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ABSTRACT

An integral equation in k-space is derived which describes the propagation of electro-

magnetic waves induced by an external source of charge or current in a magnetized plasma

(B = Boi) having an arbitrary density variation in the i direction. The nonlocal k-space

dielectric tensor kernel is derived keeping finite ion Larmor radius (p;) corrections to all

orders without the use of an expansion in the inverse density gradient scale length (LN) so

that the effect of a strongly inhomogeneous plasma density profile (LN Z pi) on ICRF wave

propagation can be studied. The integral equation is solved numerically in the electrostatic

limit to study the capacitive excitation of ion Bernstein waves for frequencies near the second

harmonic of the ion cyclotron frequency (w ~ 2 f). The spectrum of weakly damped eigen-

modes for a plasma having a large region of uniform density and a highly nonuniform edge is

found to consist of numerous "uniform plasma" modes and an electrostatic drift mode which

propagates only in the edge region. Asymmetries in the radial structure of these modes,
which arise from the diamagnetic drift of particles in the plasma edge, result in an asym-

metric distribution of wave energy launched in the directions parallel and anti-parallel to the

diamagnetic current. The surface electrostatic drift mode is found to be the dominant mode

of oscillation as the wave frequency approaches the second harmonic of the ion cyclotron

frequency.
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I. INTRODUCTION

Plasma heating by radio frequency (RF) electromagnetic waves in the ion cyclotron range

of frequencies (ICRF) has a number of applications in plasma confinement experiments. In

addition to providing an efficient means of bulk plasma heating,' ICRF waves have also been

used with some success for impurity control2 in tokamaks, as well as end loss reduction,'

and ponderomotive stabilization 4 in mirrors. The effectiveness of ICRF heating in any of

these applications relies on an ability to control the RF field profile in the plasma through an

appropriate design of the external wave launcher. Since the oscillating electromagnetic field

is not directly measurable in fusion plasmas, theoretical models of ICRF heating experiments

have been developed to gain an understanding of the influence that antenna geometry, plasma

nonuniformities, and kinetic phenomena have on the RF field profile.

For the most part, theoretical models of ICRF wave coupling and propagation have been

developed using differential forms of the field equations, in which the plasma response to the

RF field is characterized by an equivalent dielectric tensor derived from linear Vlasov theory.

A significant simplification which is commonly used to integrate the Vlasov equation is to

truncate the Taylor expansion of the perturbed electric field and the equilibrium distribution

function about the particle guiding center. The simplest form for the dielectric tensor, that

corresponding to a uniform cold plasma, is formally obtained from the Vlasov solution by

neglecting terms of order k pi and p;/LE, where kc is the perpendicular wavenumber of

the perturbed field, pi is the average ion Larmor radius, and LE is the shortest scalelength

associated with the variation of equilibrium parameters. A number of antenna coupling

models based on the cold plasma dielectric function have been employed to study the effect

of antenna geometry on the global wave field structure in one dimension, using the complete

fourth order system of equations,B- 9 and in two dimensions, using a second order system

of equations which neglect electron inertia" (m. = 0). In order to study the effects due

to finite temperature or plasma nonuniformities, higher order corrections in kp and pi/LN

need to be included; however, the concomitant mathematical complications have limited

much of the analysis to one dimensional models which only include first order corrections.

The corrections due to finite Larmor radius (FLR) effects are particularly troublesome

since each successive power of A = (khpi)2 retained in the dielectric function beyond the

cold plasma limit raises the order of the wave equation by two. The complexity of the sixth

order differential operators which result from including just the first order FLR terms has

motivated the development of simpler dielectric models in which specific branches of the

dispersion relation are eliminated. For example, in the m, = 0 approximation, the ordinary

branch of the dispersion relation is eliminated by assuming that the electric field component
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parallel to the magnetic field is zero. While this approximation may be adequate for analyzing

certain specific applications, such as fast magnetosonic wave propagation in regions far from

the plasma edge, it is not applicable in general, because the ordinary branch corresponds to

waves in the plasma periphery which play an important role in the antenna coupling process.

Indeed, the m. = 0 approximation has been shown to provide a poor description of slow wave

heating experiments in axisymmetric configurations.' A number of authors have proposed

different schemes for including FLR effects in which the full sixth order equation is solved and

the amplitude of the kinetic mode is determined from supplementary boundary conditions,
derived by integrating the field equations across the plasma-vacuum interface.',"- The

issue of whether a unique boundary condition scheme exists aside, it may be argued that
these models are inappropriate simply because, in reality, there is no well defined plasma-
vacuum interface across which boundary conditions can be applied. Moreover, both of these

perturbative techniques encounter difficulty when kipi>1 because the transport of such short

wavelength field fluctuations by the thermal motion of the plasma particles is an inherently

nonlocal process and, as such, is not adequately described by differential equations of finite

order.

If the Vlasov equation is integrated without resorting to an expansion in the ion Larmor

radius, then the Maxwell-Vlasov equations lead to a system of integro-differential equa-

tions. Integral equations have been used to study the eigenmode structure of plasmas with

nonuniform density via formulations in both coordinate space"- 8 (x-space) and wavenum-

ber space- 2 2 (k-space). The integral equations in x-space treated rather simple, piecewise

continuous density profiles while the k-space integral equations have been limited to either

Gaussian or parabolic profiles. In this paper, we present a generalization of the k-space inte-

gral technique which is fully electromagnetic and is valid for a wide variety of plasma density

profiles in slab geometry. In contrast to the previous work on k-space integral equations, we

use an integral representation of the Vlasov equilibrium which facilitates the transformation

of the equations to k-space.

To simplify the analysis, we assume that the confining magnetic field is uniform. Conse-

quently, this model alone would not be adequate for calculating the global wave structure in

complicated equilibria where transverse or parallel magnetic field gradients play an essential

role in the wave heating process. Nevertheless, the model should be useful for providing

insight into the kinetic phenomena which can occur in the plasma edge, where the effect of

the magnetic field gradients can be neglected compared to the gradients in density and tem-

perature. Several recent theoretical models have focused on the role that the edge plasma

plays in determining the antenna coupling."",' 2 3 Conditions in the plasma edge, however,
preclude an analysis based on the local approximation because the density and temperature
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gradient scale lengths in the edge region may be on the order of only a few ion gyroradii,
particularly in the scrape-off region behind the plasma limiters. The particle drifts asso-

ciated with these gradients not only modify the dispersion of the uniform plasma modes,
but also give rise to an additional set of electrostatic drift modes which may be excited by

the antenna. The direct excitation of these short wavelength (k pi > 1) modes may have

a detrimental effect on the plasma by altering the power deposition profile or by increasing

the radial transport. The advantages of the k-space integral equation formalism over the

local differential equation approach in the analysis of this problem are that it includes FLR

corrections to all orders and it obviates the need for an expansion of the equilibrium distri-

bution function in powers of p;/LN. Furthermore, since the integral equation describes the

fields in the infinite domain, x = (-oo, oc), the illusory issue of plasma-vacuum boundary

conditions is entirely circumvented.

