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ABSTRACT

The motion of a relativistic electron is analyzed in the field configuration consisting of

a constant-amplitude helical wiggler magnetic field, a uniform axial magnetic field, and

the equilibrium self-electric and self-magnetic fields produced by the nonneutral electron

beam. By generating Poincar6 surface-of-section maps, it is shown that the equilibrium

self fields destroy the integrability of the motion, and consequently part of phase space

becomes chaotic. In particular, the Group-I and Group-II orbits can be fully chaotic

if the self fields are sufficiently strong. The threshold value of the self-field parameter

e = W%/4Q' for the onset of beam chaoticity is determined numerically for parameter

regimes corresponding to moderately high beam current (and density). It is found that

the characteristic time scale for self-field-induced changes in the electron orbit is of the

order of the time required for the beam to transit one wiggler period. An analysis of

the first-order, self-field-induced resonances is carried out, and the resonance conditions

and scaling relations for the resonance width are derived. The analytical estimates are

in good qualitative agreement with the numerical simulations.

PACS numbers: 42.55.t, 05.45, 52.25.w
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INTRODUCTION

The free electron laser (FEL)'- 3 makes use of the unstable interaction of a relativis-

tic electron beam with a transverse wiggler magnetic field to generate coherent electro-

magnetic radiation. 4 8 In recent experiments, 9 ~13 megawatts to gigawatts of coherent

radiation have been generated in the submillimeter to millimeter wavelength range. In

addition, theoretical and experimental investigations 4 14-1 7 have shown that free electron

lasers have several remarkable properties, including frequency tunability, high efficiency,

high power, and optical guiding by the electron beam. Several FEL experiments1-13

operate at moderately high beam current and make use of a magnetic guide field Boj.

to steer the electron beam in the axial direction. The helical wiggler magnetic field

B,(X-) = -B,,(,cos k~,z + - sin kz) and the axial guide field BOFz then act in com-

bination to affect the particle motion and determine the detailed properties of the free

electron laser interaction.18 - 22 (Here, B. = const. and A, = 27r/k. = const. are the wig-

gler amplitude and wavelength, respectively.) This paper examines the electron orbits

in a helical-wiggler free electron laser with axial guide field including the effects of the

equilibrium electric and magnetic self fields23 produced by the beam space charge and

current.

Although there is a considerable literature on the theory of free electron lasers, all

treatments heretofore have neglected the influence of the equilibrium self fields2 3 of the

(nonneutral) electron beam. While such an approximation is valid for low-current FEL

operation, the present analysis shows that equilibrium self-field effects play a significant

role in altering the electron dynamics when the beam current Ib approaches the multi-

kiloampere range. As an example, for beam radius rb = 0.31cm, axial guide field B0 =

14.2kG, wiggler amplitude B, = 710G, wiggler wavelength A, = 27r/km = 3.0cm, and

relativistic mass factor yt = 3.0, it is shown in Sec. IV that the inclusion of equilibrium

self-field effects causes fully developed chaoticity in the electron orbits whenever the
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beam current lb exceeds the threshold beam current Ih = 4.3kA. This behavior is very

different from the case where the self-electric and self-magnetic fields of the electron beam

are (arbitrarily) neglected. If the equilibrium self fields are neglected, then the motion

of an electron in the combined helical wiggler and axial magnetic fields is integrable and

has been extensively analyzed in the literature.' 22 In this approximation, self-consistent

Vlasov-Maxwell equilibria21 can be constructed using the single-particle constants of the

motion to analyze FEL stability properties for various equilibrium profiles.2 0

A Hamiltonian system with N degrees of freedom is integrable if it has N independent

constants of motion in involution, i.e., the Poisson bracket of any pair of them vanishes.

If the number of constants is less than N, then the motion is nonintegrable and part of

phase space is chaotic in the sense that adjacent initial conditions lead to exponentially

divergent trajectories. Typically, however, there are also regular regions in phase space,

consisting of the Kolmogorov- Arnold-Moser (KAM) surfaces that limit the chaotic regions

of phase space.2 4 2 The breakup of the KAM surfaces results in chaotic transport from

one region to another, and thus the chaoticity spreads. The Poincar6 surface-of-section

method is useful in analyzing nonintegrable systems because the dimensionality of the

Poincar6 surface is M - 1 if the motion occurs in an M-dimensional phase space.

