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We calculate the free-electron laser (FEL) induced modifications to the
vacuum waveguide modes for low frequency FELs. Typically, the mode mod-
ifications are large, and exhibit complicated axial behaviors. In addition to
the wave component with a near vacuum wavenumber, components at two
upshifted wavenumbers must be analysed. Electron beam surface charges
and currents are also important. At low gain, effects from all three roots of
the FEL dispersion relation must be included. The dominant modification
is due to the electron beam space charge wave.




I. Introduction

The free electron laser (FEL) is an efficient source of tunable coherent
radiation. Since the FEL was first envisioned,'? lasing has been achieved
from visible to microwave frequencies,® and the theoretical understanding of
FELs has increased proportionately. Experimental measurements of wave
amplitude and phase are in good agreement with theory in both the linear
and nonlinear regimes.*® To control the electromagnetic radiation wave,
experiments employ waveguides or optical cavities. When cavities are used,
the vacuum interaction length is of the order of one Rayleigh range; however,
many planned and in progress optical wavelength FELs require interaction
lengths of many Rayleigh ranges. To maintain strong coupling between the
wave and the electron beam, these experiments must rely on the predicted
phenomenon of optical guiding.

Optical guiding,®*! is expected to occur when the FEL interaction pro-

duces an index of refraction greater than unity. Since the wave phase velocity
is then slowed inside the electron beam, the beam will guide the radiation in
a manner similar to the guiding of light by an optical fiber. Consequently the
wave does not diffract as it would in the absence of the FEL interaction, and
interaction lengths of many Rayleigh ranges are predicted. Optical guiding
is particularly important for both high efficiency lasers operating at infrared
and shorter wavelengths, and for lasers which amplify spontaneous emission
at extreme ultraviolet and shorter wavelengths. Numerous experimental ef-
forts are underway to verify the optical guiding effect. Measurements of
the wave phase, which is related to FEL induced changes in real part of
the index of refraction, have been made using interferometric techniques.®!?
Experiments have attempted to measure mode profile changes directly.!3-15
Bending effects in FEL oscillators'® may also be due to optical guiding effects.

When the electromagnetic wavelength is large, the wave must be guided
by an external structure; typically a waveguide is employed. Consequently,
experiments operating at these wavelengths cannot observe “classical” opti-
cal guiding. Even when optical guiding effects are strong, the radiation is
never completely confined to the electron beam, and the waveguide remains
important. However, the transverse structure of the electromagnetic radia-
tion is modified by the FEL interaction. Physically, this modification is the
waveguide analog of optical guiding; the electron beam undergoing the FEL
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interaction generates an index of refraction which changes the mode profile.
The purpose of this paper is to analyze these changes in the field profile
during the FEL interaction.

Motivation for this paper comes from several experiments, including mea-
surements of the mode composition in an overmoded oscillator!® and direct
measurements of the transverse electric field in an FEL amplifier operating
with a only one vacuum mode above cutoff.!* These experiments show that
substantial mode profile modifications occur. We will show that the mode
profile changes are influenced by both space charge and electromagnetic ef-
fects, and that the space charge fields can dominate the profile modifications.

The following simple argument demonstrates that the profile modifica-
tions in a waveguide FEL may be large. The relation between the normal-
ized wavenumber shift, §k/k, due to a dielectric in a waveguide excited by
frequency w is given by the perturbation formula!”

Sk w®  [AeE*dS

'k ck? [(eoE? + poH?) dS

When the electron beam radius is much smaller than the waveguide ra-
dius, the expression for §k/k becomes

bk Aw

—~

kA

Ae.

Consequently Ae ~ (Awg/Aen)6k/k, where Awg and Ay, are, respectively, the
areas of the waveguide and the electron beam. Free electron lasers operating
at low frequencies can have ratios of §k/k > 0.03.1*2° If the beam area
ratio is 25,'® the dielectric constant would be 1.75. Thus these FELs have a
significant perturbed dielectric constant, and we would anticipate strong lo-
cal perturbations to the waveguide mode in the region of the electron beam.
This picture is, of course, far too simplistic to accurately model the perturbed
fields. While an appropriate dielectric constant can be constructed,?! it has
complicated tensor properties and is not well described by the isotropic di-
electric constant discussed above. (In addition, as discussed in the next para-
graph, the electron beam also generates fields which vary with wavenumbers
other than the input wavenumber. These “parasitic” emenations are difficult
to model with a dielectric).




In one set of experiments'* designed to study the mode profile changes,
the electric field is measured as function of transverse position. Most of the

radiation power is carried by an electromagnetic wave whose profile is close to,

but not identical to the profile of a standard vacuum waveguide mode. This
wave propagates with wavenumber k, + 6k, where k, is the axial wavenum-
ber of the appropriate vacuum waveguide mode, and 6k is the FEL indx:ced
wave phase shift. The FEL space-charge induced fields propagate with the
wavenumber k. + k., + ék, where k,, = 27r/l,,, and [, is wiggler wavelength.
There is also a second electromagnetic mode with wavenumber k. + 2k, +8k.
Furthermore, the wiggling motion and the bunching in the ponderomotive
wave results in psuedo surface charge and surface current generated compo-
nents of the electric field which vary with the axial wavenumbers k, + 6k and
k. + 2k, + k. All these components will interfere with each other, causing
the details of the observed mode profile to depend on the axial position.

