw' to Ak' and other system parameters

such as ao, k , P , K', etc.

Finally, in Sec. IV, the dispersion relation (70) is used to investigate

detailed properties of the sideband instability including the effects of

the untrapped electrons. First, we transform Eq.(70) back to the laboratory-

frame frequency w = ws + Aw and wavenumber k = ks + Ak making use of the

transformation in Eq.(71) relating (Aw,Ak)to (Aw',Ak'). In this regard,

it is convenient to introduce the shorthand notation [Eq.(73)]

A= AW - v Ak

v Ak
AK= k0  -

c ks

where vp= Ws/(ks + ko), and (ws,ks) are the frequency and wavenumber of

the primary electromagnetic wave in the laboratory frame. After some

algebraic manipulation (Sec. IV.A), it is straightforward to show that the

dispersion relation (70) can be expressed in the equivalent form [Eq.(80)]
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Q2 40 2(rck B 6
1 -B B TCO0.B)

(A- ) (AQ - cAK)

(rc03 2 2(r ck O)2 2 - 1

(AO) (AQ2 - cAK)2 2~n c ~ck 2 2

x au (rTcko) 3 + 4(AQ)(AQ -

Tck 2 A 2 ++ 2(r Tcko) (2 )+ 2 k

cK) 'cko

2

(+ 2 2
B

In Eq.(80), au = [Eq.(75)] is a measure of the ratio of

the untrapped electron density to the trapped electron density, and

s' = (1 + v p/c)s' [Eq.(78)] is proportional to the speed of the untrapped

electrons in the ponderomotive frame. Moreover, OB is the bounce fre-

quency of deeply trapped electrons defined by [Eq(24)]

B= 1 + v kc ) + aw

in the laboratory frame, and rT

defined by [Eq.(81)]

3 1 a

rT 4 (1 + a2)3/
w

is the (small) dimensionless gain parameter

(4 T2e /m) (1 + v /c) <<

Y pC K0 vp/c

where use has been made of = YTyp. Consistent with Assumption (b) at

the beginning of Sec. III, we require that .ck0 be sufficiently large

in comparison with Q B in Eq.(80) in order that the untrapped-electron

motion be only weakly modulated by the ponderomotive potential (Fig. 2).

4
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Equation (86), which is equivalent to Eq.(80), constitutes the final

dispersion relation which is analysed numerically in Sec. IV.B. For fu =

Pidb = 0, which corresponds to no untrapped electrons ( u = 0), Eq.(86) is

the familiar dispersion relation for the sideband instability 37,73 in

circumstances where the equilibrium wave phase is slowly varying [Eq.(41)].

For f u 0, however, it is found that the untrapped electrons can significantly

modify stability behavior (Sec. IV.B). Detailed stability properties are

investigated over a wide range of dimensionless pump strength B /Fbck0

(where r b = n rT/nT) and fraction of untrapped electrons fu = u b. When

both trapped and untrapped electrons are present, there are generally

two types of unstable modes, referred to as the sideband mode, and the

untrapped-electron mode. For fu = 0, only the sideband instability is

present. As fu is increased, the growth rate of the sideband instability

decreases, whereas the growth rate of the untrapped-electron mode increases

until only the untrapped-electron mode is unstable for fu = 1.

The present analysis indicates that the detailed properties of

Im(A2)/rbck0 versus AK/rbk0 are quite different for the two unstable modes.

Equally important, however, it is found that the characteristic maximum

growth rate of the most unstable mode varies by only a small amount over

the entire range of f u from fu = 0 (no untrapped electrons) to fu = 1 (no

trapped electrons).
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II. THEORETICAL MODEL AND ASSUMPTIONS

A. Basic Equations and Assumptions

A tenuous, relativistic electron beam propagates in the z-direction

through a constant-amplitude helical wiggler magnetic field with wave-

length X0 = 27r/k 0 = const., normalized amplitude aw = eBw/mc2k0 = const.,

and vector potential specified by

mc2

A w (x) = - - aw(cosk 0zsx + sink0z) . (1)
e

The model neglects longitudinal perturbations (Compton-regime approx-

imation, 6p 2 0) and transverse spatial variations (a/ax = 0 = a/ny).

Moreover, the analysis is carried out for the case of a finite-amplitude

primary electromagnetic wave ( s,k s) with right-circular polarization and

vector potential specified by37

mc2

A (x,t) = - s(z,t) cos[ksz - wst + 6s(z,t)] x
e

(2)

- sin[ksz - wst + 6s (z,t)] ,

where the normalized amplitude s(z,t) and wave phase 6 (z,t) are treated

as slowly varying (Eikonal approximation). Here, -e is the electron

charge, m is the electron rest mass, and c is the speed of light in vacuo.

In Eqs.(l) and (2), the wiggler magnetic field is determined from B =

v x A ,and the electromagnetic wave field is determined from Bs = v x As

and Es= -c~ 1 As/at. A detailed investigation of the sideband instability

simplifies considerably if the analysis is carried out in the ponderomo-

tive frame moving with velocity
37,71,72
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v = s (3)
P ks + k0

Therefore, the present analysis is carried out in ponderomotive-frame

variables (z',t',y') defined by the Lorentz transformation

z' = y (z - v Pt) ,

t' = y p(t - v pz/c)2 (4)

Y = y p(y - vppz /mc 2

where yp = (1 - v 2 2()/c 1 ,ymc2 _ 2c4 + c2 2 + c2 2 + c2 2) is the
p

mechanical energy, and the components of momentum (p',p',p') are re-

lated to the velocity v' = dx'/dt' by p' = y'mv'.