In this paper, we analyze the motion of a relativistic electron in the field configuration

consisting of a constant-amplitude helical wiggler magnetic field B.(z), a uniform axial

magnetic field Boe., and the equilibrium self-electric and self-magnetic fields produced

by a uniform-density nonneutral electron beam with radius rb, density nb, and average

axial velocity V = const. It is shown that the motion is nonintegrable, possessing only

two independent constants of the motion. Poincarx surface-of-section plots are generated

to demonstrate the nonintegrability and chaoticity of the motion. As the dimensionless

equilibrium self-field parameter e = ,2/412 increases in size, the chaotic regions in phase

space become increasingly large, leading to chaoticity. (Here, w,, = (4lrnse2/M)1/ 2 and
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= eBo/mc are the nonrelativistic plasma and cyclotron frequencies, respectively.) The

threshold value of the self-field parameter e for the onset of chaoticity is found to be less

than the maximum allowed value of e required for radial confinement of the nonneutral

electron beam. Indeed, for typical experimental parameters, values of e in the range

0.01 - 0.04 are sufficient to cause highly chaotic electron motion. Moreover, it is shown

that the time scale for self-field-induced changes in the electron orbit is characterized

by the time required for an electron to transit one wiggler period. This time scale

is comparable with the period of oscillation about an integrable, stable, steady-state

orbit calculated for c = 0. The first-order, self-field-induced resonances are investigated

analytically, and the resonance conditions and scaling relations for the resonance width

are derived.

The organization of this paper is as follows. In Sec. II, the dynamical problem is

formulated in canonical variables, 26 and the constants of the motion are determined by

means of canonical transformations. In Sec. III, the (integrable) motion of an electron

in the wiggler and guide fields is analyzed for the case where the equilibrium self fields

are negligibly small (e = 0). Interpretations of the canonical variables are given, and

the frequencies of oscillation about the Group-I and Group-II steady-state orbits are

calculated. In Sec. IV, by generating Poincar6 surface-of-section maps, it is shown

that the inclusion of equilibrium self-field effects (E 5 0) destroys the integrability of

the motion. The self-field-induced resonance conditions and scaling relations for the

resonance width are derived. Finally, the threshold value of the self-field parameter for

the onset of chaoticity is determined numerically for parameter regimes corresponding to

moderately high beam current.
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II. CANONICAL FORMULATION OF THE PROBLEM

Consider the motion of a relativistic electron in the field configuration consisting of

a uniform axial magnetic field B06., a constant-amplitude helical wiggler magnetic field

IL = -B.(cos kvz + ey sin kz), and the self-electric and self-magnetic fields produced

by a relativistic nonneutral electron beam with radius rb, average axial velocity I"'2, and

uniform density profile

(nb = const., 0 < r < rb,{gr (1)
0, r > rb,

where r = (x 2 + y2) 11 2 is the radial distance from the beam center. Within the nonneutral

electron beam (0 < r < rb), it follows from the steady-state Maxwell equations that the

equilibrium self-electric and self-magnetic fields, E, and B5 ,, can be expressed as2 3

2

E, = - - (xF. + y6y), (2)
2e

and

B, = 2 (y. - Xey). (3)

Here, /3 = V/c is the normalized beam velocity, -e and m are the electron charge and

rest mass, respectively, c is the speed of light in vacuo, and wp = (47re2nb/m)I/ 2 is the

nonrelativistic plasma frequency of the beam electrons. The equations of motion for an

electron within the beam (0 < r < rb) can be derived from the Hamiltonian

H = [(cP + eA) 2 + m2c4] I - e4, = -mc2 - eo%, (4)
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where -y = [1 + (IY/mc) 2]1' 2 is the relativistic mass factor, and the scalar and vector

potentials, 4, and A, are defined by

2

,= (b(x2+y2),

and

= Boxy + A.(i. cos k,,z + -, sin kz) + I3b#z., (6)

with A, = B2/h. = const. The mechanical momentum jY is related to the canonical

momentum 5 by 7 = P + eA/c. Because H is independent of time, the Hamiltonian is

a constant of the motion, i.e.,

H(x, y, z, P., P,,, P.) = -ymc 2 _ e-, = canst, (7)

corresponding to the conservation of the total energy of an individual electron.