Our model, presented in Sec. II, assumes that, in the absence of the elec-
tron beam, the radiation propagates in a standard vacuum waveguide mode.
For simplicity, we give examples for the TE;, waveguide mode. Next we
postulate an electron beam with a density modulation due to the FEL inter-
action, characterized by the induced phase shift §k. The beam is assumed
uniform out to the beam radius and independent of azimuthal angle. We then
assume that the beam is undulated by the FEL wiggler. Finally, straight-
forward calculations yield the three dimensional electric and magnetic field
profile. To calculate §k we employ an extended one dimensional linear the-
ory,»*?? in which the radiation and space-charge wave coupling coefficient
are calculated using overlap integrals and a space-charge reduction param-
eter,?® to explicitly determine the axial wavenumbers of the beam density
modulation. In the high gain regime, the mode with the exponentially grow-
ing root of the cubic FEL dispersion relation dominates the interaction, but
in the low gain regime all of the FEL cubic roots must be retained.?* Note
that we require an accurate value for the induced phase shift. Since we pos-
tulate §k, our approach is not fully self-consistent, but it has the virtue that
the equations for the fields can be easily interpreted. In section III we plot
the fields under different conditions. We discuss scaling and self consistancy
in Section IV, and conclude in section V.

Our derivation, which is valid in both the Compton and the Raman (col-
lective) regimes, resembles, in some respects, earlier work by Freund and
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Ganguly,?® and Uhm and Davidson.?® However, the emphasis in these works
was the calculation of the FEL gain, and the authors did not explicitly con-
struct the wave profiles. The authors considered either idealized, nonphys-
ical “shell” electron beams, rather than realizable solid electron beams, or
considered only Compton FELs. The case of a Raman FEL with a solid
electron beam was not examined. Fruchtman studied a sheet-beam FEL.3!
Many workers?®3® have developed particle simulations to model the FEL
in a waveguide. As with many optical guiding calculations, these nonlinear
simulations do not treat the full three dimensional nature of the electrostatic
mode. The axial space charge electric field is generally used only in the longi-
tudinal particle dynamics, and the radial component of this field is neglected
in calculating the local electric field profile and the transverse particle dy-
namics. Some simulations expand the transverse field in a sum of vacuum
waveguide modes. Such expansions do not allow for any surface charge ef-
fects, because, by construction, these expansions do not include modes for
which V- E # 0. However, as discussed above, there are additional modifica-
tions to the field at the RF wavenumber k, + 6k, due to the pseudo surface
charge generated components. Consequently such methods cannot include
the full, rich range of profile modification phenomena. More recently, in a
paper?! which complements this work, the linear kinetic theory of the raman
FEL in waveguides has been analyzed.

II. Basic Theory

In this section, we calculate the mode deformation for a wiggling electron
beam which is axially modulated and has a uniform transverse density profile.
The electron beam, with axial velocity v, and radius b, propagates in a
circular waveguide of radius a (Fig. 1). A wiggler field causes the electron
beam to helically undulate with period [,,, so that the total beam velocity is

V = ;2 + vy (2 cos kyz — §sin ky, ) (1)

where k,, = 27/, is the wiggler wavenumber, and v,, is the wiggler induced
transverse velocity. Here, and in the rest of this paper, three dimensional
wiggler effects are ignored. The electron beam is assumed to be axially
modulated with amplitude C, thus

p=1u(b- r)[Cei(Wt_(k'+6k+k”)') +cc], (2)
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where u is the Heaviside function, and w is the frequency of the incident
radiation. The unperturbed wavenumber, k,, of the incident radiation de-
pends on the particular waveguide mode in which the radiation propagates.
The radius b of the electron beam is taken to be constant in Eq. 2, and this
approximation will result (Eq. 22) in a surface charge density and a surface
current at the beam boundary.

In addition to the density modulation p of Eq. 2, linear FEL theory also
yields a perturbed velocity, 7. The synchronous current component which
results from this velocity modulation is, however, substantially smaller than
the synchronous current which arrises from the density modulation. In our

~analysis, therfore, the fields are driven only by those currents which result

from density modulation and the wiggling motion.

The FEL interaction induces the wavenumber shift §k and also deter-
mines the amplitude C of the density perturbation. In general, each of the
three roots of the FEL dispersion relation has a different value of 8k, and
generates a correspondingly different perturbed density of the form of Eq. 2.
Since the Maxwell equations are linear, the total field can be calculated by
summation of the fields which are produced from each of the three compo-
nents of the total density perturbation. The parameters §k and C are given
by one dimensional theories; appropriate values for these constants and de-
tails of the superposition of perturbations with differing §k will be discussed
in section IIIb. '

The modulated electron beam has a rapidly oscillating current density
J=pv=Ji+3, (3)
where, using Egs. 1 and 2 and transforming to cylindrical coordinates (#, ¢, z)
J. = vu(b—r)[Celf*2) 4 ¢ c)
1 “f s 4 . - e 4 . g '
J, = vau(b —r) [r(]oe ® + 7267 + id(joe™® — jae %) + c.c.] . (4)
In Eq. 4, ' .
jO — Ce.o, j2 = Cez(O—Zk.,z), (5)
and 6 is the phase angle 6 = wt — (k, + 5k)z.

Combining Ampere’s law and Faraday’s law in the standard way forms
the driven Helmholtz equation

V2E + k2E = ik,ZoJ + Vp/eo. (6)
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Using the continuity equation, Eq. 6 can be reexpressed as

(V2 4 K2)E = ik, Z, [J ; EIEV(V . J)] , (7)

where the RHS has the convenient property that it depends on J only. Here
ky = w/c, where c is the speed of light, and Zy = /o /eo.