In the ponderomotive frame, the slow nonlinear evolution of as(z',t')

and 6'(z',t') is described by 37

a k'c 2 a4)T e2a 1 sin(e' + 6')
2w' - + ss _w is , (5)

at' W ' az' m L y

+ k'c 2 a 4Te2aw 1 cos(e' + 6')
2'as - + '= w js, ()

2 at' + s az Im L' Y 6

where the real oscillation frequency w' and wavenumber k' are related
5 5

by the dispersion relation 37

c2k 2 + 2-1

In Eqs.(5)-(7), ( '''> denotes statistical average, and the axial

orbit e6 (t') = k'z (t') and energy y (t') of the j'th electron solve 37
iJs pj 3
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d2 c2k '2a

d-' s + 2 Im [es xp(i + i 6')

(8)

c2k'a 1 dz a
Re exp(ie ) -+ .exp(i')
Y is az c dt' at

and

d a
d y _ w Re - sexp(i 6s') . (9)

dt' a t' et'

In Eqs.(8) and (9), kp (ks + k0)/yp is the wavenumber of the pondero-

motive potential, and y! is defined by
3

,2

Y 2 = + zj + a 2+ a - 2awRe sa s1 + i6') (10)

in the ponderomotive frame. In obtaining Eqs.(8) and (9) from dp ./dt' =
ZJ

-mc 2y /az and dy/dt' = ay /at' we have neglected 2 << 1 + a2 in

Eq.(10). Moreover, it is assumed that all electrons have zero transverse

canonical momentum, i.e., P = 0 = P .

There is some latitude in specifying the precise operational meaning36

of the statistical averages ( --- ) occurring in Eqs.(5)-(7). For

present purposes, let us assume that the orbits z (t') and y (t') have

been calculated from Eqs.(8) and (9) in terms of the initial values z (0)

and y (0). Then the simplest definition of the statistical average

( > over some phase function (e'5(0) ,Y(0)) is given by

1 KZ e(0),y(0)) )

7de6

= n ...- 2 J dy6G(e6,y6)P(e6,y6) .
20

0 1
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Here, h is the average density of the beam electrons in the ponderomo-

tive frame, and G(e6,y6) is the (probability) distribution of electrons

in initial phase e6 and energy y6. Moreover, L' = 27r/k' is the basic

periodicity length in the ponderomotive frame.

Equations (5)-(9) constitute a closed description of the nonlinear

evolution of the system. In this regard, further simplification of Eqs.

(8) and (9) is possible by virtue of the assumption of slowly varying

wave amplitude and phase (Eikonal approximation), i.e.,

-1 a
IWS' >> lasexp(16'.) - [asexp(i'.) ,

(12)

-1 3
Ik [ >> asexp(i')] - isexp(id') .

In particular, to lowest order, it is valid to neglect the local time

and spatial derivatives on the right-hand sides of Eqs.(8) and (9).

This gives the approximate dynamical equations 37

d2 c2k 2a
6 + W Im sexp(i s + id') = 0 , (13)

dt'-2 is Y2 s

d
- y' = 0 (14)
dt' (

The major benefit of carrying out the analysis in the ponderomotive frame

is evident from Eqs.(13) and (14). To lowest order, the particle energy

y can be treated as constant in Eqs.(5)-(7) and (13).

In the subsequent analysis, we make use of the closed description

of the nonlinear evolution of the system provided by Eqs.(5)-(7) and

Eqs.(13) and (14).
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B. Definitions and Notation

For future reference, in this section we establish the basic defini-

tions and notation to be used in the stability analysis in Secs. III and IV.

The wave frequency and wavenumber (w',k') in the ponderomotive frame

are related to the wave frequency and wavenumber (w,k) in the laboratory

frame by

W' = y (w - kv ) ,

k ' = 79(k - wv /C 2

where vp =W /(k + ko) and yp= (1 - v 2/c2  . As a special case, wep ss 0P

obtain w'= y(W - k v ) from Eq.(15), which gives

'= yk 0 v (16)

In the present analysis, it is also assumed that the electron beam

is sufficiently tenuous that beam dielectric effects can be neglected in

the dispersion relation (7) (and its laboratory-frame analogue). This

gives the vacuum dispersion relation w 2 = c2k' 2, or equivalently w =

c k ,for the primary electromagnetic wave. Assuming a forward-moving

electromagnetic wave, we solve the simultaneous resonance conditions

Ws = +cks
(17)

Ws = (ks + k0)v p

for ws and ks. This readily gives the familiar results 37

Ws = Y (1 + vp/c)k0 v '

(18)
2k= Y p (1 + v P/c)(v p c)ko
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where y = (1-v /c2 -1, ana vp = s/(ks + ko) is (nearly) synchronous
p pP k)

with the average axial velocity Vb of the beam electrons. Moreover,

from Eq.(18), the ponderomotive wavenumber k= (ks + k0)/yp can be

expressed as

k' = yp(1 + vp/c)k 0 . (19)

In circumstances where perturbations are about a primary electromag-

netic wave with amplitude a = const. (independent of z' and t'), it is

useful in analysing the orbit equation (13) to introduce the bounce fre-

23
quency wB(YJ) defined by

= (c2k 2aa 0/ 2)1 . (20)
B(YP p w s j

Here, aw > 0 and a > 0 are assumed without loss of generality, and

(y) is the effective bounce frequency of deeply trapped electrons

with energy y'. A detailed analysis 23 of Eqs.(10) and (13) shows
3

that the zero-order electron motion is untrapped for energies y

satisfying (Figs. 1 and 2)

y [1 +(aw +)2 . (21)

That is, when Eq.(21) is satisfied, the particle motion is modulated by

the ponderomotive potential, but the normalized velocity de s/dt' doesis

not change polarity (Fig. 1). On the other hand, for y < , the elec-

trons are trapped, and the zero-order motion described by Eq.(13) is

cyclic, corresponding to periodic motion in the ponderomotive potential.

