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ABSTRACT

Use is made of the Vlasov-Maxwell equations to investigate detailed properties
of the sideband instability for a helical wiggler free-electron laser with wiggler wave-
length A, = 27r/ko =const and normalized wiggler amplitude a, = eB./mc 2ko =const.
The model describes the nonlinear evolution of a right-circularly polarized primary
electromagnetic wave with frequency w,, wavenumber k,, and slowly varying ampli-
tude a,(z, t) and phase 8,(z,t) (eikonal approximation). The coupled Vlasov and
field-evolution equations are analyzed in the ponderomotive frame ("primed" vari-
ables) moving with velocity v, = w,/(k, -+- ko) relative to the laboratory. Detailed
properties of the sideband instability are investigated for small-amplitude perturba-
tions about a quasi-steady state characterized by an equilibrium electron distribution

f'(-yb) and a primary electromagnetic wave with constant amplitude a' =const (in-
dependent of z' and t') and slowly varying phase 60(z'). A formal dispersion relation
is derived for perturbations about a general equilibrium distribution f0 (ys) which
may include both trapped and untrapped electrons. For the case where only trapped
electrons are present, the dispersion relation is reduced to a simple analytical form.
Detailed properties of the sideband instability are investigated for the case where the
trapped electrons uniformly populate the ponderomotive potential up to an energy

7's < +, where j is the energy at the separatrix. Analysis of the dispersion rela-
tion shows that the maximum energy of the trapped-electron population (4') signifi-
cantly affects detailed stability properties in the strong-pump and intermediate-pump
regimes.



I. Introduction

There is growing experimental' 2 0 and theoretical2 73 evidence that free-electron

lasers (FEL's) 74 " 0 are effective sources of coherent radiation generation by intense

relativistic electron beams. Recent theoretical studies have included investigations

of nonlinear effects 2 1 49 and saturation mechanisms, the influence of finite radial

geometry on linear stability properties,50-55 novel magnetic field geometries for ra-

diation generation, 50
,
56- 6 0 and fundamental studies of stability behavior.s i-72 One

topic of considerable practical importance is the sideband instabilitys-8,2 1 - 28 ,3 9 - 4 9

which results from the bounce motion of electrons trapped in the (finite-amplitude)

ponderomotive potential. It was first predicted theoretically by Kroll, Morton and

Rosenbluth 9 that the bounce motion of the trapped electrons can lead to the unstable

development of sideband signals. Numerical simulations40 -4' and experimental obser-

vations -- subsequently demonstrated that sideband signals can grow to a significant

level. In analytical investigations of the sideband instability, both kinetic 2 1 -2 3 and

single-particle 24 ,25 ,3 9 models have been developed. Making use of the Vlasov-Maxwell

equations in the ponderomotive frame, Davidson21 investigated the sideband insta-

bility for perturbations about a self-consistent equilibrium state. In circumstances

where the trapped electrons are localized near the bottom of the ponderomotive po-

tential, it was found that the detailed stability properties are relatively insensitive

to the form of the distribution of trapped electrons. In a subsequent analysis,2 2 the

detailed dependence of the sideband instability on the system parameters was exam-

ined. Moreover, Davidson and Wurtele 24 have developed a single-particle model (with

appropriate statistical averages) to analyze the sideband instability in the pondero-

motive frame. The effects of the untrapped electrons have also been considered.2 s

Most previous studies of the sideband instability are restricted to the case where the

trapped electrons are "deeply" trapped in the ponderomotive potential. Recently,



however, Riyopoulos and Tang2" developed a kinetic model to study the sideband in-

stability for general distribution of trapped electrons. The influence of the sideband

signal on the electron dynamics has also been investigated.2 7 Furthermore, Sharp

and Yu2  have developed a kinetic model of the sideband instability in which the

transverse variations of the wave fields are calculated self-consistently from Maxwell's

equations.

In this paper, we present a one-dimensional kinetic analysis of the sideband in-

stability. Similar to Sharp and Yu's work,2" we consider general trapped-electron

distribution and determine the self-consistent evolution of the electromagnetic fields.