The FEL induced waveguide mode deformation is found by substituting
the driving currents Eq. 4 into the modified Helmholtz Eq. 7. An examination
of Eq. 4 shows that the driving currents naturally divide into three groups:
an axial (2-directed) current with phase § — k,,z, and two transverse currents,
one with phase # and the other with phase § — 2k,,z. These currents are not
cross coupled by the Helmholtz equation; thus the mode profile from each
current can be calculated separately and the results superimposed to yield
the full mode corresponding to an electron beam with the velocity given by
Eq. 1 and the density given by Eq. 2.

A. Axial current modes

The fields due to the axially directed current J, are readily identified as
the space-charge wave fields. The electric field is assumed to be of the form
E, exp(i(6 — kuz)) + c.c., and from here on the complex conjugate term will
be dropped. Inserting the expression for E; into the Helmholtz equation
(Eq. 7) and factoring out the time dependance gives

. | 2 :
(VZ + kz)Ele—:kxz — ikaOv,Cu(b - 7') [ — -:—;] e‘sklz’ (8)

where the axial wavenumberis k; = k, +8k+k,. Forr < bthe inhomogeneous
solution of this equation is

=
and the corresponding inhomogeneous magnetic field is equal to zero.

In order to satisfy the boundary conditions at r = b, an appropriate
solution of the homogeneous equation :

E;; e"™z rcb (9)

(V2 4+ E)Ejpe ™2 =0 (10)
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[ - Fields from the Axial Current
_ — s ]

In Out
E, BJl(kl,.T)e"k’z A [Jl(kl,r) + alYl(kh.r)] e“"‘“
E, 0 0
Ez —iB(kl,./kl )Jo(kl,.'l‘)e-'k” —iA(kl,-/kl) [Jo(kl,."‘) + oy Yo(kl,r)] e“""
H, 0 0
H, (B/Z1)J1(k1.r) (A/Z) [1(krrer) + ar Yi(Kyer)[e~ T2
H, 0 o
l Z, = kIZO/kv N _7 1

Table 1: Fields driven by the axially directed beam current.

must be found by matching the solutions of Eq. 10 across the beam boundary.
The complete solution will be

o [ ES+Ey r<b
El_{Ef,h b<r<a (11)
and
H. - HYy, r<b

! Hy, b<r<a '
The general form of the homogeneous fields are given by the well known
Bessel functions shown in Table 1, where we have defined the radial wavenum-
ber ky, = /k2 — k2. '

For perfectly conducting waveguide walls, E,(r = a) = 0. Thus the

coefficient «; in Table 1 is

(12)

Jo(kl,.a)

Because the gradient of J, is continuous across the beam boundary at r = b,
there is no charge layer on the beam surface; consequently the electric field
must be continuous across the beam boundary. This leads to two conditions,
oneon E,

ay =

_v,CZl

A [Jo(klrb) + (e 3] }’o(kl,.b)] - BJo(kl,b) = k s
1r

(14)




and one on E,
A [Jl(kl,.b) + (23] lrl(kl,-b)] - BJl(kl,-b) =0. (15)

These two equations are readily solved for A and B.

B. Transverse modes

The solution for the fields produced by the transverse currents is some-
what more complicated than the solution for the axial current. The trans-
verse current is comprised of two components, one with wavenumber k, + §k
and the other with wavenumber k, + 6k + 2k,,, corresponding to the j, and
J2 terms in Eq. 5. Since the method used for the j, current is nearly identi-
cal to the method used for the jo current, we will only discuss the latter in
detail. Assuming the form Eo exp(i(wt — koz)) for the electric field, inserting
this form into the Helmholtz equation (Eq. 7), and factoring out the time

dependance results in the relation
(V? + k2)Eqe~** = %k,,Zovau(b -r) (ﬁe“’ + iée“’) g tkoz (16)

where the new axial wavenumberis ko = k, +8k. The inhomogeneous solution
of this equation is

i kuzovwc ‘¢ N LA ‘t'knz
Eo; = 5—103:——6 (r + qu) u(b—r)e . (17)

Here the radial wavenumber is ko, = (/k2 — k2. The corresponding inhomo-
geneous magnetic field is

v,Cko
HO,i - 2kg,

Once again the boundary conditions at » = ¢ and r = b requires the
addition of a solution to the homogeneous equation,

e (f' + z&) u(b — r)e~thoz, (18)

(V2 + E2)Eope~** = 0, (19)

The solutions to this equation can be divided into TE-like and TM-like
modes, as shown in Tables 2 and 3.
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TE like Fields from the Transverse Current I
I

n Out
E, (D/korr)J1(korr)eX®=502) (C/korr) [Ji(korT) + anoY: (kopr)] €®—Fo?)
BT DT (her)TF iC [1{Rorr) T g (hoer)] 57
E, 0 0
H. —Ey/Zwo | : ~Ey/Zno
H¢ E"/ZHO E!‘/ZHO
H, Q(kOr/ZHoko)Jl(kOrrfjéjf_') C(kor /Zuoko) [J1(korT) + anoY1(ko,r)] €1®R02]

I — o= kZolke ]

Table 2: TE fields driven by the transverse beam currents.

l IM like Fields from the Transverse Current |

In Out
E, || FJ(kor)e @7 E [} (Forr)  agoY; (harr ) 05

By | i(F/korr)Jy(korr)e™8~59 T i(E [ko,r) [J1(korr) + agoY; (hopr)] %07
E, || iF(kor/ko)J1(ko,r)et®=502) 1E(kor / ko) [J1(KopT) + agoYi(ko,r)] e!l®—Rnz

| H. | 0 0
—_— e ]
[ T Zm=klek ]