From Eqs.(10) and (13), it is readily shown that the minimum allowable

energy of a trapped electron is 23

' = + (aw - a)2 . (22)
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Because ^ << a in the regimes of practical interest, we note from Eqs.s w

(21) and (22) that the characteristic energy of a trapped electron is

approximately ' (1 + a 2 ).w

The stability analysis in Secs. III and IV specializes to the case

where there are two classes of electrons: untrapped electrons with

energy y = j > i', and deeply trapped electrons with energy Y=

For the deeply trapped electrons, the effective bounce frequency in the

laboratory frame is defined by QB = B ' i.e.,

GB = (c2k 2a wO 2 . (23)

Because << a we estimate j' ~ 9 (1 + a 2 in Eq.(23), and makes w w

use of Eq.(19) to express k = yp (1 + v /c)k Equation (23) can then

be expressed in the equivalent (and more familiar) form

QB = 1 + awas ck0 . (24)
c (1 + a2

Continuing with definitions, we denote the average density of the

trapped electrons in the ponderomotive frame by i = YTyp, and the

average density of the untrapped electrons by n' = u/y p It is con-

venient to introduce the corresponding plasma frequencies defined by

2 4Tn e2 4 Te2
WpT 

m

(25)

47rr'e 2  4, ue
pu m

A dgn

A detailed investigation of Eqs.(5) and (6) (Secs. III and IV) shows
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that the appropriate small parameters, E << 1 and e' << 1, used in
U

analysing the wave equations are defined by

S2
aw

Ejck = a

(26)

a w
e u'ck' w pu

s '" 's

Here, w' = Y k0 p is defined in Eq.(16), 9' is the energy of the untrapped

electrons, and 2', and are defined in Eqs.(22) and (25). Note

from Eqs.(25) and (26) that ej and e' are related by Ej =e

In Sec. III, we will find that Ef is related to the (slow) variation of

the equilibrium wave phase 6 by 36a0/az' = efck, [Eq.(41)].

Finally, for future reference, we introduce the small dimensionless

parameter r defined by23 ,3
7

1 a2  2 (1 + v /c)

T) - 71 T 1 << 1.(27)
4 _ k0  vp/c

In the absence of untrapped electrons (Pi' = 0), the quantity (3)irTck0/2

can be identified with the linear gain (temporal growth rate) in the

weak-pump regime (B /rTck0 < 1).37 Moreover, from Eqs.(19), (23)

(26) and (27), it can be shown that rT and Ej are related by

E = 2rT (rT ck 0 . (28)

From Eq.(28), we note that e << 1 necessarily requires that the zero-

order wave amplitude a be sufficiently large that (B /rTcko)2 >> 2rT

(a small parameter).
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III. STABILITY ANALYSIS FOR SMALL-AMPLITUDE PERTURBATIONS

A. Assumptions and Model

We now make use of Eqs.(5), (6) and (13) with y = const. [Eq.(14)]

to investigate detailed stability properties for small-amplitude perturba-

tions about a quasi-steady equilibrium state. The principal assumptions in

the present analysis are the following:

(a) All of the trapped electrons are deeply trapped with a sharply

defined energy y= T ~ = [1 + (aw - ) 2. From Eq.(13), this

implies that the trapped electrons are spatially localized ("bunched") near

the bottom of the ponderomotive potential with e' + 6' ~ 2n7, where n = 0,

±1, ±2,'-" is an integer. The average density of the trapped electrons in

the ponderomotive frame is n = YTp

(b) All of the untrapped electrons have a sharply defined energy y =

' > y'= [1 + (aw + ̂ 0 )21, where j' is sufficiently large that the motionw su

of the untrapped electrons is only weakly modulated by the ponderomotive

potential. Strictly speaking, this requires that j 2 _ 42 be large in

comparison with the total well depth 4a 'w s

(c) Consistent with (a) and (b), we assume that the perturbations are

about a quasi-steady equilibrium state characterized by a5 = const. (inde-

pendent of z' and t') and 36 /at' = 0. However, a slow spatial variation
5

of the equilibrium phase 60 is required [Eq.(41)]. 37,71

In the subsequent analysis, we denote the axial coordinate of the

(deeply) trapped electrons with energy 9j- ~' by e8 = k'zj(t'), and the

axial coordinate of the untrapped electrons with energy jK' is denoted by

e' = k'z'(t'). The corresponding bounce frequencies are defined by
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WBT WB(Y) = (c2k'2a a 2)
(29)

WBu WB(Y') = (c2k 2a a/ 2)

where ao = const. is the equilibrium amplitude of the primary electromagnetic

wave. Note from Eq.(29) that WBu = (Y-/Yu)wBT = BT because j' typically

exceeds j'' by only a small amount for awa << 1. Making use of Assumptions

(a) - (c), it readily follows from Eqs.(5), (6) and (13) that the nonlinear

wave equations and the equations of motion for the trapped and untrapped

electrons can be expressed as

2 .2
ck a a 2

+ s as T sin(ej+ 6) + (<sin(e '+ 6s) >u (30)
at' W az' 2-' ' 2w , 'u

2 , 2 2

s C ks' a a T cos N + 6 s' + aw pu cos (e ' + 6')> u (31)
at' W' az' 2ws'i' 2w ' i'

and

2
e + ^BT sin(ej + 6') = 0 (32)

dt as

2
e' + 2Bu sin(e' + 6') = 0 (33)

dt' aSO

In Eqs.(30) and (31), 2 and 2 are defined in Eq.(25), and the statistical~pT anpu

average <.''>u denotes an average over initial phases of the untrapped

electrons, i.e., 
27

fde'(0)
-u ' u.. (34)

0
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In terms of the small parameters eT and E' defined in Eq.(26), the nonlinear

wave equations (30) and (31) can be expressed in the equivalent form

a c~k' a -
- + -- i- as = sjck'ssin(ej + 6') + Pck's <sin(e' + 6 )>u , (35)

at, s az'

and

a c 2 k

s- + - , ck'a cos(e + 6') + £ ck a<cos(eu + 6')> . (36)

The coupled equations (32), (33), (35) and (36) constitute a closed descrip-

tion of the nonlinear evolution of the system within the context of

Assumptions (a) - (c).

We now make use of Eqs.(32), (33), (35) and (36) to investigate detailed

properties of the sideband instability (including the influence of both

trapped and untrapped electrons) for small-amplitude perturbations about

a primary electromagnetic wave with constant amplitude a and slowly varying

phase 6 . Each quantity is expressed as its equilibrium value plus a per-

turbation, i.e.,

a= s + 6as'

0
el = 0 + el 

(37)

e' = 0 + 6e'.