The purpose of this paper is to use the k-space integral equation to determine how

wave excitation in a plasma slab is affected by the drift currents in the plasma edge. In

Section II we describe the model geometry and basic equations. Section III introduces the

integral representation of the Vlasov equilibrium solutions and some model profiles which

can be considered. Section IV contains the derivation of the linear electromagnetic dielectric

tensor kernel for the integral form of the wave equation. In Section V we present some

numerical results obtained for the case of ion Bernstein wave excitation by external charge

distributions.
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II. MODEL GEOMETRY AND BASIC EQUATIONS

Our model assumes a plasma slab that is infinite and uniform in the y and z directions,
but has an arbitrary density variation in the x-direction, no = no(x). The confining magnetic

field is taken to be uniform and in the z direction, Bo = Boi. We consider equilibria which

are charge neutral (Eo = 0) and have 3 = 8'rnoT/B2 << 1 so that the magnetic field

generated by equilibrium plasma currents may be neglected in comparison to the externally

imposed magnetic field. The wave fields, excited by an external source of current and/or

charge localized around x = xo in the low density or "vacuum" region, will be treated as

small amplitude perturbations about the equilibrium state.

The plasma is assumed to be collisionless so that its response to the external electro-

magnetic field is governed by the Vlasov equation

Of. q. vxB)Vifa=0,

t , c

which describes the evolution of the particle distribution function fa, for particle species a,

with charge q., and mass m,. The electromagnetic field is determined self-consistently from

Maxwell's equations

VxE= ,OB (2)
c t

47r J 1EVxB=-J+- ,(3)
c cOt'

where the current includes an external source, as well as the currents induced in the plasma

J = J.t + (q . fvdv. (4)

Charge accumulation on the antenna can be permitted by choosing a non-solenoidal current

distribution, namely

V - et = - "" # 0.
Ot

In general, the species subscript, a, will be suppressed except when referring to particular

ion or electron quantities, in which case the subscripts "i" or "e" will be used.

5



III. EQUILIBRIUM SOLUTIONS

Under the assumptions of our model, the Vlasov equation which describes the equilibrium

distribution, Fo, of each species is simply

8Fo Fo
v1 cos - =0, (5)

where f = qBo/mc is the cyclotron frequency and vi and 0 are the polar velocity space

variables defined by the transformation vI = (v2 + v2) and 0 = tan-'(v,/v.). The general

solution to Eq. (5) is any arbitrary function of the variables v1 , v_ , and the canonical

momentum p,. We consider here distribution functions Fo which are products of functions

of v1 , v,, and p... For a uniform magnetic field the canonical momentum is just the x-

coordinate of the particle guiding center, p, = x + v11/fl. The p, dependence of F can be

chosen to give a specific density variation such as Gaussian, linear, or parabolic. However,
to keep the analysis general we use an integral representation 24 of the py dependence of Fo

F0 = NoFL(vI)F (v.) I K(s)e'(0+v/0)ds, (6)

where K(s) is the integral transform of the guiding center density. Here F (vI) and F (v.)

are normalized to unity and the normalization of K(s) is chosen such that No represents the

maximum plasma density (i.e, f Fodv = Nog(x), where 0 < g(x) < 1). One could interpret

the integral transform in Eq. (6) as simply a Fourier transform with the contour C taken

along the real axis; however, some interesting plasma profiles can be considered by allowing

K(s) to be singular and suitably choosing the contour C.

The density profile corresponding to a general distribution of guiding centers is obtained

by integrating Eq. (6) over the polar variables (v±, 4, v.). The result is

no(x) = No eiSXK(s)H(s)ds, (7)

where

H(s) =j Jo( )F(V2 )vdv±, (8)

and Jo is the zero order Bessel function of the first kind. For the purposes of this paper

we shall only consider Maxwellian F±(v2) = (irv' )'exp(-v2/v2 ). In this case, H(s) =

exp(-s 2 p2/4) where p = Vth0/ is the average Larmor radius. In the limit of a cold plasma

(p = 0), H(s) = 1 and the plasma density coincides with the guiding center density, as

it should. When the plasma temperature is not zero, the product K(s) exp(-s 2p 2/4) will

generally be narrower than K(s) and, therefore, correspond to a spatial profile in real space

which is broader than the guiding center profile due to the thermal motion of the particles.
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There are two approaches regarding the choice of K(s). We can specify the density

profile no(x) and then solve the integral equation given by Eq. (7) to determine the guiding

center profile. Alternatively, we can choose an appropriate K(s) and determine the corre-

sponding density by simply evaluating Eq. (7). We have adopted the latter approach for

convenience. The simplest choice, K(s) = S(s) corresponds to a uniform density profile,

g(x) = 1. Choosing for K(s) a Gaussian of width 2/w and taking the contour C along

the real axis we find from Eq. (7) that the corresponding density profile is also a Gaus-

sian, g(x) = exp[-x 2 /(w 2 + p2 )]. An example of a singular guiding center transform is

K(s) = (27ris)- 1 with the contour C chosen to run below the singularity at s = 0. The

result is a step-function distribution of guiding centers

Fo= NoF(v )F.(v.), x +v /O > 0,

Fo = 0, x + vy/f2 < 0.

As a result of their gyrating motion, particles can stream into the region x < 0 to produce

a density profile of the form, g(x) = }[1 + erf(x/p)]. A simple generalization of this profile

is K(s) = (2is)-lexp(-s2 L2/4) which also leads to an error function profile, g(i) =

'{1 + erf[x/(L 2 + p2)-]}, but with an edge density gradient length which can be varied

independently of the plasma temperature. The difference of two error function profiles

displaced by ±w, g(x) = !C.{erf[(x + w)/(Li + p2)2] - erf[(x - w)/(Li + p2)i]}, which

is obtained by choosing the nonsingular distribution, K(s) = C.(7s)- sin(sw)e- N/4, can

be used to model a slab of guiding centers of width 2w. Here the normalization constant

C, = [erf(w/LN)]~' makes g(0) = 1. This profile, which we refer to as the double error

function (DEF) profile, is an interesting case since it provides a large central region of

uniform density where a comparison to local theory can be made and a highly nonuniform

edge region where we may expect nonlocal effects to occur. For a given p, the DEF profile

has two independent scale lengths; w determines the width of the slab and LN sets the edge

scale length.

Although there is considerable freedom in choosing K(s) for a single species, the full set of

functions K,,(s) must be chosen to satisfy the charge neutrality condition of the equilibrium.