Table 3: TM fields driven by the transverse beam currents.
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Equation 19 must be solved inside and outside the electron beam, and
then matched across the beam boundary. The complete solution will then

be

[ E§ +Ee r<b
E"_{Eg'h b<r<a’ (20)
and He< - ;
_ on t Ho; r<
Ho_{Hah b<r<a’ (21)

The boundary matching conditions are complicated by the presence of a
surface charge and a surface current layer at the beam edge. The surface
charge and current are an artifact of the previous simplification that the
beam boundary is fixed at » = b. Although this assumption is made in
almost all FEL theory, the beam, of course, is not fixed, but instead undulates
with the wiggler periodicity and propagates axially. This undulation can be
approximated as a surface charge and surface current, and is readily explained
by Fig. 2. As show in the top of the figure, the true beam undulates and
is density modulated. (For pictorial simplicity, we have chosen the density
modulation to have half the period of the undulation, which occurs when k, =
ky). The beam can be split into two superimposed components. The first,
shown in the middle of Fig. 2, is a fixed boundary, density modulated beam,
and is the only component commonly analyzed. The second component, at
the bottom of the figure, consists of all the real and virtual charges required
to account for the beam edge oscillation. To retain analytic tractibility we
compress this second component into a surface layer of negligible thickness
at the fixed beam boundary (r = b), resulting in a surface charge and surface
current. Note that these charges and currents are composed of components
at both k, and k, + 2k,,.

The continuity equation at the beam boundary r = b must be satisfied.
However, this imposes only a non-restrictive condition on the beam surface
charge and current; in fact, the continuity equation can be satisfied with a
surface current only or a surface charge only. As explained above, the correct
surface charge and current are found be compressing the beam and deter-
mining the charge and current of the compressed layer. With the undulating
velocity defined in Eq. 1, the fluctuation of radius of the beam envelope is

FL= — sin(d + ko). (22)

kw V.
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and, assuming that 7, << b, the corresponding surface charge density is

g = T.p
Uy

= g, Uoe — i) @

where jo and j, are defined in Eq. 5. The axial surface current is found to be

I = FJ_J = ov,
= —zﬂ (]'oeid’ - jze'“’) z. (24)

- The surface current has an azimuthal as well as an axial component, but the
azimuthal component is smaller by a factor v,,/v,, and therefore is neglected
in this analysis.

Using the surface charge in Eq. 23 and current in Eq. 24 to determine the
jump boundary condition, the matching conditions at r = b are, for the Jo

COIIlpO!lellt ,
v, C
w id~

S .
th—E h+E01 l2kwvzeoe r (25)
and c
HJ, = H h+Ho,—i12)';—e‘¢q3. - (26)
These boundary conditions lead to
H,: C [J1(korb) + anoYi(korb)] — DJ1(koed) = 0
H, : C [J1(kord) + anoY) (konbd)] — DJ!(kosb) = 1wwC Zuoko/ (2k2.)
E,: E [Jy(korb) + apoYi(kord)] — FJy(korb) = 0
H,: E [J](korb) + agoY; (ko,.b)] FJ{(kosd) = 1v,CZgoko/ (2k2.)
—ivaZEo/zkw
(27)

The additional boundary conditions on E, and E4 are redundant. The
boundary at the waveguide wall (r = a) requires that

Jilkwa)  _ Ji(kea)
Y(koa) %" " Yi(kora)

Qo = —

(28)

The system of linear equations Eq. 27 is readily solved for C, D,E, and F,
and the pa.lrs CD and EF do not cross couple. Note that nowhere in this
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derivation is the vacuum waveguide mode explicitly specified. The vacuum
waveguide mode is indirectly chosen through the value of k.; a value of
k. close to the value for a given vacuum mode will cause the appropriate
Bessel functions in Eq. 27 to be near zero, resulting in a large corresponding
multiplying coefficient.

The fields from the transverse current j; can be found by analogy with
the solution for jo. We define a new axial wavenumber k, = k. + 6k +
2ky, a new radial wavenumber k,, = v k2 — k2, analogous Zy, and Zga,
and use the ansatz E = E,exp(i(wt — k»z)). An examination of Eq. 4
shows that the inhomogeneous factors which would multiply exp(—ik,z) in
equations analogous to the inhomogeneous Eqs. 16-18 combine in the form
(7 - z¢) exp(—i¢). Furthermore, the surface charge and surface current, and
- thus the jump in the field at the beam boundary (see Eq. 25), also vary as
(# — i¢) exp(—ig). The TE and TM modes of Tables 2 and 3 are replaced
by by corresponding modes which propagate with exp(—tkyz) and have an
exp(—i¢) azimuthal variation; also, ay; and ag; are analagously defined.
The new boundary conditions can then be derived, are almost identical in
form to Eq. 27. The only changes in the boundary condition are that the
RHS of the H, boundary equation and the second term (which arises from the
surface current) on the RHS of the H, boundary equation are both multiplied
by —1.

III. Mode deformation

The method of solution developed above requires that the values of §k and
C are known from a quasi-one dimensional theory, in which three dimensional
effects are included by the calculation of appropriate overlap parameters.
Since such theories are in excellent agreement with experimental results,®
the assumption that the complete inclusion of three dimensional effects will
produce only small changes in the parameters 6k and C appears warranted.