For the deeply trapped electrons with ej + 6' 2nn, we take n = 0 without

loss of generality in Eqs.(32), (35) and (36).
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B. Equilibrium Model

We first consider equilibrium solutions to Eqs.(32), (33), (35) and

(36) in the absence of perturbations, i.e., 6as = 0, 6' = 0, 6ej = 0 and

68' = 0. Consistent with the assumption that j is sufficiently large in

comparison with ', the zero-order orbit of an untrapped electron calculated

from Eq.(33) can be approximated by

6 0 = 80 (0) + 'ck't' . (38)

Here, a'c = const. is the average velocity of an untrapped electron in the

ponderomotive frame. In Eq.(38), note that the modulation of the electron

orbit by the ponderomotive potential has been neglected. Making use of

Eq.(38) and the definition of the phase average in Eq.(34) it follows

trivially that

<sin(e u + 6 )>u = 0 = <cos(e u + 6 )> (39)

That is, in Eqs.(35) and (36), the untrapped electrons do not contribute to

any change in the equilibrium amplitude a and phase 60. Therefore, an

appropriate quasi-steady equilibrium state consistent with Eqs.(32), (35)

and (36) is described by 37

(40)

a0 = 0 = 80a a
at, s az' s

and

at, s
(41)

az' 6s = Cck'
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Note from Eq.(41) that c << 1 is required in the present analysis in order

that the change in 6 is small over the scale length of the ponderomotive

potential (X' = 2'rk' ). Making use of Eq.(28), the inequality j < 1

is equivalent to (B /rTck0)2 >> 2r T, where rT is the small parameter de-

fined in Eq.(27).

To summarize, the equilibrium state is characterized by free-streaming

untrapped electrons [Eq.(38)], trapped electrons with e0 + 6 = 0 [Eq.(40)],

and a primary electromagnetic wave with constant amplitude a0 [Eq.(40)] and
0s

slowly varying phase with 36 /az' = c'ck' [Eq.(41)].s T

C. Linearized Equations

We now linearize Eqs.(32), (33), (35) and (37) for small-amplitude

perturbations about the equilibrium state described by Eqs.(38)-(41). In

this regard, it is convenient to introduce the normalized amplitude per-

turbation 6A defined by
6a

7A (42)

a s

For ej + 6' ~ 0, it is straightforward to show that the small-amplitude

perturbations 6se, 6'ea, 6As and 6' evolve according to

d2  2
66T + WBT(Se + 6') = 0 , (43)

dt'

' + Bucos(e0 + 6 )6e'
dt'

(44)

= -B Im (6As + i6')exp(ieu + i5 ) ,
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c c2k ' 3
( + - -)6AS = ejck (6ej + Z')
at' W ' az'p T

s (45)

+ e'ck < (6e' + 6')cos(e0 + 60 ) u

up u U

a c2kc' a
- + -2 - 6_ ' + e ck 6As
at, s az'

(46)

= -e'ck' <(66' + 6')sin(e + 6

In analysing Eqs.(43)-(46) it is useful to express

6e' = 6i'exp(ie 0 + i6 ) + 6 '*exp(-ie0 - i6 ) , (47)

where the complex amplitude 6*' = 6*P + i6*i is slowly varying, and 6p'*

denotes the complex conjugate of 6*'. Making use of Eqs.(44) and (47)

and 6 = 0 (0) + auck't', it is straightforward to show that 6p' evolvesu u u

according to

'ck d2  d 2 0 0 '2 c2 k2] 1
+ 2i$'ck' - + ucos(e + 6 - auck j 6i'

d2+ iu dt' Bu u s
(48)

- Bu(6As + i6')
2i

For untrapped electron energy j ' sufficiently large in comparison with ' =u

[1 + (a + 0 )2]1, it is valid to neglect 2 cos(e 0 + 60 ) in comparisonw s Bu u s

with 2 c2k 2 in Eq.(48). Therefore, Eq.(48) can be approximated byup

d2  d 1

\d + 2i 'ck d 2c2k 2 (6 R + I ) = - - Bu + i ') (49)
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In Eq.(49), 6P, 6P , 6As and 6' are all real quantities, and it follows

that 6p'*= 6ip - i6Pj evolves according to

d2  d 2 2k2 1

- 2iW'ck' - - c (6 - i^ (6As - i6') . (50)
dt dt' u p 2i

Evidently, Eq.(49) [or Eq.(50)] describes the slow evolution of 6*p and 6

in response to the amplifying wave perturbations 6As and 6'.

Substituting Eq.(47) into Eqs.(45) and (46), and making use of -0u

e (0) + 'ck't' and the definition of the phase average in Eq.(34), it isu up

straightforward to simplify the untrapped-electron contributions in the

linearized wave equations. We readily obtain

< (6e' + 6')cos(e0 + 60))u = <6eu'cos(eo + 60)>u = 6qp , (51)

< (6e' + 6')sin(e0 + 60 )u = <u6e'sin(e + 6 )>u = -&p{ . (52)

10 0 0 0
In Eqs.(51) and (52), the average of 6' times cos(e + 6 ) or sin(e + 6

vanishes because 6' is assumed to be slowly varying. Substituting Eqs.(51)

and (52) into Eqs.(45) and (46), we obtain for the evolution of 6As and 6'

a c 2k ' a
- + - - A = ejck'(6e + 6') + E'ck'6 , (53)

at, s az'

a c 2 k' a
- + - - 6' = -esck'As + E'ck'6 . (54)
at' s a zI)

To summarize, in the present analysis the final set of coupled, lin-

earized equations for 66e, 64), 64', ^As and 6' is given by Eqs.(43), (49),

(50), (53) and (54).
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D. Dispersion Relation in Ponderomotive Frame