From Eq. (7) it is clear that the plasma density profile will be different for ions and electrons

because of the disparity in their Larmor radii. We can guarantee charge neutrality of the

equilibrium if we associate with each ion species profile, Ki(s), an electron guiding center

profile, K.(s), satisfying

No.K.(s)H.(s) = Z1NoiK1(s)H(s).
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IV. THE LINERARIZED WAVE EQUATION IN INTEGRAL FORM

We begin by considering perturbations about the equilibrium described in Section III

f = Fo + f(r, v, t),

E = El(r, t),

B = Bo + Bi(r, t).

Linearizing Eq. (1) and combining Eqs. (2) and (3) we obtain

8fi qvxB0  q /vxB 1 \
--- + V - VfV + -Vfi = E + v B VFo, (10)at M C M( c )

(\~1 02 E1 _47r8 /
Vx VxEj + 1Jet + q. fiavdav) (11)

where the Laplace-Fourier transform Q(k, w) of a perturbed quantity, Q(r, t), is defined as

Q(k,w) = dt dcr Q(r, t)e1(k.rw)2)

Q(r, t) = J (1(k3,))(kr-wt)
cs 27r (27r) 3

and the contour C1 lies below all singularities of Q(k, w) in the complex w-plane. Since we

shall only be concerned with the time-asymptotic solutions which are steadily oscillating in

time, we neglect the initial value terms and set the frequency equal to the frequency of the

external drive current, J.t,(k,w). From Eq. (11) we immediately obtain the equation for

the transformed electric field

k x (k x +(k,w) + (,k -w), (14)

where 6)is an operator defined by

e E1 (k,w) = E1(k,w) + -r Eq.a fia(k, v,w)vd3 v. (15)
Wa

For a uniform plasma equilibrium, the Fourier transformation of Eqs. (10) and (11)

yields a k-space dielectric function which is local. That is, the components of the perturbed

electric field at any point in k-space can be determined from the system of linear equations

in Eq. (14), independent of the values of the perturbed electric field at other points in

k-space, since fia(k, v, w) is a function of E1(k, w) only. Such is not the case for a plasma

with nonuniform density, since the spatial dependence of the equilibrium leads to a coupling

of the plane wave amplitudes through the dielectric tensor. The derivation of the nonlocal
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dielectric function in this case is most easily carried out by using the integral representation

of the equilibrium solutions, Eq. (6), when solving Eq. (10) and leaving the s-integration

to be performed after the velocity space and trajectory integrations. Equations (14) and

(15) then lead to a system of coupled Fredholm integral equations for the components of the

Fourier transformed electric field.

Notice that by taking the Fourier transform of Eq. (11) and neglecting the boundary

terms to arrive at Eq. (14) we have tacitly imposed the condition that the fields vanish as

Irl - ±oo. This is the appropriate boundary condition for a plasma slab of finite extent (i.e.,

No(x) -+ 0 as IxI -+ oc) and for sufficiently low antenna frequency, where the vacuum field

is evanescent. Situations where one might expect the time asymptotic solutions to be finite

as Irl -- oo would be for the idealized case of a semi-infinite plasma with no dissipation or

for frequencies high enough that the radiating portion of the antenna power spectrum (i.e.,

Ik12 < (w/c) 2 ) is a significant fraction of the total power. Under these circumstances, it is

necessary to keep the edge terms and impose outward going radiation conditions.

The perturbed distribution function is obtained by integrating the right hand side of Eq.

(10) along the unperturbed particle trajectories

fi(r,v,t) - 1 dt'(El + V-X V.Fo, (16)

where the particle trajectories, subject to the initial condition, r'(t' = t) = r(t) = (x, y, z),

are

x' = x - p sin[fl(t - t') + 4]+ p sin 0,

y = y + p cos[I(t - t') + 4 P -pcos 4, (17)

Z' = Z - V,(t - t/).

Transforming Eq. (16) in space and time, using Faraday's law, Di = (c/w)(k x t 1 ), and

changing the time integration variable to r = (t - t') yields

f1 (k,v,w) = - NFFz j drei(-kzv3)r

x J dsK(s)ei'k±( sin(8),n( i +n-)]C(() -g(i, v, w), (18)

with

C,(r) = v()?3, (19)

C,(r) =vY(-r)t9±+iA(1 - ), (20)

F ' ktvc F' F + iskY](
(.() -= - COS(!Q7 + 4 )--- 2v,.-- + ik ], (21)

F. W F. FL QW
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I jl +iskv,], (2, = (2L + kz (:E. - 2v + (22)

= (k. - k.),

9 = tan~'[ky/(k, - s)],

9 = tan-'(k/h.).

The two terms in the parentheses of Eqs. (21) and (22) are the usual result of the velocity

space gradient in Eq. (16) acting on the perpendicular and parallel velocity distributions.

The prime notation here denotes differentiation of these distributions with respect to their

arguments, v2 and vz, respectively.

The effect of the nonuniform plasma density manifests itself in two ways. First, the

terms in Eqs. (19) - (22) that are proportional to "s" are the contributions to the velocity

space gradient that arise from the equilibrium diamagnetic drift. For an isotropic Maxwellian

distribution, dj = -(m/T)(w - kyvd)/w = -(m/T)wD/w where the quantity wD represents

the Doppler shifted frequency of the wave in a frame moving in the y-direction with the

diamagnetic drift velocity given by, vd = isT/mQ. Secondly, the presence of the exp(isx)

factor in the equilibrium distribution shifts the x-component of the Fourier transform variable

so that the transformed electric field that appears in Eq. (18) is evaluated at the new wave

vector k which in the x-y plane has the magnitude kI_ = [(k. - s)2 + k2,]21, and is directed

radially at the angle 9. The exponential phase factor in Eq. (18) has been written in its

most compact form by expressing it in terms of k- and 9.

The plasma current is obtained by performing the velocity integrals of f (k, v, w) multi-

plied by the components of the velocity, v = (v± cos 0, v1 sin 0, v.) . To facilitate this process

we expand the exponential factors in Eq. (18) using the generating function for the Bessel

function of the first kind

eizCoa = F i"Jn(z)e-i"O. (23)
7=-00

The trigonometric r dependence of v..(7-) and vy(r) acts as a raising and lowering operator

on the index of the Bessel series corresponding to the exp[-iki-p sin(0r+-)] phase factor

so that we may rewrite Eq. (18) (after performing the r-integration) as

q 0* * (n) -S(,we'Wf4-9)+n(0-W))
fi(k,v,w) = -i-NoFFz J dsK(s) E J(kjp) ) ,(24)

M C-_ n1-o (w + nQ - kzvz)

(,(n) = vi91 (-iJ,(5kp) sin 9 - cos ,

nJ (ijp) + n- k T
(yv(n) = vj-t- i'n IP) COS k - ~ sin8 + AM n(i)

1p w w
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C..n)= [_ - 2vF) + i5j]=O.Jn(kLP)-
LF. F. FL/ f1W J

The velocity moments of Eq. (24) can now be performed easily. Multiplying Eq. (24) by

the three components of velocity and integrating over 0, v,, and v1 , substituting the result

in Eqs. (14) and (15), and changing the s-integration variable to k., = k. - s we arrive at

the integral equation for the transformed electric field

/~ \ 2 
t-.47iw-

k x k x Ei(k, w) + dk., T (k, k) - = - 2 J,,(k, w), (25)

where the dielectric kernel function, 47'T(k, i), for any general distributions, F±(vI) and

F,(v,), is given by Eq. (A2) in the appendix. The components of the dielectric tensor e

for an anisotropic Maxwellian (TL $ T) which has a nonzero drift velocity in the z-direction

(V,) are given by Eqs. (A3) -(A19) in the appendix.