Free electron lasers operate in both the linear and nonlinear regimes, and,
especially in the low gain regime, several FEL modes (several 8k, C) may be
simultaneously important. An accurate description of the interaction requires
the initial value problem be solved through a Laplace transform technique.?4
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A. Field profile with a single FEL mode

Linear, one dimensional FEL theory is normally based on solving the
cubic equation

Sk(6k—©+0,)(5k—0-0,)+Q =0, (29)

where © is the FEL energy detuning, @, is the normalized plasma frequency,
and @ is the coupling constant. While this equation is inherently one dimen-
sional, three dimensional effects can be included by multiplying the basic
coupling constant by an overlap integral, and by reducing the plasma fre-
quency because of the finite size of the electron beam and the presence of
the perfectly conducting waveguide walls. This cubic has three solutions,
leading to three distinct FEL modes. The fraction of the input power that
couples into each FEL mode is a function of the detuning, and can be found
by solving the initial value problem. In this section we assume that only a
single FEL mode contributes significantly to transverse profile modification,
and therefore only one §k need be considered. The case of three FEL modes
will be discussed in the next section. '

A consequence of the assumption that the FEL has infinite longitudinal
extent and that 6k is independent of z is that the electromagnetic radiation
supported by the postulated beam density perturbation will have the same
transverse profile at all values of z having the same phase in the wiggler
(i.e., kyz differing by a multiple of 2x). This transverse profile is, of course,
multiplied by an overall constant which determines its local, instantaneous
phase and magnitude. This constant is proportional to the amplitude of the
- beam perturbation C; thus C merely fixes the initial magnitude and phase
of the electromagnetic wave. It does not effect the transverse profile. This
freedom in the choice of C allows us to specify the amplitude and phase of
the electromagnetic wave at any arbitrary position. It is most convenient
to choose the magnitude of C so that, at z = 0, the electromagnetic power
carried by the wave is unity, and to choose the phase of C so that the EM
wave phase at ¢,z = 0 is zero. We find that the substitution ¢ = §kC,
where C is, to first order, independent of §k, makes the electromagnetic
power independent of ék. This substitution can be motivated by solving
the complete FEL problem, and noting that the beam density perturbation
is proportional to §k. (The beam density is proportional to §k since, from
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the eikonal form of the wave equation used in one dimensional FEL theory,*
10kE o (expi(wt — (k, + ky)2)) o 5).

Experimentally only the total electromagnetic field can be observed. How-
ever, since each of the three driving currents of the previous section has a dif-
ferent wavenumber (k, +6k (ko current), k, +6k+k,, (ky current) k, +8k+2k,,
(ka2 current)), it is useful to separately display the fields driven by each cur-
rent. The different wavenumbers cause the respective fields to superimpose
with varying degrees of constructive and destructive interference. When the
common periodicity k; + 6k = ko is factored out, the field generated by the
ko current is invariant, the field of the k, current has the period [, (the
wiggler period), and the field of the k; current has the period lu/2. As we
will show in Fig. 6, within one wiggler period the total field profile has eight
characteristic shapes.

In Figs. 3-5 we plot the transverse profiles for each of the field components.
The FEL parameters are typical of the experiment described in Ref. 14. The
waveguide radius is b = 1.27cm, the beam radius is a = 0.254cm, and the
frequency, f = 11GHz, is relatively close to the waveguide cutoff frequency
of 6.9GHz. The wiggler period is {, = 3.3cm, and the normalized beam
velocities are 8, = 0.624 and 8, = 0.1. To highlight the profile modifications,
we choose a large wavenumber shift of |§k| = 3m~!.

Several features common to low frequency operation are illustrated in
Fig. 3, where 6k = +3m™!. First, the profile modification due to the k,
current is almost identical to the modification due to the ko current. This
equality arises because these two currents have the same magnitude, and
the field equations driven by the two transverse currents are virtually the
same. Second, there is a sharp discontinuity at the beam edge, which reflects
the beam surface charge and current given by Eq. 23 and 24. Of course,
in the real world this discontinuity does not exist, and the discontinuity is
instead manifested by a sharp field gradient. The gradients extend over the
width of the beam undulation, and the total field change is approximately
equal to the magnitude of the discontinuity. Third, the field profile due
to ki, the longitudinal space-charge wave current, is much larger than the
field modifications due to the transverse currents. Since the space-charge
wave is driven by terms proportional to v,, the transverse modifications are
driven by terms proportional to v, and since v,, < v,, the space-charge wave
will generally dominate the profile modification (at least at low frequencies).
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However, since the gain ék is proportional to v,, the fraction of the mode
profile modification due to the space-charge wave decreases as §k o Uy i
increased. Increasing the wiggler field while other parameters are held fixed _
also moves the FEL from the collective (Raman) regime into the Compton
regime.

Figure 4 shows the profile for §k = ~3m~!. The results are similar to
the 6k = 3m™! case, except as expected, the profiles are inverted. For real
values of ék, the profiles for each of the three wavenumbers ko, k1, and k, are
either pure real or pure imaginary, but for imaginary values of §k the profiles
are complex as shown in Fig. 5. Here the major profile modification for the
ko and k, terms is a phase shift across the waveguide. Even for imaginary
values of 8k, however, the mode profile modifications are still dominated by
the space-charge wave fields.