We now assume that the t'- and z'-dependence of the perturbations

in Eqs.(43), (49), (50), (53) and (54) is proportional to

exp[-i(Aw')t' + i(Ak')z'] , (55)

where Im(Aw') > 0 corresponds to instability (temporal growth). Consistent

with neglecting beam dielectric effects in the dispersion relation (7), we

also approximate c2k'/w' = c in Eqs.(53) and (54). The linearized equations

(43), (49), (50), (53) and (54) then become

2 2 2+ = ' , (56)

- (Aw' - Vck+ 6) = - w(u(6^As + iS') (57)
u 2i

1 2
- (Aw' + S'ck')2(6* - idj) = - WBu(6As - 16') (58)

uip 2i

-i(Aw' - cAk')6As = ejck'(de + _') + e'ck'6+, (59)

- i(Aw' - cAk')6' = -E'ck'6As + E'ck'6*'. (60)

In Eqs.(57) and (58), it is useful to introduce the untrapped-electron sus-

ceptibilities X+ and X~ defined by

-2 2

+ Ak',A ')=+ - Bu 2 ' (61)
(Aw' + 'ck') (Aw' - a'ck')

2 2

X~(Ak',Aw') = Bu Bu(62)
(Aw' + a'ck') (Aw' - 'ck')
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From Eqs.(57) and (58) we readily obtain

1
6P = - (ix-6As + x +s) (63)

4

1 = (-x+A 5s + ix') , (64)
4

which express 6t and 64j directly in terms of the perturbed amplitude 6As
and phase 6'. Solving Eq.(56) for 6ej + 6' in terms of 6', and substituting

Eqs.(63) and (64) into Eqs.(59) and (60) give two coupled homogeneous equa-

tions for 6As and 6'. Setting the resulting two-by-two determinant equal

to zero, we obtain, after some straightforward algebraic manipulation,

(Aw' - cAk') + 1 e'ckx- 2

(65)

(Aw)2 11
=Eck' 2 77 + - 'ck x ck' + - Ek

(Awl) - BT -u kj p ]

Equation (65) is the desired dispersion relation which relates the (complex)

oscillation frequency Aw' to the wavenumber Ak' and the system parameters

Ej, C ', ck', etc. Here, Ej., e', x+ and x~ are defined in Eqs.(26), (61)

and (62).

Before investigating detailed stability properties (Sec. IV), we show

that the dispersion relation (65) reduces to familiar results in two

limiting cases: (a) no untrapped electrons (p' = 0), and (b) no trappedu

electrons (Pj = 0).

No Untrapped Electrons (i' = 0): For i' = 0, it follows from Eq.(26)
u u

that F-' = 0, and Eq. (65) reduces to
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2 '2c2k 2  (Al
(A - k') 2c k 2 2 (66)

c (Awl ) - wBT

Equation (66) can be expressed in the equivalent form

2 2c2k2

0 = 1 W BT p c , (67)
(Aw') (Aw' - cAk')

which is the familiar dispersion relation 37,73 for the sideband instability

assuming slowly varying equilibrium phase S and no untrapped electrons.

The detailed stability properties predicted by Eq.(67) are investigated

in Ref. 37.

No Trapped Electrons (nj = 0): For = 0, it follows from Eq.(26)

that Ej = 0, and Eq.(65) can be expressed as

1 & 2 -1
0 (Aw' - cAk') - - eck' Bu

2 u (Aw' - 'ck ')( 6

(68)

1 Bu
x (Aw' - cAk') + - uck' + Bu 72

2 9 a'+Sck')2IA u p

where e' and 2 are defined in Eqs.(26) and (29), and use has been made
u Bu

of Eqs.(61) and (62). Apart from a sign, the two factors in Eq.(68) are

identical under the (simultaneous) reflections Aw' -+ -Aw' and Ak' -+- -Ak'.

Setting the first factor in Eq.(68) equal to zero gives the dispersion

relation

a2 2 c k'2
(Aw' - cAk')(Aw' - upck') = w Pu3 (69)

where use has been made of Eqs.(26) and (29). Consistent with Assumption (b),

we note that Eq.(69) is independent of the equilibrium wave amplitude a .
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When Aw' and Ak' are transformed back to the laboratory frame, it is

straightforward to show that Eq.(69) is similar to the Compton-regime dis-

persion relation66 obtained in the small-signal limit in the absence of

trapped electrons.

We now return to the full dispersion relation in Eq.(65).

Alternate Form of the Full Dispersion Relation: It is useful to re-

write Eq.(65) in an alternate form which clearly delineates the trapped-

and untrapped-electron contributions. Making use of Eqs.(61) and (62),

rearranging terms in Eq.(65), and multiplying Eq.(65) by [(Aw')2 _

2BT ]/(Aw) 2(A - cAk) 2, it is straightforward to show that the dispersion

relation can be expressed in the equivalent form

2 , 2 c2k'2
1 BT _

(Al)2  (Aw - CAk')

1 2 [(Aw)2 BT

= - ck 'Bu ( ,w1)2(Aw' - cAk')2 [2 2c k 2

(70)
1

x 2 Eu'ck Bu + 4Aw'(Aw' - cAk')u'ck'

+ ejck' [(Aw') 2 + '2c2k 2] 1 + 2'2  2

- (Awl) - eBT

Her, e, ', BTand Euare defined in Eqs.(26) and (29). In the absence

of untrapped electrons (c' 0), we note that Eq.(70) reduces directly to

the familiar dispersion relation (67) for the sideband instability. That

is, the effects of the untrapped electrons (the terms proportional to E')

are incorporated on the right-hand side of Eq.(70).
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IV. ANALYSIS OF DISPERSION RELATION

A. Dispersion Relation in Laboratory Frame

We now transform the full dispersion relation (70) back to the

laboratory frame. From Eq.(15), it follows that

Aw'= yP (A - vp Ak)
(71)

Ak' = yp [Ak - (v p/c2

where Aw and Ak are the frequency and wavenumber of the perturbations in

the laboratory frame. Making use of Eq.(71) and y = (1 - V /C2 -1, it is

straightforward to show that 37

vAk
Aw' - cAk' = p(1 + vp/c)[ (Aw - vp Ak) - ck0 -2 - , (72)

where ks y (1 + V /c)(V /c)k0 is defined in Eq.(18). We further intro-

duce the shorthand notation

AQ =Aw - vp Ak

(73)
v Ak

AK = k0
c ks

Then, from Eqs.(71)-(73), Aw' and Aw' - cAk' can be expressed in the

equivalent form

Aw' y AQ

(74)

Aw' - cAk' = yp(1 + v p/c)(A2 - cAK)
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Equation (74) expresses Aw' and Aw' - cAk' directly in terms of AS and AK,

which are related to Aw and Ak in the laboratory frame by Eq.(73).