In order to find an additional constant of the motion and determine the resonances we

have performed a number of canonical transformations (see Appendix A). 2" The resulting

transformation to the new variables (W, 0, z', P, P0, P.,) is given by

X = m) sin(W + kz') - cos( - k"z'), (8)

y = si(0 - k.z',) - W cos(W + kz'), (9)

z = z' (10)
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P = (2mflP,)i cos(W + kz'),

Py = (2miIcPO)I cos(O - kz'),

P. = P., - k.Pw + k.PO,

(12)

(13)

where S1 = eBo/mc is the nonrelativistic cyclotron frequency. We shall shown in Sec.

III that the canonical momenta P. and P characterize, respectively, the gyroradius and

the guiding center radius of the steady-state orbits in the absence of the self fields. The

Hamiltonian in the new variables (V, 4P, z', P,, Pp, P2 ,) is given by

1 e4~
1 H (V, , P, PO, P,) = - +me2  me2

2Qc PW 2eA. 2QcPw 2 P., - k.Pw + k.P e4) 2 (eA) 2 1

MC2+ m2 c2iCos M +,3b +C +e , (14)
hme2 me2  me2 m bc 2

where 4., and e are defined by

et., = 2e~c[P, + PO - 2(PPb) sin(v ),

U)2b

4 n2

(15)

(16)

The dimensionless parameter e characterizes the strength of the equilibrium self fields

relative to the focusing force produced by the axial gdide field Boe,.

We introduce the dimensionless parameters and variables defined by
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Q. = Qc/ck., tZ = wo/ck., f, = e 5,/mc2 , a, = eA,/mc 2,

= P./mc, D k.P,/mc, Pb = k,,.Pk/mc, H = H/mc2, (17)

-r = chet, ' = kz'.

Therefore, the Hamiltonian defined in Eq. (14) can be expressed in the dimensionless

form

2 + 2 ) cos + (Ps' - P2, + 6,b + IOb4') 2 + a2 + 2 - 4,, (18)

where

4,(p, 4, PO, P,) =2ene [P + Pk - 2(Ppiq)2 sin(V + 4)]. (19)

Because H is independent of ', it follows that P., = const.

In the r = 0 limit, where equilibrium self fields are neglected, it follows that 4, = 0

in Eq. (18) and the motion is integrable because Pk is a third constant of the motion.

This limit has been analyzed extensively in the literature18- 22 and provides the traditional

starting point in the formulation of FEL stability theories with an axial guide field BoF..20

When e $ 0, however, we shall show in Sec. IV that the motion becomes nonintegrable,

with only two independent constants of the motion, k and 1 .. As the self fields increase

in intensity, the chaotic regions in phase space grow, thereby raising the question of how

the self fields alter the stability properties of the FEL interaction.
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It should be pointed out that the present analysis is restricted to the class of FELs

with nonzero axial guide field Boe2. [The canonical transformation in Eqs. (8)-(13)

becomes singular as BO - 0.] The effects of equilibrium self fields on the particle orbits

in FEL configurations without an axial guide field are also under investigation, and the

results will be the subject of a subsequent paper.
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III. INTEGRABLE LIMIT

In the c = 0 limit, the self-field contribution vanishes (<i 0), and the Hamiltonian

in Eq. (18) reduces to

2cb, + 2a_(2nc) ) (P - + P,) 2 + a2 + ] = 7, (20)

which possesses the constants of the motion P,,, P, and -yo. The motion described by

Eq. (20) is integrable and has been analyzed by several authors. 18-22

The fixed points, or steady-state orbits, denoted by 'po and i5O, satisfy the steady-

state equations of motion

- = - -- + cosW -- =0, (21)
d~r -Pw lo (20cPw)i YO

dP- = -- - a 2Ac/%)2 sin = 0, (22)
dr ao Yo

which yield the solutions cos VO ±1, and

(2 ePWO) = ± A > 0. (23)
PzO - fc

Here, P2o = - Pt, + P) is the normalized axial mechanical momentum for E 0. To

locate the fixed points for given electron energy -yo, the quantity Po is determined from

the equation

20 + a ' + 1 = 2,(24)
11+(PZ0 - C2.)2 (4
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where use has been made of Eqs. (20) and (23). Equation (24) has at most four real

roots for 120. For sufficiently small but nonzero !, there are three fixed points with