It is instructive to compare the functional form our dielectric tensor with K(s) = 6(s)

to that of the dielectric tensor for a hot uniform plasma (with k, $ 0) derived by Swanson. 7

Because of the close similarities between our general dielectric function and the dielectric

tensor for the uniform plasma, we have adopted notation similar to Swanson's. For any

general K(s), we have defined six functions (K 3 , K 1 , K±2 , T 1, T 2 , and T3 ) in addition

to those used in the definition of the uniform plasma dielectric. In the limit of a uniform

plasma, these functions degenerate as follows, K 3 -+ K 2 , K 1 -+ K,1 , and K1 2 -* K, 2 so

that the functions defined in Eqs. (A4)-(A12) are in exact agreement with those defined in

Eqs. (2) - (5) of Swanson's paper with the exception that the displacement current term in

our case is removed from the definitions of K and K, and appears as the delta function

8(k. - k.) in the diagonal elements of T. The equivalence of K 1 and K±2 to K.1 and K,2

is evident from the relations
a a

Z (e2),nA., = E (est).nAn,,
n=-oo n=-oo

S( 2)7 (A - A,')= ' (eit)n(A. -A'

n=-w n=-ac

which hold only when 9 = 0. These relations follow from Eq. (A18) and the property

-n(A,,) = In(A,) for integer values of n. The functions T 1, T 2, and T3 vanish in the

uniform plasma limit and have no corresponding term in the uniform plasma dielectric as

they represent modifications of the plasma response due to the equilibrium drifts. Evidently,

these terms represent a fluid drift response since the Z-function is absent in their definition.

The dielectric tensor for a hot uniform plasma possesses the symmetry property

ej(k; -Bo) = e3i(k; Bo),
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which is the generalized Onsager relation derived from arguments regarding the thermody-

namics of irreversible processes. 2 2 7 It is therefore surprising at first sight that the com-

ponents of the dielectric tensor for a hot nonuniform plasma do not possess this symmetry,

as is clearly evident by the presence of the drift terms T1, T2 , and T3 and the fact that

K1 1 / K.1 and K12 $ K.2 . However, the derivation of the Onsager relations from the the-

ory of fluctuations is based on the assumption that the set of fluctuations which characterize

the deviation of the system from thermostatic equilibrium are independent variables. 27 This

assumption is invalid for a hot nonuniform plasma since the set of variables which describe

the deviation from equilibrium (in our case, the values of $1 (k,w) along the contour C) are

linearly related (Eq. (25)) thus, the nonlocal dielectric function should not be expected to

possess the Onsager symmetry.

An integral equation for the Fourier transformed electrostatic potential, 3i(k,w), is

obtained by forming the scalar product of k with Eq. (25) and replacing Ej(k,w) by

-i 1 (k, w). This operation contracts the dielectric tensor to a simple scalar function and

the driving term, Let(k, w), is replaced by the charge distribution on the antenna, p,,t(k, w).

The result is

2 00

(A:2,+ ;2 +di(,w)K.(k -) A. (26)

X [1 + ( V. - )Z(X.) + 1Z'(X..)(1 - )= 47r.,t(k, w),

where for each species a we define the quantities An,(Aa) = (( A -

k IkLTL/(,Mj2),a = (AI + k2)Tia/(2M.02 ), and X, = - V,./V... There are

two limits for which the integral equation can be easily solved analytically. First, in the

limit, TLc = Tzc -- 0, the kernel in Eq. (26) reduces to a function of (k., - k.) only so that

the integral equation can be solved, using the convolution theorem, to yield the differential

equation

d2  'k 2 kg')
d + 2 +g (x)+ 7C 2Jh1 (x, k , kI, w) = 47rp,,t(x , ky , k z, w),

where g.(x) is the normalized plasma density profile for species a. Secondly, when K(s) =

6(s), Eq. (26) reduces to IkI2 eL I(kw) = 4irPezt(k,w) where eL is the usual electrostatic

dielectric function for an infinite plasma. 21 In general, the kernel in Eq. (26) is a function

of both k, and k., reducing to neither a product of functions of k, and k. (degenerate

kernel) nor a function of k, - k, alone. For a Gaussian profile, K(s) = e-(M)/4, the left

hand side of Eq. (26) is identical to the result derived by Watanabe et al., 20 but does

not agree with the electrostatic integral equation derived by Sivasubramanian and Tang.1 9
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These authors treated the spatial dependence of the equilibrium incorrectly, introducing the
nonuniform density after the trajectory integrals were performed rather than constructing a
proper equilibrium distribution from the constants of motion.

Since Eq. (26) is an integral equation in k,, the quantities ky, k., and w play the role of
free parameters. Omitting the explicit dependence of these parameters, we write Eq. (26)
in the form

a(k.) (k.) + L M(k.,, (k.)d, = f(k.). (27)

We cannot solve this equation analytically for situations that are of interest so we approxi-
mate the integral by a discrete sum over a suitable finite interval [a, b] on the real k, axis to
obtain the matrix equation

N N

EAi, 1 (kj) E a(k).5, 3 + M(k;, k,)w 1 ) q(k,) = f(k.), (28)
j=1 j=1

which we can solve numerically. Here the points k3 (j = 1, N) are the abscissae and w1

the associated weight factors for a particular N-point quadrature formula (e.g., trapezoidal,
Simpson, or Gauss). In the limit N -+ oo, the approximate solution 4 1(k3) will tend to the

exact solution of Eq. (27) provided that Eq. (28) has a unique solution.29 The well known
condition for this is just that Aj is nonsingular, that is, A = detAej 5 0. Restoring the
dependence of the solution on the free parameters, we obtain from Cramer's rule

41(x, k, k., w) = (27r)~l E A(k ,, (29)
where~g= Ajk kky, krt)olm

where z\g(ky,, km, w) is the determinant of the matrix obtained by replacing the j-th column
of Ai3 with the vector f(k;).