To simplify the dispersion relation (70), it is convenient to intro-

duce the dimensionless parameter

' / ' 3
au -- _ - ) , (75)

which is a measure of the ratio of the untrapped electron density to the

trapped electron density, n'/fj = nBuT. Making use of the definitions of

' = ypkovp [Eq.(16)], k' = yp(1 + v /c)ko [Eq.(19)], T and 2 [Eq.(25)],
pu p p p u pi pu

C and e' [Eqs.(26) and (28)], B and B [Eq.(29)], and au [Eq.(75)],

some straightforward algebra shows that E ck' and E'ck 2 can be expressed

in the equivalent forms

ejck' = 2rTck k 0 Yp(1 + vP/c) , (76)

B

and

E'ck'u 2 = 2a T ck Y 3 (i + vp/c) . (77)

Here, rT is the (small) dimensionless gain parameter defined in Eq.(27),

and the bounce frequency &B = (c2k 2a w05 2 )i of the deeply trappedp - p

electrons is defined in the laboratory frame in Eqs.(23) and (24).

Finally, making use of k' = y (1 + v /c)ko [Eq.(19)], we note that 'ck' =

y (1 + v p/c)'ck. It is useful to define

= (1 + v p/c) (78)

so that 'ck' can be expressed in the compact form
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'ck = yp u'ck (79)
Pu 0

After some algebraic manipulation that makes use of QB BT /p and

Eqs.(74), (76), (77) and (79), it is straightforward to show that the dis-

persion relation (70) can be expressed in the equivalent form

2 42 2 (rck Q 6

1 B 0 B)
(AS) (tn - cAK)

(r cko) 3 U )2 a2

u 2 22 22
(A ) (A2 - cAK) 2 - O c2k 22

(80)

x u (Tcko 3  + 4(n0)(AE - cAK) 'cko

+ 2(rTck) rTck0 2 [()2 + .c2 k] + 2
T 0 a c ko 1 +(AS) 2-

Here, au = ( uT/)(j,/%) 3 [Eq.(75)], AQ = A- v Ak [Eq.(73)], AK =

k0(v p/c)Ak/ks [Eq.(73)], and rT is the (small) dimensionless gain parameter

defined in Eq.(27). For awa << 1, we estimate ' (1 + a 2) in Eq.(27),
w s -w

and rT can also be expressed in the more familiar form

1 a2 (4,, e2/m) (1 + v /c)
r - w T < 1 , (81)

4 (1 + a ) ypc k0  v p/c

where use has been made of = pT p* Consistent with Assumption (b) at

at the beginning of Sec. III, we require that a'cko be sufficiently large

in comparison with 2B in Eq.(80) in order that the untrapped-electron

motion be only weakly modulated by the ponderomotive potential.
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Equation (80) constitutes the final dispersion relation which is

analysed numerically in Sec. IV.B. For au = 0, which corresponds to no

untrapped electrons (^n' = 0), Eq.(80) is the familiar dispersion relation37,71
U

for the sideband instability in circumstances where the equilibrium wave

phase is slowly varying [Eq.(41)]. For a f 0, however, it is found that

the untrapped electrons can significantly modify stability behavior

(Sec. IV.B).

B. Numerical Results

In analysing the dispersion relation (80) it is sensible to introduce

the total density of beam electrons nb =T + nu. We define the fraction

of beam electrons that are untrapped (f ) and the fraction of beam electrons

that are trapped (fT) by

n
fufu ^A

nb
(82)

nT

fT u'nb

(Keep in mind that n' = n/y , nT = p and = nb are the densitiesu up9 YTp nb p

in the ponderomotive frame. Therefore, fu and fT are also given by fu

ub'/6 and fT = 6f/F.) We further define the gain factor rb associated

with the total beam density by

r = r , (83)
nT

where r is defined in Eq.(81). Because (_'/j )3 ~ 1 for awa << 1, it

follows from Eq.(75) that au = 6/ -= 6u T is an excellent approximation.



31

Therefore, from Eqs.(82) and (83), aur3 and r can be expressed in terms
U T an Tcabeepesditrm

of r and f byb u

u T u b'
(84)

r = (1 - f b '
T u b'

where fu u b is the fraction of beam electrons that are untrapped.

In the numerical analysis of Eq.(80), we normalize all frequencies

to rbck0 and introduce the dimensionless parameters

-A Q - cAK
A=2 , AK = - ,

rbck0 rbck0

(85)

= B ack0

r bck0 rbck0

In Eq.(85), note that 2B B b/rbck0 is a dimensionless measure of the pump

strength (amplitude of the primary electromagnetic wave). Substituting

Eqs.(84) and (85) into Eq.(80), we find that the dispersion relation can

be expressed in the equivalent form

, 2 (1 f )2 -4
1- B u B

(AQ) (A Q - AK)

- 2 -2

2( -f 
8)) (

u

+ 4()(Z - K )Fu + 2(1 uf ~ 2 + ] 1 + 2 2

UB B
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The dispersion relation (86) has been solved numerically for the

normalized growth rate Im(AQ) = Im(A2)/rbck0 and the normalized real fre-

quency Re(AS) = Re(a)/rbckO versus the normalized wavenumber AK

AK/rbk0 over a wide range of system parameters B = QB/rbck f= u n b'
and au = b. Typical results are illustrated in Figs. 3 - 8 for a fixed

value of Z6y = 3 x 21/3 = 4.3267, and normalized pump strength ranging from

B /rbck0 = 21/3 = 1.2599 (Figs. 3 - 5), to Q B /rbck0 = 0.5 (Fig. 6), to

QB rbck0 = 0.2 (Figs. 7 and 8).