PzO > 0. Among the solutions, the orbit that is stable for all nc > 0 is referred to as the

Group-Il orbit. The other pair of stable and unstable orbits merge at Or = ng, where the

stable orbit is referred to as the stable Group-I orbit. [The normalized critical cyclotron

frequency fl- is a function of a, and -o and can be determined either analytically or

numerically, because Eq. (24) is fourth order in &o.] Figure 1 shows the typical magnetic

field dependence of P3zo for the integrable steady-state orbits, where the dotted straight

line represents magnetoresonance (P., 0 c). The phase-space structure is plotted in

Fig. 2 for the two cases 0 < nc < ni and ne > ng, where the elliptic (hyperbolic)

fixed points correspond to the stable (unstable) steady-state orbits. In FEL operation,

an electron beam is injected into the Group-I or Group-II orbit whenever 0 < nc < A7

or QC > nL . Also, a cold beam with narrow energy spread is desirable to achieve high

gain.

The canonical momenta P, and PO can be interpreted as follows. From Eqs. (20)

and (23), it readily follows that the phase-space trajectories for the steady-state orbits

are described by V = WO, 0 = 0o + (Pz9 o/0YO)T = o + /3 0T, ' = io + (2o/7YO)T =

io + 3.or, P,0 = 15,o, P = Po and P., = P5,o, where Oo, i, 15o and P',o are the initial

conditions. Substituting this solution into Eqs. (8)-(10), the steady-state trajectories

can be expressed in dimensional variables as

(2P, 0 1 2POO 25
x(t) = k sin(k~zo + k,,,v ot) - cos' 0 , (25)

y(t ) = cos(kzo + kvzot) + sin 0o, (26)
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z = zo + vzot, (27)

for cos Vo = ±1. Equations (23)-(25) describe helical trajectories with gyroradius rc =

(2P,o/mQc)1/ 2 and guiding center radius r, = (2P,./mQc)1/2, as illustrated schematically

in Fig. 3. Note from Eq. (23) and the expression r, = (2Po/mOQ)1 /2 oc Ip3o - fl-' that

the effective gyroradius r, becomes large as Pzo approaches nc. Of course, exact magne-

toresonance (l, = n) is avoided in FEL operation with an axial guide field Boj, in order

to assure beam propagation and moderately small radial excursions of the transverse

orbits.

It is of interest to examine the oscillatory motion near the stable orbits, expressing

V = po + S and P , = P, + 8F , . It is straightforward to show, for ISpl << 1 and

186,O << Po, that the normalized oscillation frequencies for both Group-I and Group-II

orbits are given by

.z 1 - c Pto . (28)
7o L aw Pzo

Here, the normalized transverse mechanical momentum prto 1 is given by

patpzo = 1, (29)
PzO ~~-

where 61 = i, cos k1z + F, sin kwz. For Ipto/.I' < < a./O,, it follows from Eq. (28) that

i 1P, - n,1/yo, thereby recovering the results in Refs. 18 and 20.
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IV. CHAOTIC MOTION

In this section, it is shown that the equilibrium self-field contribution 4, in Eq.

(18) destroys the integrability of the motion. In particular, the stable steady-state orbits

calculated in Sec. III become chaotic if the self fields are sufficiently strong. The equations

of motion for E : 0 are obtained from the Hamiltonian defined in Eq. (18). This gives

0~ _H _____

d+ 1+ 0 Cos --P2eoc 1 -# )-sin(p +
d- PIPs

(30)

- 2enc O1 - Pz ( - ) sin(W + )], (31)
dJ% 1 -H a O Z 1 ( P IP

dT - - ( cos-4Efc(1 - cos(e±+'),

d#~~ COS2-- ~ - - =f - 4eO 1 - P5-- (,P)3 cos(p + 0), (33)
dr o

where the normalized axial mechanical momentum P2 = 2, - P+ P0+ 4.,(w, V), Pp, PO)

has been introduced for simplicity of notation. Note that the constancy of -yo in Sec. III

is now replaced by ft = -y - 4,, where A 4, is no longer a constant of the motion.

