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ABSTRACT

The efficiency of cyclotron autoresonance maser (CARM) amplifiers with piecewise

linear tapering of the magnetic field is analyzed. In the low current limit, we find

that increasing the magnetic field substantially enhances the efficiency if an effective

detuning parameter is positive, while decreasing the magnetic field is advantageous

when the detuning parameter is negative. For high current, high gain, CARM opera-

tion the efficacy of tapering is found to be reduced in a parameter regime where the

saturation wave amplitude becomes of the order of an effective detuning parameter.

PACS numbers: 42.52.+x, 41.70.+t
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The cyclotron autoresonance maser (CARM), potentially a tunable high power co-

herent radiation source from submillimeter to millimeter wavelengths, has attracted

considerable attention. Extensive theoretical and computational effort has been made

in the studies of the CARM interaction, including the theory of radiation amplification

in the cyclotron resonance maser (1-3], the kinetic theory of CARM with both planar

[4] and circular [5] electromagnetic waves, as well as waveguide mode configurations

[6], the nonlinear efficiency studies [7], the stabilization of the CARM instability by

intense electron beams [8] and momentum spread [9], absolute instabilities [10], and

simulation studies of CARM amplifiers [11-15]. Experimental results on the CARM

oscillator have been reported recently [16]. The CARM interaction takes place when

the electrons undergoing cyclotron motion in a uniform axial magnetic field Boa, in-

teract with an electromagnetic wave (w, k) propagating along the z-direction. The

cyclotron resonance condition is

w - kilo' = , (1)

where v, and -y are respectively the axial velocity and relativistic mass factor of the

electron beam, s is the harmonic number, weo = eBo/mc is the nonrelativistic cy-

clotron frequency, m and e are respectively the electron mass and charge, and c is

the speed of light in vacuum. Making use of the phase velocity vo = W/kIl and taking

s = 1 (the fundamental cyclotron frequency), Eq. (1) becomes

oco
= = WD, (2)

7(1 -3gg//34)-

where 311 = v./c, 30 vb/c = w/cklj, and WD is known as the Doppler shifted

cyclotron frequency.

In this rapid communication we analyze, for an arbitrary choice of parameters, the effi-

ciency of single mode CARM amplifiers with piecewise linear tapering of the magnetic
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field. The efficiency, denoted by 7, is defined as 1 = (< YO > - < -y >)/(< -yo > -1),

where < y0 > mc2 and < -y > mc2 are respectively the average initial and final ener-

gies of the electrons. In the low current limit, we find that increasing (or decreasing)

the magnetic field substantially enhances the efficiency when an effective detuning

parameter Def f is positive (or negative). (The definition of Deff will be given later.)

For high current, high gain, CARM operation, this result remains applicable, except

when the saturation wave amplitude is large compared with an effective detuning

parameter.

Consider a beam of relativistic electrons of density n undergoing cyclotron motion in

a magnetic field fo(z,r) interact with a right-hand polarized electromagnetic wave

(w, k6,) described by the vector potential

A(z, t) = A(z)[d. cos 4(z, t) - 6, sin 4(z, t)], (3)

where q(z, t) = kz - wt + 8 (z) is the wave phase, and both the wave amplitude A(z)

and the phase shift 8(z) vary slowly within one wavelength. In polar coordinates, the

magnetic field is assumed to have an azimuthally symmetric form [13]

Bo(z,r) = Bo.(z)6&. + Bo,(z,r)6,, (4)

where Bo,(z,r) = -(r/2)(dBo.(z)/dz) is the radial component of the magnetic field.