In Fig. 3, we illustrate typical numerical results and establish the

sign conventions inherent in the dispersion relation (86). In particular,

for OB bck0 = 21/3 and fu = nui b = 0.5, Fig. 3 shows plots of the

normalized growth rate Im(AQ)/rbck0 and real oscillation frequency

Re(Ao)/rbck0 versus normalized wavenumber AK/rbk0 obtained from Eq.(86)

for the two classes of unstable solutions. The results in Figs. 3(a) and

3(b) pertain to the unstable mode driven by the untrapped electrons, whereas

the results in Figs. 3(c) and 3(d) pertain to the unstable mode driven by

the trapped electrons. For fu =u b = 0.5, of course both classes of

unstable modes are affected by the other population of electrons. With

regard to the symmetries inherent in Eq.(86) and evident in Fig. 3, we note

that

ReAQ(-AK) = -ReAQ(AK)
(87)

ImAQ(-AK) = ImAO(AK)

are (necessarily) satisfied by both classes of unstable modes. Equation (87)

assures that the Fourier transform functions for the perturbed quantities

^As,6',6e', etc., correspond to transforms of real-valued functions.s Ts
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For simplicity of notation, keeping in mind the symmetries in Eq.(87)

and Fig. 3, throughout the remainder of this paper we display only the

stability results corresponding to the right-most growth curves in Figs. 3(a)

and 3(c). That is, in Figs. 4 - 8, the stability results are presented only

for the right-most lobes of the growth rate curves.

Figure 4 shows plots of the normalized growth rate Im(AQ)/rbck0 versus

AK/rbk0 obtained from Eq.(86) for B /rbck0 = 21/3 and fraction of untrapped

electrons ranging from fu = 0 [Fig. 4(a)] to fu = 1 [Fig. 4(e)]. For fu = 0,

Fig. 4(a) corresponds to the familiar growth rate curve 37,73 for the side-

band instability assuming slowly varying equilibrium wave phase and that all

of the electrons are deeply trapped. [Indeed, for fu = 0 and B = 21/3

Eq.(68) can be solved analytically,37 which gives a useful calibration of

the numerical results.] Adding an untrapped electron component, it is

evident from Figs. 4(b) - 4(e) that a new unstable mode (driven by the un-

trapped electrons) is introduced. The untrapped-electron mode is repre-

sented by the dotted curves in Figs. 4(b) - 4(e), whereas the sideband

mode is represented by the solid curves. As expected for zero energy spread,

the untrapped-electron mode in Figs. 4(b) - 4(e) has a relatively broad

bandwidth in AK-space. Moreover, as fu is increased (thereby decreasing the

fraction of trapped electrons), the growth rate and bandwidth of the sideband

instability continue to decrease as fu is increased from fu = 0.2 [Fig.4(b)],

to fu = 0.5 [Fig. 4(c)], to fu = 0.8 [Fig. 4(d)]. Indeed, for fu = 1 (no

trapped electrons), the sideband instability is completely absent (as expected),

and only the instability driven by the untrapped electrons is present

[Fig. 4(e)].

It is evident from Figs. 4(a) - 4(e) that the properties of Im(LQ)/rbk0

versus AK/rbk0 differ in detail for the two unstable modes. However, an
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equally striking feature of Fig. 4 is that the characteristic maximum growth

rate of the most unstable mode varies by only a small amount (less that 25%)

between the case where there are no untrapped electrons [fu = 0 in Fig. 4(a)]

to the case where there are no trapped electrons [fu = 1 in Fig. 4(e)].

This suggests that it is a serious oversight to neglect the role of an

untrapped-electron component when calculating the detailed linear and non-

linear evolution of the beam electrons and the radiation field.

Figure 5 shows plots of the normalized real frequency Re(AQ)/rbck0

versus AK/rbk0 obtained from Eq.(86) for B /rbck0 = 21/3, and fu = 0

[Fig. 5(a)], fu = 0.5 [Fig. 5(b)] and fu = 1 [Fig. 5(c)]. The system param-

eters in Figs. 5(a), 5(b) and 5(c) are identical to Figs. 4(a), 5(c) and 5(e),

respectively. Moreover, Re(AQ) is plotted only over the unstable range of

AK, and the solid curves in Fig. 5 correspond to the sideband mode whereas

the dotted curves correspond to the untrapped-electron mode. Evidently,

Re(Ao) increases monotonically with AK for the sideband mode [Figs. 5(a) and

5(b)]. Furthermore, the magnitude of Re(AQ) is somewhat larger for the

untrapped-electron mode [Figs. 5(b) and 5(c)]. Moreover, Re(An) is approxi-

mately constant for the untrapped-electron mode for AK in the range LK/Tbko > 5.

In Fig. 6, the normalized pump strength is reduced to 2B /rbck0 = 0.5.

In particular, Fig. 6 shows plots of the normalized growth rate Im(Ao)/rbck0

versus AK/rbk0 obtained from Eq.(86) for 2Bb/rbck0 = 0.5 and fraction of

untrapped electrons ranging from fu = 0 [Fig. 6(a)] to fu = 1 [Fig. 6(e)].

In Fig. 6, the general features of the growth rate curves for the sideband

mode (solid curves) and the untrapped-electron mode (dotted curves) are

qualitatively similar to Fig. 4, although the bandwidth of the sideband

instability is considerably larger for the smaller value of Q B/Pbck0 chosen

in Fig. 6 [compare Figs. 4(a) and 6(a)]. Moreover, the maximum growth rate
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of the untrapped-electron mode shifts from negative values of AK for

f u 0.5 [Figs. 6(b) and 6(c)] to positive values of AK for fu > 0.5

[Figs. 6(d) and 6(e)]. As in Fig. 4, it is evident from Fig. 6 that the

characteristic maximum growth rate of the most unstable mode varies by

only a small amount over the entire range from fu = 0 [Fig. 6(a)] to fu = 1

[Fig. 6(e)]. However, the detailed properties of Im(AQ)/rbk0 versus

AK/r bk0 differ considerably for the two modes.