It is important to compare the characteristic time scale T, for the self-field-induced

changes in the particle orbit with the period of oscillation To about the stable Group-I

or Group-II orbit calculated in Eq. (28). Here, To = 27r/ckwA' = Aw/C&, where LZ is of

order unity and A, = 27r/k. is the wiggler period. The time scale T, can be estimated

from the rate of change of the phase in 4I, in Eq. (19) for the integrable stable steady-

state orbit, i.e., from 0 + ' ' = k.v + 0(E) - k.V, where the super-dot designates
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the derivative with respect to time t. Therefore, the time scale associated with self-field

effects is T, ; A./Vb, which is the time required for a beam electron to transit one wiggler

period A,. The fact that T, and To are comparable in size implies that the equilibrium self

fields can rapidly affect the motion of the beam electron. Because the motion apparently

does not possess a third constant of the motion for e 5 0, chaoticity is expected to be

observable and to spread significantly before the electron beam passes through multiple

wiggler periods, even for modest values of e. In contrast to the chaoticity induced by

an electromagnetic perturbation with time scale characterized by the synchrotron period

of an electron moving in the ponderomotive potential,27 chaotic behavior arising from

equilibrium self-field effects is likely to be more harmful to FEL operation. It is known

that sidebands also cause chaotic behavior, 28,29 which is not likely to be important until

nonlinear saturation occurs.

To provide a semi-quantitative understanding of the nonintegrable motion near the

Group-I or Group-II orbit, the first-order self-field-induced resonances are analyzed as

follows. For E << 1, the Hamiltonian in Eq. (18) can be expanded to first order in E

according to

H H Ho + eH 1, (34)

where

1 = 2 1(1 - Ob ) + PO - 2(P_,) sin(4 + V))], (35)

and the zero-order Hamiltonian AO =yo defined in Eq. (20) is integrable. For an

electron oscillating about an integrable stable steady-state orbit described by p(-)=

Wo + Seo cos cnr and P, = Ppo + 6P, sin Tr, the perturbation H1 can be approximated by
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H, a 2Q.(1 -,3 ){iPo + Po -2(PwoP14 o) sin[o ++&pocosSTr +04]}

i00 C 7

= 2n(1 Z- 2f O+PVho-2( ) Jp(8oPo)sin Or + n + + Vo }. (36)

Here, 2 is defined in Eq. (28), J.(x) is the Bessel function of the first kind of order n,

and use has been made of the approximation /3.O 2 Ob. It follows from Eq. (36) that the

self-field-induced resonances are given by

-+ n = 0, n = 0,)t1, 2,--. (37)
di-

Substituting Eqs. (28) and (31) into Eq. (37) and averaging over the oscillation period

27r/Z, we obtain the resonance condition

n P-v1 - + - - 2en - P.0= 0. (38)
Yo L aw \PzO) to o

Figure 4 shows plots of the resonance curves (the solid curves) corresponding to the

solutions to Eq. (38) for n = -1, -2 and -3. The dashed curves in Fig. 4 are the

integrable steady-state orbits calculated in Fig. 1. In Fig. 4, the intersections (marked

by the dots) between the integrable stable orbits and the resonance curves labeled by the

integer n correspond to rational orbits. That is, the electron rotates through an angle of

27r/n about the fixed point as 4 advances by 27r. It readily follows from Eqs. (20), (34)

and (36) that the normalized resonance width tib of P, can be estimated by

tb = [32EcybnIe|Jf(6po)]'(PoP 4,o)l, (39)

or equivalently,

- 4[1brcrIbIJ.('o)I] 2 (40)
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Here, rb, lb and -(bmc2 are the radius, current and energy of the electron beam, 1A =

mc3 /e a 17kA is the Alfv6n current, and rc and r. are the gyroradius and the guiding

center radius, respectively, as illustrated in Fig. 3. Use has been made of the relation

e = 4 (c 2/.rb)(Ib/IA) in deriving Eq. (40) from Eq. (39). The scaling

relations in Eqs. (39) and (40) exhibit a strong dependence of ii, on equilibrium self-

field effects. In particular, tb, is directly proportional to (lb/IA)1/2. Note also that ii), is

proportional to (r/rb)1/2, so that the resonance width is largest for electrons with guiding

center radius r, approaching the beam radius rb. In addition, the factor r./ 2 in Eq. (40)

is proportional to 1P.o - '-1, which becomes increasingly large near magnetoresonance.