The present analysis differs from Sharp and Yu's work2" in the following important

aspects:

(a) For general trapped-electron distribution f'(y), the kinetic dispersion relation

is reduced to a simple form [Eq.(130)1 which involves integrals over only the energy

variable 70.

(b) When the electrons uniformly populate the ponderomotive potential up to

an energy level -y' < j' [Eq.(132)], the dispersion relation is obtained in closed

analytical form [Eq.(141)].

(c) In the limiting case where the electrons uniformly populate the ponderomotive

potential up to the separatrix (-y = ), the dispersion relation is also obtained in

closed analytical form [Eq.(103)).

(d) The present analysis is carried out in the ponderomotive frame, which leads

to considerable simplification in the orbit equations [Eqs. (83) and (111)] and in the

detailed investigation of the sideband instability.21 2 3 ,
7 3 7 4

The theoretical model (Sec.II) employed in the present analysis is based on Vlasov-

Maxwell equations. The basic equations and assumptions are described in

Sec.II A. A tenuous, relativistic electron beam propagates through a constant-amplitude
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helical wiggler magnetic field with wavelength A, = 27r/ko=const and normalized

amplitude a, = eb./mc2 ko [Eq.(1)]. The model neglects longitudinal perturba-

tions (Compton-regime approximation with S4 2 0) and transverse spatial varia-

tions (8/8x = 0 = O/Oy). Moreover, the analysis is carried out for the case of a

finite-amplitude primary electromagnetic wave (w,, k,) with right-circular polariza-

tion and slowly varying normalized amplitude &.(z, t) and wave phase S,(z, t) in the

eikonal approximation [Eq.(2)]. In the ponderomotive frame [moving with velocity

VP = W,/(k., + ko) relative to the laboratory frame], the nonlinear evolution of the

complex amplitude a.,(z',t') = a,(z',t')exp[iS',(z',t')] is described by Eq.(19). It is

also assumed in the present analysis that all electrons move on surfaces with zero

transverse canonical momentum, with corresponding electron distribution function

of the form f6 (z', p',t') = S(P')S(P,)f(z',p,t')[Eq.(10)] in the ponderomotive frame.

In Sec.II B, equilibrium properties are investigated. Under quasi-steady-state con-

ditions (0/t' = 0) corresponding to the saturated state of a free-electron laser, the

electron distribution function depends only on the energy constant of the motion -yo

[Eq.(29)], and the primary electromagnetic wave has a constant amplitude &0 and a

slowly spatially varying phase 60(z') [Eq.(28)]. In Sec.III, the linear stability analysis

is presented. The method of characteristics is used to derive the kinetic dispersion

relation [Eqs.(60) and (64)] from the linearized Vlasov-Maxwell equations (36) and

(39).

In Sec.IV, we apply the equilibrium and stability formalism developed in Secs.

II and III to a particular choice of electron distribution function [Eq.(65)] in which

the electrons uniformly populate the ponderomotive potential up to the separatrix

(7' = j'). The dispersion relation for this particular distribution is obtained in

closed analytical form [Eq.(103)]. In the limiting case where the dimensionless pump

4



strength

P W)T'( '|Cock'] ]

defined in Eq.(105) is small (P < 1), the maximum growth rate is determined an-

alytically [Eq.(110)]. In the definition of the pump strength P, the quantity ' (')

is the bounce frequency of a deeply trapped electron with energy -' [Eq.(78)], and

(3'/ 2 /2)ck' is the familiar small-signal gain (temporal growth rate) 5 calculated in

the ponderomotive frame.

For a distribution f0 (-y') with only trapped electrons, the dispersion relation

[Eq.(64)] can be simplified analytically (Sec.V). Making use of the exact trajecto-

ries of the trapped electrons [Eq.(116)], we express the dispersion relation in a form

that involves integrals over only the variable -y6 [Eq.(130)]. To further simplify the

analysis, in Sec.VI we assume a step-function distribution [Eq.(132)] in which the

electrons uniformly populate the ponderomotive potential up to an energy y' <

The dispersion relation can then be simplified in closed form [Eqs.(139) and (141)).