To find 41 (x, y, z, w) we need to perform the remaining integrals over ky and kz. As k,
and k, are varied it is possible to encounter points in the (ky, k., w) parameter space where
A (ky, k., w) = 0. This is just the condition that the homogenous equation associated with Eq.
(28) have a non-trivial solution, which implies that the inhomogeneous solution, Eq. (29),
is not unique. These poles of q, (x, k. , kz, w) correspond to the normal modes of the plasma
slab. Although Eq. (29) gives the correct spatial structure for the normal modes, that being
the coefficient of (27rA)-1, it does not give the normal mode amplitudes correctly since the
inhomogeneous solution increases without bound as we approach the poles of 4,(X, k, k., w).
To determine the amplitude of each mode excited by the antenna, which we expect to be
finite due to the presence of damping, we perform the integration along a contour which
is deformed about the poles of ,(x, k, k;, w). Leaving k, fixed for the moment, we note
that if the antenna has finite extension in y, then the integration of Eq. (29) over k, after
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multiplication by the phase factor exp(iky)/27r, can, for large IyI, be expressed in terms of

the residues of [A(k, krw)]'

N

k1 (x, y, k., w) = ; ,.(kj, ki, k., w)e'(iw+k"Y)wj, (30)
I j=1

where
.zA(k, k2 , w)

0,.(kj, ki, k., w) = Z AI, ,)

and A'(ky, k,, w) is the derivative of the determinant with respect to ky. Here the sum

of the residues extends over those roots of the determinant (.4k1 , kc, w) = 0) for which

Re(kj)y > 0. The z variation of the field can be obtained by integrating Eq. (30) over k, after

multiplication by the phase factor exp(ikz)/27r. The reader is cautioned that the analytic

continuation of the Z-function from positive to negative values of Re(k.) introduces a branch

cut in the complex k. plane which must be properly included in the complete reconstruction

of the field. Alternatively, we could reverse the order of the kh and k. integrals to obtain

the solution for large jzf involving a sum over the residues in the complex k.-plane and

an integral over k. Since the diamagnetic drift frequency is proportional to k., we expect

the effect of the plasma edge to be most evident in the k, eigenmode spectrum and have,

therefore, followed the former approach in obtaining the numerical solutions presented in the

next section.
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V. NUMERICAL SOLUTIONS: BERNSTEIN WAVE COUPLING

In this section we present numerical solutions to Eq. (26) for frequencies near the second
harmonic of the ion cyclotron frequency (w ~ 2 f). Our primary goal is to study the
direct excitation of electrostatic plasma waves, in particular, the ion Bernstein waves, by an
external source of charge and to determine the effect of the edge plasma on antenna coupling.
The results presented here are for a hydrogen plasma with Maxwellian ions and electrons,
Tia = T.., V. = 0, T = T., and w,/. = 2. All plasma and antenna parameters
are expressed in dimensionless form. The ion Bernstein waves (IBW) are excited by an
oscillating surface charge density on localized conducting surfaces such as the antenna itself
or a Faraday shield. Taking the charge density to be confined to an infinitely thin layer
on the surface of an infinite planar conductor located at x = xo, we make the replacement
p.t(r) = 5(x - xo)-.,t(y, z). For simplicity, we take the external charge distribution to be a
line of charge with a sinusoidal variation in the z-direction, ie., u,,t(y, z) = 6(y)exp(i27rz/L.)
or &.,t(k, w)p? = 6(k. - 27r/Lz), which gives equal weighting to the kg spectrum of waves
for fixed k.. Of course, a detailed comparison of this model to any particular experiment
would require that the full k, integration be carried out for a specific antenna geometry. Our
intention here is merely to examine the changes in the k, spectrum due to variations in w,
k,, and the plasma density profile.

The computational requirements for solving the integral equation are determined mainly
by the number of points (N,) used in the numerical integration scheme, with the memory
requirements scaling as N' and the execution time (determined primarily by the number of
steps needed to invert a fully populated matrix by direct methods) scaling as N'. For a given
set of plasma conditions, the optimal integration parameters may be found by increasing
the integration interval in k, until the Fourier transformed potential, <^ (k., k, k., w), is
sufficiently small at the endpoints that the error due to truncation of the integral may be
neglected. The number of points in the integration scheme is chosen such that an increase in
the number of points (for a fixed integration interval) beyond N, does not significantly alter
the solution. For most of the results presented in this section, we find that a trapezoidal
quadrature scheme using 101 abscissae on the interval kp; = [-1,1] is adequate. The
matrix equation is solved directly using the method of LU decomposition (IMSL routine
LEQ2C) and the spatial profiles are obtained by inverse Fourier transformation using the
same trapezoidal quadrature formula. Typical execution time for calculating and inverting
the 101-by-101 matrix is about 3 seconds on the Cray-XMP.

We first present the numerical results for the double error function (DEF) profile with
a half-width w = 50 pi and an edge scale length LN = 5 pi. Since the density gradient is
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very weak in the center of the DEF profile, we expect that the wave propagation there will
be accurately described by the IBW dispersion relation for a uniform plasma. We examine
this first, since it provides both a check on the numerical solution of the integral equation
and a useful basis for a qualitative understanding of the numerical results.

Choosing khp = 2 x 10- 3 and convenient values of khpi from 0 to 0.3, we solve A = 0
to find the eigenvalues of w and the associated eigenvectors, j (x, k, k, w). For each set
of k, and w we find the shape of d (x, k, k., w) from Eq. (29). An approximate value of
k, is determined by measuring the separation between the nodes of 1(x, ky, k,, w) in the
central region of the slab. The discrete kI eigenmodes are displayed as the points in Fig.
1. The solid curves show the variation of k, with w/0 as predicted by the uniform plasma
IBW dispersion relation for the plasma parameters at the center of the DEF profile and the
indicated values of kyp;.

The points in Fig. 2 are determined by the same process, save that we fix w, solve
A = 0 to find the k, eigenvalues, and plot the k, values, obtained again from graphs of
0 (x, ks, k , w) versus x in the central region, against the corresponding k. The resultant
points in the k,-ky plane fall on the circles (solid curves in Fig. 2) predicted from the uniform
plasma IBW dispersion relation using the central plasma parameters. The horizontal axis
in Fig. 2 is |kylpi since the distribution of eigenvalues is symmetric about k, = 0. Figures 1
and 2 clearly demonstrate that the wave structure in the center of the DEF profile indeed
obeys the IBW dispersion relation for a uniform plasma, as expected.