Using a system of units in which e = m = c = Bo0 (0) = 1, i.e. introducing the di-

mensionless variables and parameters Bo2 (z) -- Bo,(z)/Boz(O), wCo(z) -+ wCO)/n,

W -+ wP/, z --+ cz/fl, v, -+ v,/c, /v -+ vO/c, Pz -+ pZ/mc, Pt -+ pt/me, and

A - eA/mc2 , with fl = eBo.,(0)/me, we can write the magnetically tapered CARM

equations as

dV wy Wo(z) wA 1 y d(z)
d k- + + - )sinO + , (5a)dz P P PZ Pt VO PZ dz
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d-y wApt
- - cos O, (5b)dz p,

dp. k Apt Pt dBo(
- O to (5c)dz P 2pzBoz dz

dA 2 V_ O Pt-= - P (-- Cos ),(5d)
dz 2k p

d- w Pt s (5e)
dz 2kA psm),(

where w = 47ree2n/m is the electron plasma frequency squared, vZo is the axial velocity

of the electron beam while entering the z > 0 interaction region. Detailed derivations

of the self-consistent equations describing the CARM amplifier with magnetic field

tapering have been presented in Ref [13] and [14]. The first three equations describe

the motion of the electrons in terms of the axial momentum pz, energy y, and phase

kz - wt - tan1 (p/py) + 8(z). The last two describe the wave evolution, where

(.. N-1  ' i ... denotes the average over all the electrons. In this N-particle model

there are total of 3N + 2 equations since the transverse momentum pt is solved from

-y (1+ p2  p2). From Eqs. (5b) and (5d), the total energy flux of the electron

beam and electromagnetic wave field, nvzo-y + (1/47r)wkA 2 , is a constant of motion.

Moreover, the magnetic moments of the electrons are adiabatically conserved in the

absence of the wave field.

In the linear instability regime, the electrons undergo a transition from random to

bunched phase distributions such that more electrons give up their kinetic energy to

the electromagnetic wave. In the low current limit, since the wave amplitude and

spatial growth rate are small, such phase bunching can be described as follows. Let

us consider an untapered CARM amplifier operating at the frequency

wco
W WD -+ Aw = ol- ~/# + Aw, (6)
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where Aw and yo are respectively the frequency detuning and initial beam energy. By

differentiating Eq. (5a) and making use of Eqs. (5b), (5c), and (6), and the fact that

Pz(z) - pzo = O(A) and pt(z) - pto = O(A), it is straight forward to show that the

dynamics of the electron phase b is approximately govern by the pendulum equation

d2- Deff ( k0 )A(z) cos b + O(A2 ), (7)

where Opo = pto/pzo is the initial pitch angle of the electron beam. Here we have

introduced an effective detuning parameter

Dff = 1 - v + [(_!I'-- 1) + (_ _ 1)2 . (8)

Thus, the electrons bunch at the synchronous phase 0, = 7r/2 for Deff > 0 since the

stable fixed point is located at (,0, db/dz) = (7r/2, 0) and the unstable fixed point at

(V), db/dz) = (37r/2, 0). For Def f < 0, the synchronous phase is /, = 37r/2. Def f van-

ishes when vo = 1 and Aw = 0, revealing the well-known cyclotron autoresonance phe-

nomenon [7], where the electrons remain in synchronization with the electromagnetic

wave in the course of evolution. Typically, the growth rate is small when Def f = 0.

To get an intuitive picture of efficiency enhancement using magnetic field tapering, it

suffices to analyze the motion of the electrons with phases close to the synchronous

phase 0,. Since in the (b, p,) plane the phase dependence of the axial momenta of

these electrons can be approximated as p,() ~ p(4,) + (dp.(O,)/d)( (0 - 0,), the

change in d/dz due to the magnetic field change SBOz (or Swco) is then given by the

Taylor expansion

(_) _ [ 1 dp (0,)( - ,)] (9)dz Pz() pz(4,) pz(0,,) db
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where pz,(,) is the axial momentum of the electron with ) = k,. We shall argue in

the following that increasing (or decreasing) the magnetic field enhances the efficiency

when D, 1 1 is positive (or negative). For Df f > 0, both d-y(4,)/d/ and dp.(.,)/ddb

are negative before nonlinear saturation. This occurs because the synchronous elec-

trons with b > 0, = 7r/2 lose energy and axial momenta while those with '0 < 0,

gain energy and axial momenta, as seen from Eqs. (5b) and (5c). Eq. (9) implies

that as the magnetic field increases the synchronous electrons are forced to the right

in the (0,-y) plane, so that the number of the electrons with phases situated in the

interval (7r/2, 37r/2) increases or the electrons continue losing energy on the average.