In the weak-pump limit (P < 1), the maximum growth rate is obtained analytically

[Eq.(147)]. The dispersion relations (103) and (141) are solved numerically and the

results are presented in Sec.VI C. For different values of the dimensionless pump

strength P, the dependence of stability properties on the level of population [7'1 in

Eq.(132)] of the ponderomotive potential by the trapped electrons is examined. In

the strong-pump regime (P >> 1) and in the intermediate-pump regimes (P ~ 1), a

strong resonance structure is observed in plots of the growth rate versus wavenumber.

It is also found in these regimes that an increase in -ym' causes a decrease in the maxi-

mum growth rate and a decrease in the separation between growth rate peaks. When

' approaches ', the growth rate peaks coalesce into a single smooth curve. By con-

trast, the change in -y' has little effect on the stability properties in the weak-pump

limit (P < 1). Moreover, the resonance structure is not observed in this limit.
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II. Theoretical Model and Evolution Equations

A. Assumptions and Basic Equations

The model consists of a tenuous, relativistic electron beam propagating in the z

direction through a helical wiggler magnetic field with vector potential

A.(x) = (mc2/e)a.(x)

= -(mc 2 /e)a.(cos koza- + sin kozay). (1)

Here -e is the electron charge, mc2 is the electron rest energy, A, = 27r/ko = const

is the wiggler wavelength, the wiggler magnetic field is B, = VxA,, and a, =

eb"/mc 2ko =const is the normalized wiggler amplitude. Transverse spatial variations

are neglected (0/x = 0 = 0/Oy), and it is assumed that the beam density and current

are sufficiently low that the equilibrium self fields associated with the space charge

and axial current of the electron beam are negligibly small. Moreover, longitudinal

perturbations are neglected in the stability analysis (Compton-regime approximation

with S4 ~ 0). The electromagnetic wave signal is assumed to be right-circularly

polarized with vector potential

A,(x,t) = (mc2/e)a,(x,t)

= (mc2/e)L.(z, t ){cos(kz - w.t + 6,(z, t)]e6

- sin[kz - wut + S,( z, t)]e}, (2)

where w, and k, are the frequency and wavenumber, respectively. In order to take the

sideband structure into account, the wave amplitude a,(z, t) and phase shift .,(z, t)

are allowed to vary slowly. The corresponding electromagnetic fields are given by

B., = VxA,, and E, = -(1/c)A,/&t. The amplitude a,(z,t) in Eq.(2) is related

to the magnetic field amplitude ,(z, t) of the electromagnetic wave approximately

by it, = eb,/mc 2k, for slowly varying a.,.
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A detailed investigation of the sideband instability simplifies considerably if the

analysis is carried out in the ponderomotive frame moving with velocity 2 1-25 ,7 3 ,7 4

V, = a,/(k, + ko). (3)

Therefore, the subsequent analysis is carried out in ponderomotive-frame variables

(z', t', ^y') defined by the Lorentz transformation

Z= YP(Z - vpt), t' = Y,(t - vPz/C 2 )

= l( yyVpp./MC2), (4)

where

_, = (1 - V2/C27-1/2

' c2 = 2 4 2,,2 2 ,2 + c2P/2)1/2
(Mn c +c.2+c22

Here, y'mc2 is the mechanical energy, and the components of momentum (p', p', p')

are related to the velocity v' = dx'/dt' by p' = -y'mv'. We introduce the complex

representation of the vector potentials defined by

a (z) = a.(z) - 2ay.(z),

a-(z,t) = a,(z,t) - ias,(z,t). (5)

Making use of Eqs.(1) and (2) and the inverse transformation of Eq.(4), it is readily

shown that

a-(z', t') = -au exp[-i-yko(z' + vpt')],

a,~(z', t') = . exp~i(k'z' - 't') + i t')], (6)

in ponderomotive frame variables. Here (w', k') in the ponderomotive frame is related

to (w,, k,) in the laboratory frame by

= ~yp(w, - k.,v), k = y,(k, - w~v/c 2 ). (7)
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For future reference, the second equation in (6) can also be expressed as

a (z', t') = a,(z', t') exp[i(k'z' - w't')], (8)

where the complex amplitude a,(z', t') is defined by

a,(z', t') = d.(z', t') exp~i6',(z', t')]. (9)