Poincar6 surface-of-section maps have been generated by numerically integrating the

equations of motion in Eqs. (30)-(33). This analysis demonstrates the chaotic motion

and illustrates that the earlier analytical estimates have captured the underlying physics

involved in the nonlinear dynamics of an individual electron. The motion described by

Eqs. (30)-(33) occurs in the three-dimensional phase space (, 1b Pb), because P, is

determined from the constancy of ft and P. In order to compare with the integrable

phase plane in Fig. 2, the plane (p, P.) with 0 = 0, mod 21r, is chosen to be the surface-

of-section in the numerical calculations. It follows from Eq. (33) that the variation of

PO is small for small e. The effective normalized guiding center radius )1/2

is specified by the initial condition for Pp. It should be pointed out that on a surface of

constant energy, with fixed initial conditions for W, -0 and PO, different initial conditions

for the axial mechanical momentum P, are accomplished by choosing different values for

the axial canonical momentum P., and different initial conditions for P,.

Figure 5 shows typical nonintegrable surface-of-section plots for the two cases: (a)

0 Q< < nl, and (b) Ac > lr. The values of the dimensionless parameters in Fig. 5

are: (a) c = 0.01, Ac = 2.0, H = 3.0, a. = 0.2 and Pb = 0.91, and (b) c = 0.01, c = 4.0,

H = 3.0, a, = 0.2 and Ob = 0.93. In obtaining the results in Fig. 5, the beam radius rb
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is assumed to be sufficiently large that the maximum radial excursion of an individual

electron remains within the electron beam, where the self fields are described by Eqs. (2)

and (3). In addition, the initial condition for PO is fixed at the value (2P/o/nc )1/ 2 = 0.25,

whereas the initial condition for P, is allowed to vary in Fig. 5. By comparing Fig. 5(a)

with Fig. 2(a), although there is little change in the vicinity of the Group-I orbit, it is

evident that the Group-II orbit is chaotic as a result of equilibrium self-field effects. This

agrees qualitatively with the scaling relations in Eqs. (39) and (40) because the Group-I

orbit is further removed from magnetoresonance than the Group-II orbit. In Fig. 5(b),

a period-two island appears near the Group-II orbit. This is also in agreement with

the earlier resonance analysis because the Group-II orbit nearly intersects the resonance

curve with n = -2 at nc 4.0 in Fig. 4. Although the nonintegrability and chaoticity of

the motion are evident in Fig. 5, the Group-I orbit in Fig. 5(a) and the Group-Il orbit

in Fig. 5(b) remain almost regular. That is, the equilibrium self fields (F = 0.01) in Fig.

5 are not sufficiently strong to cause significant chaoticity in the particle orbits.

The onset of chaoticity of the Group-Il orbit is shown in the surface-of-section plot

in Fig. 6 for E = 0.04, 1 = 4.0, I = 3.0, a, = 0.2, fb = 0.93 and krb = 0.65. In

Fig. 6, the normalized effective gyroradius (2P,/Qc)1/2 ranges from 0.17 to 0.35, and the

normalized guiding center radius is (2po/f/)1/2 2 0.25. Note that the threshold value of

the self-field parameter (e = 0.04) for the onset of chaoticity is much less than the limiting

value of the self-field parameter {E = [8-yb(l - 32-)]- = 0.3} for radial confinement of

the beam electrons. 23 As an example, for A. = 3.0cm, the dimensionless parameters in

Fig. 6 correspond to rb = 0.31cm, Ib = 4.3kA, B, = 710G, BO = 14.2kG, 3b = 0.93 and

yb = 3.0.
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V. CONCLUSIONS

In this paper we have investigated the effects of equilibrium self fields on the electron

orbits in a helical-wiggler FEL with an axial guide field Boe,. It was shown that the

equilibrium self fields destroy the integrability of the motion, and consequently part of

phase space becomes chaotic. In particular, the Group-I and Group-II orbits can be

chaotic if the equilibrium self fields are sufficiently strong. Typically, the threshold value

of the self-field parameter /40 for the onset of chaoticity is larger than the

self-field parameters in present-day FEL experiments, which operate at moderate beam

current. Furthermore, the time scale for self-field-induced changes in the electron orbit

is characterized by the time required for an electron to transit one wiggler period. This

results in a rapid spread of chaoticity in momentum space as the electron beam passes

through a few wiggler periods. In this regard, the influence of equilibrium self fields

differs significantly from the effect of an electromagnetic perturbation2 7 which induces

chaoticity on a (long) time scale characterized by the synchrotron period of an electron

in the ponderomotive potential. Further investigations are required to understand how

self-field-induced chaoticity alters the stability properties of the FEL interaction.
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APPENDIX A: CANONICAL TRANSFORMATIONS