Finally, in Figs. 7 and 8, the normalized pump strength is reduced

further to B /rbck0 = 0.2. Shown are plots of Im(AQ)/rbck0 (Fig. 7) and

Re(AQ)/rbck0 (Fig. 8) versus AK/rbko obtained from Eq.(86) for "B/rbcko = 0.2

and values of fu ranging from fu = 0 to f = 1. As in Figs. 4 and 6, only

the sideband mode is unstable for fu = 0 [Fig. 7(a)], whereas only the

untrapped-electron mode is unstable for fu = 1 [Fig. 7(e)]. Finally, as

in Figs. 4 and 6, the characteristic maximum growth rate of the most un-

stable mode varies by only a small amount over the entire range of fu

considered in Fig. 7.
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V. CONCLUSIONS

This paper has investigated the detailed influence of untrapped

electrons on the sideband instability in a helical wiggler free electron

laser. Small-amplitude peturbations are assumed about a constant-amplitude

(a = const.) primary electromagnetic wave with slowly varying equilibrium
s

phase 6 [Eqs.(40) and (41)]. A simple model is adopted in whch all of the

trapped electrons are deeply trapped, and the equilibrium motion of the

untrapped electrons (assumed monoenergetic) is only weakly modulated by

the ponderomotive potential. The theoretical model is based on the single-

particle orbit equations together with Maxwell's equations and appropriate

statistical averages (Sec. II). Like our recent treatment 37 of the side-

band instability (which neglects the effects of untrapped electrons), the

present analysis is carried out in the ponderomotive frame, which leads

to a substantial simplification in deriving the dispersion relation (70)

(Sec. III). Transforming Eq.(70) back to the laboratory-frame frequency

W = Ws + Aw and wavenumber k = ks + Ak, detailed properties of the sideband

instability are investigated, including the effects of the untrapped

electrons (Sec. IV).

The resulting dispersion relation (86) has been analysed numerically

over a wide range of dimensionless pump strength B /Fbck0 and fraction

of untrapped electrons fu = nu /ib To briefly summarize, when both trapped

electrons and untrapped electrons are present, there are generally two

types of unstable modes, which we refer to as the sideband mode, and the

untrapped-electron mode. For fu = 0, only the sideband instability is

present (as expected). As fu is increased, the growth rate of the

sideband instability decreases, whereas the growth rate of the untrapped-

electron mode increases until only the untrapped-electron mode is unstable

for fu = 1 (Figs. 4, 6 and 7).
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It is evident from the present analysis that the detailed growth

properties are quite different for the two unstable modes. However,

a very important feature of the stability results is that the characteristic

maximum growth rate of the most unstable mode varies by only a small amount

over the entire range of fu from fu = 0 (no untrapped electrons) to fu=

(no trapped electrons). This suggests that it is a serious oversight to

neglect the role of an untrapped-electron component when calculating the

detailed linear and nonlinear evolution of the beam electrons and the

radiation field.
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FIGURE CAPTIONS

Fig. 1. In the ponderomotive frame, electron motion in the phase space

(z',p') occurs on surfaces with y' = const.

Fig. 2. Plot of the equilibrium ponderomotive potential W(z') =

i 2 + 4a asin 2[(1/2)(k z' + o ) versus k Z1. W(z') is

the envelope of turning points with pj = 0 and (as,6')

(0,60) in Eq.(10). Deeply trapped electrons have energy

y! ::' = [1 + (a - o ) 2 [Eq.(22)]. Untrapped electrons
-w s

have energy y! = 5' > 5' = [1 + (aw + as)2 ] [Eq.(21)]. Note

that j 2 _ 2 = 4a w 1.w s

Fig. 3. Plots of the normalized growth rate Im(AE)/rbck0 and

real frequency Re(AQ)/rbck0 versus AK/rbk0 obtained from

Eq.(86) for the untrapped-electron mode [Figs. 3(a) and 3(b)]

and the trapped-electron mode [Figs. 3(c) and -3(d)]. Results

1/3 'U = 1/3 = 0.5.are presented for s2 B/rb cko= 2 1 u 3 x 2 , and fu =05

Fig. 4. Plots of th

obtained fr

(a) fu = 0,

(e) fu = 1.

Fig. 5. Plots of th

obtained fr

(a) fu = 0,

Fig. 6. Plots of Im

0 B /Fbck0 =

(c) fu = 0.

e normalized growth rate Im(AQ)/rbck0 versus AK/rbk0

om Eq.(86) for 0 B/r bck0 = 21/3, u = 3 x 21/3, and

(b) fu = 0.2, (c) fu = 0.5, (d) fu = 0.8, and

e normalized real frequency Re(AL)/rbck 0

om Eq.(86) for QBb/rbck0 = 21/3 u = 3 x

(b) fu = 0.5, and (c) fu = 1.

versus AK/rbk0

21/3, and

(A)/rbck0 versus AK/rbk0 obtained from Eq.(86) for

0.5, = 3 x 21/3, and (a) fu = 0, (b) fu = 0.2,

5, (d) fu = 0.8, and (e) fu = 1.
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Fig. 7. Plots of Im(AQ)/rbck0 versus AK/rbk0 obtained from Eq.(86) for

9B/rbck0 = 0.2, a= 3 x 21/3, and (a) fu = 0, (b) fu = 0.2,

(c) fu = 0.5, (d) f = 0.8, and (e) fu = 1.

Fig. 8. Plots of Re(LsI)/rbcko versus AK/rbko obtained from Eq.(86) for
II = 1/3

QB/rbck0 = 0.2, B= 3 x 2/, and (a) fu = 0, (b) fu = 0.5, and

(c) fu =1
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