In the present analysis, it is assumed that all electrons move on surfaces with

zero transverse canonical momentum. Correspondingly, the one-particle distribution

function for the beam electrons, in the ponderomotive frame, is of the form

f(z',p',t') = 6(P.)S(P')f(z',p', t'), (10)

where P' and P' are the transverse canonical momenta

= ' -A,.(z', t') - A,.(z', t')
c c

= p' + mca, cos[-,ko(z' + vt')] - mca, cos[k'z' - w't' + 8'(z', t')],

P' = p' - A,,(z', t') - A,
C c

= p'/ + mca, sin[y-ko(z' + vpt')] + mca, sin[k'z' - w't' + 8'(z', t')]. (11)

In the present field configuration, P' and P' are exact constants of the motion in the

combined fields of the wiggler [Eq.(1)] and the signal wave [Eq.(2)]. For the class of

distribution functions in Eq.(10), the transverse velocities can be expressed as

' = -- {aw coshvpko(z' + vpt')I - a, cos[k'z' - W, t' + S,( z', t')]},

' = -{a. sin[ypko(z' + vPt')] + asinJkz' - w't' + 8'(z',t')]}, (12)

where the relativistic mass factor -y' is given by

/2

M a2, +a,1 2  2a.Re [a, exp(ik'z')]~'=1 + j -(3
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and ' is defined by

k' , k' + -yko = (k, + ko)/y,. (14)

In obtaining Eqs.(13) and (14), use is made of Eqs.(3) and (7). The one-dimensional

distribution function f(z',p',t') in Eq.(10) satisfies the nonlinear Vlasov equation

af + M 7' 0 f _ 2 ' __

t'+ a 8P' 5z'- m z'p', 5(15)

where the electron Hamiltonian -y'mc2 is defined by Eq.(13).

To complete the theoretical model, the space-time evolution of a-(z', t') is deter-

mined self-consistently from Maxwell's equations. For the class of distribution func-

tions in Eq.(10), Maxwell's equations for the complex vector potential a-(z', t') =

a,(z', t') - iay,(z', t') associated with the electromagnetic fields of the signal wave can

be expressed as

1 ( 2 ga 4re2 r

C2 &t,2  Z'2 ) ~(z', t') = - IT dp' f(z', p, t')(v' -Miv), (16)

where the transverse velocities v' and v' are defined in Eq.(12). Making use of Eqs.(8)

and (12), it follows that Eq.(16) can be expressed in the equivalent form

+/ ,2 ) I 0 & a 2a,. 2iw' , 6a. ', a.,
+ a, + ( 2 '2 C2 at, + zI exp[i(kz' -wt')

. C2  'I C2 19t2  8/} c 3' w

4ire2  dpf (1/ P/--- dpf(z',p7,t')-a,exp[i(k'z' - wt')]

47re 2a. f 1
+ 2 dp, f(z', p', t')-- exp[-ikoyP(z' + vpt')). (17)

Consistent with the assumption that the complex amplitude a., is slowly varying with

z' and t', we neglect the second-derivative contributions with respect to z' and t'

in Eq.(17), but retain the terms proportional to aa, /&t' and a,/z' (eikonal ap-

proximation). Furthermore, we operate on Eq.(17) with - fOL dz'exp(-ik'z'+iw't'),

where L' = ')7r/k,' [Eq.(14)] is the fundamental periodicity length for the (fast) spatial
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oscillations in the ponderomotive frame. Treating the spatial variation of a, as slow,

the wave equation (17) can be approximated by

'247re 2 1 IN
-{--+ k] + , dz'J dp'f(z', pt')- a,

+ mc2 L

2io' 0a, cOk' a,
c2 (t' WS' 3Z

47re2a, 1 L' , , , exp(-ik'z') (8)
= nc 2  - dzf(z',,t) (8MC2 L' 0Z

for the evolution of the signal wave. Use has been made of w' = ykov, to obtain

Eq.(18). Separating Eq.(18) into fast and slow contributions gives

12 2k42re 2  fL' d' 21('wtl I
W,. = C~k, dz' dp' f (z', p','M L - 7- (ZL p')
2iw' ( a, k'c2 8a ,