In short, increasing (or up tapering) the magnetic field yield efficiency enhancement

when Def f > 0. Similarly, decreasing (or down tapering) the magnetic field enhances

the efficiency when Dej < 0.

Fig. la shows the untapered and corresponding optimally tapered efficiencies as func-

tions of the relative frequency detuning Aw/w, obtained from self-consistent simula-

tions with Eq. (5), cold electron beams, and piecewise linear tapering. For the results

in this figure the simulations had v4 = 1, corresponding to the CARM operating in

vacuum, -yo = 2.37, and Opo = 0.53. The dimensionless electron plasma frequency

U, = 0.05, which is representative of the low current limit. In order to obtain the ta-

pered efficiencies, upward tapering was used for the high frequency branch (O > WD),

while downward tapering for the low frequency branch (w < WD). To achieve optimal

efficiency we start tapering somewhat before nonlinear saturation occurs. Usually the

absolute value of the slope for optimal tapering ranges from 0.04 to 0.08'Bo.(0). A

similar plot is shown in Fig. lb for v4 = 1.03 and w, = 0.005, where only the negative

De11 branch is plotted since the growth rate is small for the positive Df f branch and

low current. This figure corresponds to the CARM operating with a waveguide mode.

(Since the transverse variation of the rf field and the forces due to the longitudinal

rf field can be neglected under the conditions that 1 - v.-2 << 1 - V'O/vo, the elec-

tron Larmor radius rL << 1/k±, and the electron beam radius r, << 1/ki [13], the

one-dimensional model given by Eq. (5) provides a good description for the CARM
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operating in waveguide.)

For high current CARM operation, the validity of the pendulum equation (7) breaks

down because the term of the order of A2 can no longer be ignored in the expansion.

Indeed, when deriving Eq. (7), one has to differentiate for instance the sine term in

Eq. (5a), which contributes a term of the order of A 2 sin(2O) to the right hand side

of Eq. (7). For example, if the term proportional to A 2 sin(24) dominates, then the

electrons will equally bunch at two phases differing by 7r. To the lowest order, tapering

does not yield net gain in energy extraction because the electrons bunched at 0, give

up energy, while those at 0, +7r gain energy, or vice versa. Typically, multiple phase

bunching occurs and the efficacy of tapering is reduced when the saturation wave

amplitude A,.t is of the order of DCff k 2Go/pO. A qualitative criterion for tapering

to result in efficiency enhancement is

Asat < ID.f |(k po). (10)
PZO

In Fig. 2 we plot the untapered efficiency (dashed curve), corresponding tapered

efficiency (solid curve), and dimensionless ratio Aatpzo/1De1 1k 20PO (dotted curve)

as functions of Deff, where downward tapering is used and the parameters are the

same as in Fig. 1b, except now w, = 0.3.

We conclude that in the low current limit the efficiency of CARM amplifiers can be

substantially enhanced by increasing (or decreasing) the magnetic field if an effec-

tive detuning parameter is positive (or negative). Moreover, for high current, high

gain, CARM operation this result remains valid, as long as condition (10) holds ap-

proximately. When condition (10) is violated, the effect of tapering on the coupling

between the electrons and electromagetic wave field becomes delicate and requires

further investigations.
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FIGURE CAPTIONS

Figure 1

The untapered (dashed line) and corresponding optimal tapered (solid line) efficiencies

are plotted as functions of detuning parameters in the low current limit. a) The choice

of vo = 1 corresponds to the CARM operating in vacuum. Other parameters used

in the simulations are w, = 0.05, yo = 2.37, and 6 po = 0.53. Upward tapering was

used for the high frequency branch with Aw > 0, and downward tapering for the low

frequency branch with Aw < 0. b) A similar plot for w, = 0.005 and vo = 1.03,
corresponding to the CARM operating in a waveguide mode for the negative Doff

branch.

Figure 2

The untapered efficiency (dashed line), corresponding optimal tapered efficiency (solid

line) and ratio A,.tpzO/|DeffIk2 po (dotted line) as functions of Deff for vo = 1.03,

WP = 0.3, yo = 2.37, and Opo = 0.53.
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