Figure 3 displays the spatial structure of some of the eigenmodes for W = 1.95 Qj,
kzpi = 2. x 10-, and the indicated values of the eigenvalue kyp;. The solid curves in
these figures represent the real part of the electrostatic potential while the chaindot curves,
which are plotted relative to the right hand axes, display the normalized plasma density
profile, g(x). The imaginary part of the potential is not plotted here since its amplitude is
three orders of magnitude lower than the real part. Notice that the peak amplitude of each
eigenmode presented here has been normalized to unity. The two outermost peaks in Figs.
3(a)-3(e), which we will refer to as the cutoff peaks, arise from the Airy-like pattern associated
with the reflection of the IBW from the vacuum region where the field is evanescent. The
waves are weakly damped for the conditions assumed here since the arguments of the Z-
functions in the kernel for both ions and electrons are large, Oe -_ 25 > 1. Hence,
both electron Landau damping and ion cyclotron damping are completely negligible and
the field structure in the center of the plasma, established by multiple reflections of the
IBW between the two cutoff peaks, resembles a cavity mode. The slight ripple in the field
which occurs outside of the two cutoff peaks is due to numerical errors introduced by the
the truncation of the k, integration.
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The curves in Figs. 3(a)-3(e) show, in the order of increasing kpi, the spatial structure
of the first, fifth, tenth, eleventh, and twelfth eigenmodes lying on curve (e) in Fig. 2. Notice
that the drift induced asymmetry of the field is enhanced for the (lower/higher) order (k. /kk)
modes. On the basis of uniform plasma theory, we expect k. to decrease with increasing

k. until k.,w e 7r/2 (approximately one half wavelength fitting in the slab), as is the case
in Fig. 3(e). For larger values of k, the transverse wavelength exceeds the plasma width
and the wave should be cutoff. However, an additional mode, shown in Fig. 3(f), was found
for values of k, slightly larger than its expected cutoff value. This mode, which is highly
nonlocal in k-space (k.LN e 27), exhibits behavior characteristic of an electrostatic drift
mode in that it requires a density gradient to propagate (oscillatory in the x-direction) and
it propagates in only one direction relative to the diamagnetic drifts. Since w/k > 0, this
mode propagates in a direction parallel to the electron diamagnetic drift of the edge plasma
at x = +w. The mode for kpi ; -. 393 has a spatial structure which is the mirror image
of that in Fig. 3(f) and corresponds to a wave propagating in the edge plasma at x = -w
where the electron diamagnetic drift is reversed.

The most significant feature of the mode structure, from the standpoint of antenna
coupling, is the asymmetry of the mode structure in the edge regions. The asymmetry arises
from the drift term D, in Eq. (26) which effectively changes the particle response to the field
by Doppler shifting the wave frequency upward or downward depending on the sign of ky
and the direction of the density gradient. To a very good approximation, the shape, 1 (x), of
any weakly damped mode with k, < 0 is simply the mirror image of its kd > 0 counterpart,
since the anti-Hermitian part of the integral operator in Eq. (26) arises primarily from the
drift term. As a consequence, the asymmetric structure of the cutoff peaks can lead to an
asymmetric excitation between the kv > 0 and the k, < 0. waves. To assess the importance
of this asymmetric excitation we must determine how the coupled energy is distributed
among the various eigenmodes. The total, time-averaged work performed on the plasma is

W = J derJ(r, w) - E*(r, w),

SJdk. 1*(k.) Jdk.(k.) (k* - (k., k.) - - k* - iS(k. - k.))
Approximating the integral by a sum and using Eq. (30) we have

N N

W =3 dk. ,.(A;, ki, k., v); ,.(kj, ki, k., w) K(k,., kj)wiwj,
I i=1 j=1

= dk. W(ki,k.),

where W(k, k.) is the energy per unit k. associated with the normal mode ky = ki. In
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subsequent figures we plot, for given k, and w, logl 0[W(ki, k.)/W.], where W. is the
largest of W(ki, k.).

Figure 4 shows the power spectrum for an antenna located at x = 60 pi with w/l =

1.95,1.97, and 1.99. The modes shown in Figs. 4(a)-4(c) are the same "uniform plasma"
modes lying on the curves labeled (e), (c), and (a), respectively in Fig. 2. The solid points
correspond to modes having k > 0, circles to modes with k, < 0. In each case, the two modes
having the largest value of k. are the drift modes which are confined to the plasma edge
region. The overall shape of the power spectrum depends sensitively on the antenna location
relative to the cutoff peaks. For example, if the antenna lies outside of the cutoff peak for the
IBW, then the coupling amplitude is primarily determined by the distance from the antenna
to the cutoff peak and the vacuum field e-folding distance for each mode. On the other hand,
if the antenna lies inside the cutoff peak, then the coupling amplitude is determined by the
position of the antenna relative to the locations of the nodes and anti-nodes of the eigenmode
structure, these locations being independent of the antenna position. For the cases shown
in Fig. 4, the k, > 0 modes are preferentially excited because the antenna at x = 60 p; lies
near the maximum of the cutoff peak for the modes, but outside of the cutoff peak for the
kv < 0 modes.

The power spectrum in Fig. 4(a) is typical for situations where the wave frequency
is far from an ion cyclotron resonance, 6, > 1. Generally, the modes on the low end
of the k power spectrum are preferentially excited because the vacuum field scale length
for these modes is longer (in vacuum k., = ±i(ky + k)S). These modes also exhibit a
higher degree of symmetry since the diamagnetic drift term, being proportional to k, has
a diminished influence in determining the mode structure. Thus, from the spectrum in Fig.
4(a) we conclude that the spatial structure of the far field of the antenna to be essentially
that shown in Fig. 3(a) with roughly equal amounts of wave energy launched in the ±
directions. The sequence of Figs. 4(a)-4(c) show that as the wave frequency approaches the
second harmonic of the ion cyclotron frequency the asymmetry in the power spectrum of
the "uniform plasma" modes increases and the amplitude of the surface drift mode relative
to the rest of the spectrum steadily increases. Notice that the surface drift mode is the
dominant mode in Fig. 4(c) where w/2 = 1.99. For these conditions the antenna far field
would be similar to Fig. 3(f) with most of the wave energy propagating in the direction
of the electron diamagnetic drift in the edge closest to the antenna. The amplitude of the
surface drift mode is enhanced by the single particle resonance of ions in the plasma edge.
The resonance of ions gyrating in the edge is analogous to the Azbel-Kaner resonance of
electrons in metals which occurs when the penetration length of an electromagnetic field
applied at the surface is comparable to the electron gyroradius.3 0
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The effect of the diamagnetic drift is increased for waves having a shorter parallel wave-
length or for plasmas having a steeper gradient. Figure 5 shows that decreasing the parallel
wavelength results in eigenmode power spectra which are more asymmetric, particularly for
the lower order k, modes. The structure of the eigenmodes for kp = 10-2, Fig. 6(c), is
similar to that of the modes in Fig. 3. However, the mode asymmetry is enhanced due to an
increase in the amplitude of the cutoff peak at x = +w relative to the rest of the eigenmode
structure. We also find that the k1 of the excited waves increases with increasing k., as
indicated by the extension of the k spectrum in Fig. 5. The increase in k1 is most dramatic
for the surface drift mode which shifts to higher values of 1kj much faster than the rest
of the spectrum. An increased mode asymmetry and increased IkI is also observed for the
surface drift mode as LN is reduced.