To verify that the transformation given in Eqs. (8)-(13) is indeed canonical, we first

perform the canonical transformation among the transverse variables, 28

sinca- , y =Y
Cn

-- (;:7jz 1 cos a,

P. = (2m7cP.) cos a, Py = Py,

given by the generating function

1 p2
F3(P., Py; a, Y) (P.Py - tan a) - YP,

MQ 2

where Qc = eBo/mc. Substituting Eqs. (5)-(6) and (Al) into Eq. (4) yields

H(a, Y, z, P., Py,P) =

[2mc20c + 2eA.( 2mc2 2 cos(a - kz) + (cPz+ e3b.) 2 +(eA) 2 + m2cJ I - e%,

(A3)

where

2 ~
-4 = '

4 f[
(2Pa since- cos a . (A4)

Second, we introduce the polar coordinates 3 and P in the Y - Py phase plane,

Y sin,3, Py = (2m~cP)" cosO,

20

(Al)

(A2)

(A5)

2P,=,



with the generating function

F1(Y;O) = 2 cot/3.

The Hamiltonian is then transformed to

H(i,z,P.,Pp,P.)

2mc2 0P +2eAw(2mc2fP j cos(a- kz) + (cP, + eI&b . )2 + (eA.) 2 + m 2 c4

where 4, is defined by

e4. = 2E~c [ Pa + P6 - 2(PaPp )2 sin(a + #)1.

(A6)

A

(A7)

(A8)

Here, e is the self-field parameter defined in Eq. (16). Finally, the canonical transforma-

tion,

= a - k.z, 4 3= + k.z, z'=z,

(A9)

with the generating function

F2(a,/, z'; P,, P0, P-') = (a - kz)P, + (0 + kz)PO + zP.,, (A10)

4
21

P, = P., Pv, = Pp, P., = P. + k.(Pw -- PO),



yields the resulting canonical transformation in Eqs. (8)-(13) and the Hamiltonian in

Eq. (14).
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FIGURE CAPTIONS

Fig. 1. Plot of the integrable steady-state orbits calculated from Eq. (24) for e = 0,

Yo = 3.0 and a, = 0.2. The solid (dashed) curves correspond to the stable

(unstable) orbits, and the dotted straight line designates the magnetoreso-

nance condition Pz = nc.

Fig. 2. Contour plots in the integrable phase plane (o,p.) calculated from Eq. (20)

for e = 0, -yo = 3.0 and a, = 0.2. The two cases correspond to (a) n = 2.0

<Q ng 2.1, and (b) nc=4.0 > 6-.

Fig. 3. Projections in the plane (x,y) of the integrable steady-state trajectory given in

Eqs. (25)-(27) for cos po = +1. Here, rg = (2Poo/mllc)2 and rc = (2Po/m~c)2

are the guiding center radius and the gyroradius, respectively.

Fig. 4. The equilibrium self-field resonance curves (solid curves) correspond to the

solutions to Eq. (36) for n = -1, -2, -3, E = 0.01, -yo = 3.0 and a, = 0.2.

The dashed curves are the integrable steady-state orbits calculated in Fig. 1,

and the dots signify the intersections between the resonance curves and the

steady-state orbits.

Fig. 5. Typical nonintegrable surface-of-section plots with 0 = 0, mod 2r, for the two

cases (a) 0 < 6c = 2.0 < 6- a 2.1, and (b) 6c = 4.0 > 6'. Other system

parameters are (a) f = 0.01, I = 3.0, a, = 0.2 and Pb = 0.91, and (b) c = 0.01,

I = 3.0, a. = 0.2 and ob = 0.93.

Fig. 6. The surface-of-section plot at the onset of chaoticity of the Group-I orbit for

the choice of system parameters e = 0.04, fn_ = 4.0, f = 3.0, a,, = 0.2 and

3b = 0.93. In this plot, the normalized effective gyroradius (2P,/!c)/" ranges

25



from 0.17 to 0.35, the normalized guiding center radius is (2P,6/n)1/2 0.25,

and the normalized beam radius is khrb = 0.65.
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