The total time averaged electric field profiles are shown in F 1g. 6 for
6k = Im~! and 8k = im~'. The uppermost profiles are at z = Ocm, and each
succeeding profile is spaced by Az = [,/8 = 0.4125cm. Large variations
with z are observed for E,, but only small variaions in E4 and E,. For
6k = 1m™', at z = [,/4 and at z = 3l,/4 the space-charge wave component
ky is asymmetric and dominates the mode profile, but at z = 0 and z = lu/2
the space charge wave phase is orthogonal to the RF wave phase and its
contribution is small and symmetric. The surface boundary discontinuity is
strongest at z = [/4 and z = 3l,,/4 because here the contributions from the
ko and k, currents add in phase. At z = 0 and at z = l,/2, however, the
contributions from these two currents are out of phase and the boundary
discontinuity disappears. Similar behavior is observed for §k = sm™!.

B. Field profile with multiple FEL modes

The initial conditions at the FEL interaction region entrance split the
- input power into several modes. In one dimensional theory, each mode has
a wavenumber shift 6k; which is a solution of the dispersion relation Eq. 29.
The fraction of the input power in each of the three §k; modes is given?* by
the residues R;, where

(6k — © + O,) (6k — © — @,)
5k (6k —© +0,) (6k—0 - 6,) + Q| 4, s,

R; = Res (30)
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The total electric field is then given by

3 .
Eld - Z Riei(wt—(k:-f-&k.')z)' » (31)

i=1
Note that the residues satisfy (and can alternately be found from) the three
conditions

3
I = ) R, (32)
=1
3
i=1
3
0 = Y Rk (34)

i=1
These equations express the requirement that the electric field at z = 0 sums
to unity, and that the first and second derivative of the field at z = 0 is zero.
(Alternately that the beam is initially unperturbed).

In the collective regime the one dimensional behavior is normally domi-
nated by one or two of the FEL modes; in the strong pump regime all three
modes can be important. Of course, if there is substantial net gain in the
system, only the growing mode is important. Consequently, for high net
gain, the three dimensional field will be dominated by only one mode, and
the solution of the previous section can be used. However, we will show that
in the low net gain case, for both the collective and strong pump regimes,
the complete three dimensional field profile always depends on all three FEL
modes. S 4

The three dimensional field profile is found by adding together appropri-
ate contributions from each FEL mode. Specifically, for a given set of FEL
parameters, we first solve for the three distinct sets of §k; and R;. Next
the field profiles for each of these individual k; are determined. Finally,
the three field patterns are superimposed, using the R; as weights. Defining
U(r, @) to be the unperturbed field profile, P,(r, ¢, 8k) to be the portion of
the field profile modification at the position (r,¢), due to the wavenumber
mode m, that results from a given value of §k, the field for a single FEL
mode can be written as

2
E = e/“=et80 (1, 6) + Y Pra(r, ¢, 6k)e~mkez| | (35)

m=0
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Then the total field is found by summing over all the FEL modes:

E = ei(wt-k.z) ZR e —ibk;z + ZR e-t&k z Z P ¢’ 6’0 —wnk.,z] )

=1 m=0
(36)
Since this sum involves nine different profiles, the behavior of the resulting
~ solutions is quite complex.

Close examination of the single FEL mode solutions shows that the de-
viation from the unperturbed waveguide field depends almost linearly on ék.
For the parameters of Figs. 3, and for §k < 20m™!, the non-linear component
of the deviation is less than one percent of the total deviation. Thus we can
- assume that, to a good approximation,

Po(r, ¢, 8k) = 6kPp(r, §). (37)
Using this substitution, the total field is
E = ei(wt-—lc,z) [ ZR e—t&k.z + Z P 7‘ ¢ —imkyz ZR Sk: e—uﬁk.zJ
i=1 =1
(38)

or,

3
E = ei(wt—k.z) [E R‘_e—iék;zjl

i=1
Zm_ 'p r, ¢ —imhky2z z‘_ Ri6k‘e—i6k¢z
«utr, ) + Enme Pl o B - @)
Deﬁning the composite §k — scalar n,
'R,,(Sk e-—i6k.~z
'_1 R e—t&k,z ’ (40)

- then

E = el{«t-h2) [23: R;e""‘“} [Ll(r, )+ x zzj Pon(r, ¢)e-"m'=~'] . (41)

i=1 m=0

Using the definition of P we can rewrite this as

3 2
E= ei(ut—(k.+n)z) [einz Z 'R,-e"“""] [u(r, ¢) + Z pm(‘l‘, ¢’n)e—imk.zJ )
i=1 m=0
(42)
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Except for the transversely independent factor [ei“‘ 31 Rie~%kiz| this ex-
pression is exactly equivalent to the field from a single value §k = . In
other words, the complete mode profile, including the initial conditions and
the three FEL modes, can be found by assuming that there is just one mode
with the single composite §k — scalar defined in Eq. 40.

The composite §k — scalar can be alternately expressed as

3
K= —i_a%ln (Z R;e_iék") — —-i%ln (e—i(wt—k;z)Eld) ) (43)

1=1

The composite §k — scalar x has the intuitively plausible interpretation as
the change with z of the slowly varying amplitude of the 1-d solution. Al-
ternately, using x5 to construct the mode profiles at some axial position z
is equivalent to using the following proceedure: First, determine the local
electron beam density modulations in a region near z. Next, assume that
the beam has an identical density modulation for all other values of z. Note
that although this modulation is periodic, its amplitude can be growing or
decaying if the local modulation on the original beam is growing or decaying.
By construction, this modulation will produce an FEL wavenumber shift §k
exactly equal to the composite §k — scalar . Finally find the mode profile at
z on the idealized beam. This calculated mode profile should be very close to
the actual mode profile. Thus, using the composite §k — scalar is equivalent
to assuming that the local beam modulation persists in a region large enough
that any transients in the profile associated with changes in & have died out.
Formally,

1> =5, | (44)

This relation is required by the eikonal approximation which underlies much
FEL theory, and is usually satisfied. ,
For certain values of the detuning ©, one or two of the R; may be close
to zero. For example, for the experiments of Ref. 18, typical values of the
roots and residues are 4.348, -3.821,-0.527 and 0.051, -0.085, 1.035 respec-
tively. Since the last residue is at least twelve times greater than the first
two residues, the one dimensional behavior is dominated by the last root,
and the first two roots can be ignored without introducing any large errors.
However, is not permissible to ignore these small roots in three dimensional
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case. If we expand « in small 8k;z, we find

o _ TiRibki — i T Ribklz — 5, Ribkiz + ...