All of the eigenmodes considered thus far have been weakly damped since j >> 1
and & >> 1 with the result that Im(y) < Re(k,). Under these circumstances, the
Fourier reconstruction of the field may be conveniently separated into two distinct parts;
the contribution from the contour which represents the near field of the antenna and the
contribution from the poles which represents the far field. For cases where e; e< 1 (ion
cyclotron damping) or eoz: 1 (electron Landau damping) the poles move off the real k axis
(which corresponds to spatial damping of the waves) and the distinction between the near
and far field is no longer meaningful. Here the field may be reconstructed by performing the
hy integration along the real ky axis. As an example of such a situation, we consider a case
with e-2 i <1 where ion cyclotron damping effects are important. Figures 6(a) and 6(b) show
the reconstructed potential profile for a plasma having the same parameters as that in Fig.
3, but with w/Qi = 1.99 and kapi = .004 and .008, respectively. The k integration in each
case was performed with a 101 point trapezoidal integration scheme along the real axis on
the interval kypi = [-1., 1.]. The spurious oscillations in the vacuum region are attributed to
numerical errors due to the crude integration scheme employed here. When integrating over

ky we find that the width of the spectrum in k, space varies considerably. As a consequence,
there are values of k for which the k, grid introduces noticeable errors. These errors could
be eliminated by dynamically changing both the width and number of points of the k, grid.
The peaks in the potential profiles shown in Figs. 6(a) and 6(b) are broadened by the varying
location of the cutoff peaks as ky is varied. Spatial damping of the field is evident from the
decrease in the amplitude of the wave as it propagates away from the antenna (xo/pi = 60)
and the fact that the potential has acquired a complex part comparable to its real part. The
k power spectrum for the two cases are shown on the same relative scale in Fig. 6(c). The
most interesting feature of these spectra is the dramatic asymmetry about k = 0 of roughly
three orders of magnitude. The peaks on curve (a) are due to the presence of the poles lying
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near the real axis which correspond to the most weakly damped modes. As k, increases the
poles move further from the real axis resulting in a smoothing of the power spectrum as
can seen by comparing curve (b). The relative magnitude of the k power spectra decreases
monotonically as k, increases beyond these values.

We find that the surface drift mode retains its drift-like character as the density gradient
scale length of the edge plasma is increased (ie., propagating only in the region with a density
gradient and only in the direction of the electron diamagnetic drift) even when the density
gradient scale length is comparable to the size of the plasma, as in the case of a Gaussian
profile. Figures 7(a)-7(c) show the lowest order k. modes for a plasma with the same peak
density as before and kp = 2. x 10-', but with a Gaussian profile having a scale length
LN = 30 pi. As before, the modes having ky < 0 are the mirror image of the modes displayed
in Fig. 7. The lowest order mode, Fig. 7(a), which has only a slight asymmetry about
x = 0, is the remaining vestige of the surface drift mode. The enhanced asymmetry of the
lowest order k modes when kp. = 10-2 can be seen in the results of Figs 7(d)-7(f). The
three modes shown are propagating (real k.) in the region x > 0 and evanescent in the
region x < 0 where the direction of the diamagnetic current is reversed. The evanescence
of the field is not due to absorption since the imaginary part of the potential is still several
orders of magnitude lower than the real part. The k power spectra for modes in a Gaussian
profile, for various values of kpi, are shown in Fig. 8. The drift induced asymmetry of
the power spectra is less systematic for the Gaussian profile than for the DEF profile due
to larger variations in the location of the cutoffs and nodes relative to the antenna. As we
have seen before, increasing k. increases the extent of the k. spectra and also enhances the
power spectra asymmetry. Notice that the power coupled to the lower k. modes increases
with increasing k, to the point where the spectrum is nearly flat for the kd > 0 modes when
k"p, = 10-2.

Ferraro and Fried" have studied diamagnetic drift effects on IBW propagation in a
plasma slab with a Gaussian profile for frequencies between the first and second harmonic
using a differential equation approach. Because their infinite order differential equation was
truncated at second order, reliable solutions were only obtained for frequencies in the range
1 r< w/fli < 1.7. Nevertheless, their calculations indicate effects similar to those presented
here, including the asymmetries in wave amplitude and wavenumber in the direction along
the density gradient. Although the solution in x-space provides more physical intuition into
how the wave properties change with the plasma parameters, it is difficult to extend this
approach to higher frequencies because of the algebraic complexity involved in deriving the
coefficients of the differential equation.
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VI. CONCLUSION

We have derived the k-space integral equation governing electromagnetic wave propa-

gation in a nonuniform plasma and have used it to investigate some of the nonlocal effects

associated with ICRF antenna coupling. The dielectric kernel function was derived as a nat-
ural extension of the dielectric function for a uniform plasma through the use of an integral

representation of the Vlasov equilibrium. The derivation of the k-space integral equation

keeps FLR corrections to all orders without resorting to an expansion based on the weakness

of the density gradient and is, therefore, valid for frequencies near the higher harmonics of

the ion cyclotron frequency and for a wide variety of plasma density profiles.

The direct excitation of electrostatic waves by capacitive coupling to an external source

of charge was examined by numerical solution of the integral equation. Eigenmode profiles

were obtained for frequencies in the range of the second harmonic of the ion cyclotron

frequency and for various parallel wavelengths. In regions of very weak density variation,
the dispersive properties of the excited plasma waves are found to agree closely with those of

the ion Bernstein wave in a uniform plasma. In addition to the eigenmodes one would expect

on the basis of a uniform plasma model, which are cut off when k, exceeds a critical value,
k,, an electrostatic drift which propagates in a direction parallel to the electron diamagnetic

drift and is localized to the edge region was found to exist for values of k. > k. This mode,
which is not predicted by local analysis since it has both kp ~~ 1 and kLN : 27r, maintains

its drift-like character even when the density scale length is comparable to the size of the

plasma (as in the case of the Gaussian profile). In both of the plasma profiles considered here,

the electrostatic drift modes are found to be the dominant mode of oscillation as W -+ 20.

The diamagnetic drift current which exists in the plasma edge region is found to pro-

duce an asymmetric eigenmode structure that can lead to asymmetric distribution of power

between the k. > 0 and k. < 0 modes. The mode asymmetry is particularly important for

modes having larger values of k and k, and for plasmas having very steep density gradients

at the plasma edge. Similar strong asymmetries are observed in the k power spectrum when

the launched waves are strongly damped. These results may have implications for ICRF ex-

periments since the asymmetric distribution of power between the ky > 0 and k, < 0 modes,

which in more realistic geometries would correspond to propagation in the azimuthal or

poloidal direction, may result in nonuniform (up-down asymmetry) power deposition pro-

files. The amount of the asymmetry in the power spectrum will depend sensitively on the

location of the antenna relative to the cutoff layers and the details of the plasma edge profile.
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APPENDIX: THE LINEAR ELECTROMAGNETIC KERNEL

For a general class of separable Vlasov equilibria of the form,

Fo = NoF±(vI)F.(v.) j K(s)e(+v1/0)ds,

the integral equation in k-space for the perturbed electric field is,

k x (k x $1(kw) + dki, 4T(k,i) -$ 1(k,w) = - 2 Jezt. (Al)

where,

T(k,,) f-, (k, w) = 8(k:,. - k.)$ (k, w) + K. (k. - k.) E 4 r dr
cc na 7=-00 f

{.r ( cos - iJ,(yr) sin V1. Fi.(r2 )

yr Via

+ k.- ,V1. J(rxV Fir2) *- VzaFza(t)Il
+ -(k ki,)"Jn(%)7rV'c~~r) c~F2 La -( o Vat Jdt]

+ E.J(ir ) " " Fig(r2)

The dielectric tensor is a function of the two wavevectors k = (k± cos 0, k1 sin 0, kz) and

i = (k., ky, k.) = (k1 cos 9, k- sin 9, k,). The perpendicular wavenumbers, perpendicular

kinetic velocity (v±), and parallel kinetic velocity (v,) in Eq. (A2) are all normalized to

the perpendicular (Via) and parallel (V,,) thermal velocities, namely, -yc, = kiVia/nca,

= kiVla/na, r = v±/Via, and t = v./V.c. We have also defined the following functions,

ja. =- oc7 2 + L(F'- 2v4±) + i(k.- k)k
2 L F1 j \Fz F-L QW )

za. = -! 0a0 +[ 2v ) + i(k. - x)kv
2 LFz \F FiL 11W

1(n) = (2)- 2 E J(kip)ei'(q-')ei"(q-WVd0,
1=-00

_ ar L Q(t)Fz(t)dt
(Q(t))n = 7r 2 ,n

" = (w + nl)/kzVz..

If we assume a drifting bi-Maxwellian velocity distribution for species a (VIa = 2Tia/ma

and V2 = 2Tzc/mcg),

Fia.(vI)F. (v.) = (iV2aV.a)~1e-("±/Vi) e~ V/
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then the components of the dielectric tensor kernel are of the form,

e.. = K, cos(j - 0) + 2Ko sin sin 0 - (K2 sin COS 0 - K3 COS sin 0) + 6(k. - k.),
Ey= K 2 cos cos0 + K 3 sin sin0 - 2Kocos sin0 + K 1 sin(9- 9)

+ TI cos 0 - T2 sin 0,

E., = K±1 cos 9 + K12 sin 9,

fy, = -(K 2 sin j sin 0 + K 3 cos cos 0 + 2Ko sin cos 0) - K, sin(9 - 9),
fyy = K, cos(j -- ) + 2Ko os i cos 0 - (K 2 cos i sin 0 - K 3 sin j cos 0) (A3)

+ T 1 sin 0 + T 2 cos 0 + 6(k. - k.),

fuz = K 11 sin 9 - K 1 2 cos 9,

6Z, = K,1 cos 9 - K. 2 sin B,

,= K 1 sin + K. 2 cos B + T3 ,

ezz = K.. + 8(k. - k).

The functions in the dielectric tensor are,

K 1 =E K.(k. - k.) W n2 A(E), (A4)

Kzz = - )K(k-) An(t), (A5)
aI n=-oo

2 k- E _L MK2 = K.(k., - .) in( Ana - A(A6)
a 71-oo

K3 = K.(() k. - k,) E n -=-An,a - A () (A7)

CIL U 71=00 Q

Ko = - Ka(k. - k) A (.Aa, - P.A=) (e±)n, (A8)

K., = K.(k, - k.) "" nn,,(81t)n, (A9)
a n-T _/ y

2 00
Kz2 = K( -) An - %.A' (G),' (A10)

Ka=K(k, - k%,)( T ) na v"( Y)., (AlO)

CL T **-0K11 ZQ~E) (k 2 (All)

K12 =)Ka(k. - ,) )a(Ana -aA )(ez)n, (A12)

1= i(kh KE(kw ),
-,(,p k Z ~K (k.~ 00 j (A13)

1. a=o
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S(k -2K.(k

T- = ~ (K(k -%. - An(k - (.)V (A14)

a k1 T

(Ost)2 = Z'(X_.) -(1 - k)An. (A17)

+ 2C 1i Z(X-)(oDa -k

T V0

() =. k) +na (A18)

T V.

) = -{ Z'(X.) [+- (.- (D (A19)

+2 ( - () 1 + T.Z(X.)na }
Other quantities which appear in Eqs. (A4) -(A19) are defined as follows,

An(Aa) = I(Aa)e-cetn(B), Aa = kikiTia/(ma ),
(.n = (kI + kI)Tia/(2maG), Xn = (n - VAVz8,

D.- ka)ktjTa £a = qaBo/mac,

(Da = WDa/(kzVza), W,.= (4j7r~oaq/ma)2 .

where, In(Aa) is the modified Bessel function of the first kind and Z(d) is the plasma dis-
persion function3 2 ,

z_~~~ ~ J Z(. [( _T__) D.]

Z(() = ir~2 L.2

+ ~ ~ ~ ~ ~ -2 -- ( c ("'

The prime notation in Eqs. (A4)-(A19) denotes differentiation with respect to the argument

of the function.
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FIGURE CAPTIONS

Figure 1. Frequency dispersion of the slab plasma eigenmodes for kpi = (a) 0.,
(b) .1, (c) .2, and (d) .3

Figure 2. k, dispersion of the slab plasma eigenmodes for w/f; = (a) 1.99, (b)

1.98, (c) 1.97, (d) 1.96, and (e) 1.95 .

Figure 3. The real part of the electrostatic potential (solid curve) and the normal-

ized density, g(x), (chaindot curve) versus x/p;. Approximate values of

kypi are: (a) .0823, (b) .291, (c) .372, (d) .378, (e) .382, and (f) .393 .

Figure 4. The eigenmode power spectra for the DEF profile with k~p = .002 for

w/1f = (a)1.95, (b) 1.97, and (c) 1.99. The solid points coorespond

to modes having ky > 0 while the circles correspond to modes having

k <0.

Figure 5. The eigenmode power spectra for the DEF profile with w/Qj = 1.95

and k~p; =(a) .002, (b) .005, and (c) .01.

Figure 6. The electrostatic potential profile and normalized density versus x/p;

for w/Rl = 1.99 and kzpi= (a) .004 and (b) .008. The solid and dashed

curves represent the real and imaginary parts of the potential, respec-

tively. Figure (c) shows the relative k, spectra for figures (a) and (b).

Figure 7. The real part of the electrostatic potential and the normalized density

versus x/pi. Approximate values of the wavenumbers are kp; = 2. x

10- with kyp;= (a).383, (b).377, (c).370, and k.p = 10-2 with kyp;=

(d).421, (e).415, and (f).408.

Figure 8. The eigenmode power spectra for the Gaussian profile with w/Qj = 1.95

and k.pi = (a) .002, (b) .005, and (c) .01.
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