Z" R,’ - 12‘ 7?46]@,’2 - Z" Rg&k,?zz + ... (45)
Using the identities in Eqs. 32-34, this simplifies to
k= —2"Y Rk}, (46)

Because roots with very little power (small R;), tend to have profiles very
far from the unperturbed field profile (large 6k;), all the roots contribute
approximately equally.

Equation 46 demonstrates that, as expected, the field profile modification
at z = 0 s zero, and the profile modification grows parabolically with z. From
Eq. 40, we see that when one of the roots corresponds to a growing mode,
x quickly approaches the 6k of that mode. Unfortunately, no other general
properties of x are evident. In Fig. 7 we plot & as a function of z for several
values of the detuning ©. The behavior of « is unpredictable; not only does
x vary with @, but even for fixed ©, x varies dramatically with z. However,
as expected x approaches a constant when there is a growing mode (Fig 7c).
For ©® = —©,, destructive interference sharply reduces the output power at
periodic values of z. At these points, the denominator of Eq. 40 approaches
zero, producing a peak in & (Fig. 7a). Figure 8 shows 'k as a function of the
detuning ©. Surveys of similar curves demonstrate that the only repeatable
features are the peaks at the destructive detuning ©, and that approaches
6k for growing mode. In Fig. 9, we plot the the total electric field at a fixed z
as a function of © at two transverse positions. Just as in the single mode case,
the fields depend strongly on the phase of the wiggler at the measurement
position. The two characteristic behaviors are fields slightly larger or smaller
than the unperturbed field, or fields that lead or lag the unperturbed field.

Note that the residues R; were found using one dimensional theory and
will be slightly different when three dimensional effects are taken into ac-
count. The expansion Eq. 46 for x may then have a term linear in z, but the
effect of this term can often be expected to be negligible.
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C. Nonlinear Interaction Field Profiles

The previous sections have assumed that the FEL was operating in the
linear regime, but this assumption is not fundamental. Once the one dimen-
sional nonlinear solution is determined by a numerical simulation, the alter-
nate definition of the x given in Eq. 43 can be readily applied. In Fig. 10
we show the output power, phase and the real and imaginary parts of the
composite 6k —scalar from a simulation of an FEL operating at 1.5mm wave-
length with a 1.5kA, 2.13kV beam. The power grows exponentially, saturates
at about 2.0 meters and undergoes synchrotron oscillations, and the FEL in-
duced RF phase shift grows nearly linearly. The behavior of both the real
and imaginary components of  is, however, rather complicated.

IV. Scaling and self consistancy

In Fig. 11, we scan the beam radius at fixed gain, and plot the time av-
eraged electric field. Since we hold the gain §k constant, the beam must be
more “active” per unit area for a small beam then for a large beam, and the
deformations are indeed largest for the smallest beam. This effect can be un-
derstood somewhat more quantitatively by calculating an effective isotropic
dielectric constant for the beam, as discussed in the introduction. Since this
naive model predicts that the dielectric model is inversely proportional to
the beam radius squared, the edge discontinuity should likewise be inversely
proportional to the beam radius squared, in rough agreement with the curves
of Fig. 11.

So far we have concentrated on frequencies that are not highly overmoded.
In Fig. 12, we show the time averaged electric fields for frequencies up to
90GHz. The beam edge discontinuity remains roughly constant, reflecting
the fact that the surface charge and current magnitudes are independent of
the frequency, and the wiggling velocity, vy, has been held fixed (Eq. 23).
The transverse inhomogeneous fields are likewise independent of frequency.
However, the space-charge wave magnitude is inversely proportional to fre-
quency. Since the ratio of the beam radius to the waveguide radius remains
fixed at 0.2, and since the radiation is constrained to be in a TE,, like mode,
the profile does not necessarily approach that of a standard, high frequency,
optically guided mode.

21




Our model assumes that the wavenumber shift due to the FEL interaction
6k is known. The field profiles are then calculated from the resulting current
profile. The model is not self-consistent since the transverse field profiles
used in calculating 6k do not include the influence of the FEL interaction.
An improved estimate of the FEL growth rate could be made by iterating
the present scheme—using the new field profiles to obtain a new FEL growth
rate.

V. Conclusions

In this paper we study the waveguide analog of optical guiding in a
free electron laser by finding the the fields produced by a bunched, undu-
lating electron beam. The beam density modulation produces both radial
and axial space-charge field components at the ponderomotive wavenumber
k. + ky + 6k, and the coupling of the modulation and the beam undulation
yields field components at wavenumbers k, + 6k and k, + 2k, + 6k. The
complete transverse electric field is determined by the superposition of these
field components. We show, for the parameters of a microwave FEL, that
the mode profiles have a rich transverse structure. The analysis yields pro-
files which are strongly influenced by both the radial component of the space
charge field at wavenumber k, + k,, + 8k, and by discontinuities at the beam
boundary which arise from the surface charge and surface current terms at
k. + 8k and k, + 2k, + 8k. (In a realistic beam with a smooth edge density
profile, these discontinuities would be spread out over the beam boundary
region). The fields generally have profiles that, depending on the axial po- -
sition relative to the phase of the wiggler, transform through eight distinct
shapes. The analysis is dependent on the FEL induced wavenumber shift _
8k, which is found by solving the standard FEL cubic equation.?* When the
gain is high, only one root of this equation is needed; however, at low gain,
all three FEL modes need to be included, and an expression for a composite
6k — scalar is employed to find the three dimensional fields. The expression
for the composite 6k — scalar is equivalent to the logarithmic derivative of
the complex eikonal electromagnetic field. This alternate definition of 8k is
employed to extend the analysis to the nonlinear regime.

We find, consistent with the simple “epsilon” fiber model discussed in the
introduction, that the profile modifications at low frequencies are large. As
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expected, the size of the modifications decreases with the beam radius (at
fixed gain). This results in a larger perturbation of the mode near the electron
beam. The space charge wave components decrease at high frequencies, but
the beam edge discontinuity does not. '

Experiments have measured!® the transverse field structure inside an
FEL. Direct comparisons of these measurements with our theory are not
possible because the experiments use a rectangular waveguide, and because
the probes used in the experiments are not entirely unidirectional. Nonethe-
less, we find some qualitative agreement between theory and the experiment.
For example, the space charge fields dominate the transverse profile m- i-
ifications. The profile modifications exhibit inversion symmetry when the
measurement position is shifted by half the wiggler period. Leads and lags
between field amplitudes measured at different transverse positions are both
predicted and observed.
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Figures

Fig. 1 Beam and waveguide geometry.

Fig. 2 Decomposition of the true beam into a nonwiggling component
and an edge component. For simplicity, the beam is undulated by a linear
wiggler, and is assumed to be charge neutral.

Fig. 3 The field profiles (arbitrary units) vs. z-for 6k = +3m~!. The
dotted line is the unperturbed mode profile, and the solid, dot-dashed, and
dashed lines are the profiles generated by the ko, ky, and k, currents respec-
tively. The R and I respectively denote pure real and pure imaginary curves.
Curves are not shown if they are everywhere equal to zero. (For example,
the imaginary ko, E. field, or the k,, E, field.) The horizontal tick marks
indicate the position of the beam.

Fig. 4 The E, field profile vs. z for §k = —3m™!. The reémaining field
components are similarly inverted with respect to the profiles of Fig. 3. The
curves are identified as in Fig. 3.

Fig. 5 The real part (a) and the imaginary part (b) of the E, field profile
vs. z for §k = 3im~'. The curves are identified as in Fig. 3.

Fig. 6 The total electric field profiles vs. ¢ with §k = 1m™! (a, b, ¢, d)
and 8k = im~! (a/, bs, ¢/, d). Graphs are equally spaced in z such that (a,
af)isat z =0, (b, br)is at 2 = [,/8, (c, /) is at z = I,,/4, and (d, d/) is
at z = 3l,,/8. The solid curve is the E, field, the dashed curve is the E,
field, and the dotted curve is the E, field. Graphs for z = [,,/2, z = 51, /8,
z = 3lu/4, and z = Tl,/8, are identical to the curves shown except for a
horizontal reflection through the center of the graphs. Other parameters are
as in Fig. 3.

Fig. 7 The composite §k — scalar x as a function of z for ® = —4.11m"!
(a), ® = 0m~! (b), and @ = 4.11m™! (c). The real part of & is given by the
solid line, and the i 1maglnary part is given by the dashed line. The coupling
constant @ = 3.56m 2 is adjusted to give a gain of 1.5 at z = 1. Om, and the
normalized plasma frequency is ©, = 4.11m™!.

Fig. 8 The composite §k — scalar « vs. the detuning ©. The real part of x
is given by the solid line, and the imaginary part is given by the dashed line.
For reference, the gain is given by the dotted line. The coupling constant
is @ = 3.56m™%, the normalized plasma frequency is © = 4.11m" ! and
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z=1"7Tm.

Fig. 9 Total electric field vs. the detuning ©. The field is plotted at
z=0.99m (a), z = 0.99 +1,,/4 (b),z = 0.99 + 1,,/2 (c), z=0.99+31,/4 (d).
The solid line is the electric field at z = 0.26cm, just outside the beam, and
the dashed line is the field at the wall. To the width of the lines, the field
at the waveguide wall is identical to the field in the center. The coupling
constant Q = 6.39m™% is adjusted to give a gain of 2 at z = Im. Other
parameters are as in Fig. 3.

Fig. 10 Output power (a), phase (b), and the real(c) and imaginary (d)
parts of the composite §k —scalar vs.z from a nonlinear simulation of an FEL
operating at 1.5mm wavelength with a 1.5kA, 2.13kV beam. The power (a),
and phase (b) behave smoothly compared with the Rex (c) and Imx (d).

Fig. 11 Electric field vs. = for various beam radii b = 0.1,0.2,0.5,1.0 em.
The discontinuities are at the beam edge, and identify the radius associated
with each curve. The field is plotted at z = ,,/8, w1th a 6k = 0.75. Other
parameters are as in Fig. 3.

Fig. 12 Electric field vs. z for the frequencies f = 10,50,90 GHz (solid,
dashed dotted, respectively). The field is plotted at z = [,/8, with a 6k =
0.75. Other parameters are as in Fig. 3.
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