C2 at' a W/ az' 1

42a.1 L exp(-ik'z')
4re a. I dz' f0 dp, f(z',p, t) , , . (10)

Mc L' Jo -y (z ,p')

The first equation in (19) determines the real oscillation frequency w' in terms of k'

and beam dielectric effects. On the other hand, the second equation in (19) describes

the (slow) evolution of the complex amplitude a,(z', t') = a,(z', t') exp[i'(z', t')] in-

duced by the wiggler field.

B. Equilibrium Analysis

Under quasi-steady-state conditions, an equilibrium analysis of Eqs.(15) and (19)

proceeds by setting & = 0 and looking for stationary solutions, ftf 0 (z', p') and

a'(z'), that satisfy the equations

mc I apz' - e z' ap'

o'2 = c2k'2 + 74Ldz' dp'.f 0 (z',p',t') 1
' L'o -z y'(z', p')

aao 4,re 2 a '4 L' , , , exp(-ik'z')
2ik dz dp f (z, p', t') , (20)

'z' Mc2 L' f f . .'
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where ysmc2 is the Hamiltonian under the influence of the wiggler field a. and the

stationary electromagnetic wave field a.(z'). Furthermore, A',=const is the average

density of the beam electrons in the ponderomotive frame, which is chosen so that

the normalization condition fof dz'f*" dp,f 0 (z', p', t') = 1 is satisfied. Similar to

Eq.(13), -y is given by

/2
Y2 =1+m + a + Ia' 2 - 2aRe [a' exp(ik'z')] . (21)

It is clear that any distribution function which depends only on the constant of

the motion, yo(z', p'), solves the first equation in (20). The complex amplitude a'(z')

of the electromagnetic wave can be determined by solving the third equation in (20).

In the present analysis, it is assumed that in the equilibrium state the electromagnetic

wave has constant amplitude and slowly varying phase, i.e.,

a4(z') = d' expi6'(z')], (22)

where do = const.(independent of z'). Under this assumption, it follows from Eqs.(20)

and (21) that

ap, 47re 2 a,', L 00
-2k' -- = ~ a - dz' dp'f 0[-(z',p')]

cos[k'z' + s6(z')]

/2 ' = + m c2  +- 1 ..' 5l cOs[k'z' + 8?(z')]. (23)

Note that the integrals over z' in Eqs.(20) and (23) are over an interval of length

L' = 27r/k'. Moreover, neglecting the slow z' variation of 6'(z') in the integration

over z' in Eqs.(20) and (23), the integrands are periodic functions of z' with period

L' = 2r/k,'. Therefore, the right-hand side of the second equation in (20) and the

first equation in (23) are independent of z'. The solution of the first equation in (23)

is readily given by

64(z') = ek z', (24)
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where e is the small dimensionless parameter defined by

ek' = const.P

27re 2 a, 4 [L' dz cos[k'z' + ek'z'-' dz' dp'j f*[7(z' P',)] (25)
k'mc2 0 L'Y Z -6(z',p')

Similarly, the second equation in (20) can be expressed as

Ck,2+47re~g Z t Z(6w',2 = c2k' 2 +i- ,~e2 Wj' dz' dp'f 0 [ %(z',p')] , (26)m L' o f.o 00-t,(Z ,P'Z)

which plays the role of a dispersion relation relating w' and k', including beam di-

electric effects. For future reference, we differentiate Eq.(26) with respect to k', and

obtain the group velocity of the electromagnetic wave in the ponderomotive frame

O 1  k',c2

I' = = I . (27)
9 a a

Several noteworthy points regarding the equilibrium analysis are summarized be-

low:

(a) For constant equilibrium wave amplitude a', the wave phase 80(z') is generally

slowly varying in order to satisfy the third equation in (20). The equilibrium phase

shift is given by Eqs.(24) and (25).

(b) We note from Eq.(23) that the fundamental periodicity of the (fast) spatial

oscillation is actually given by L' = 27r/[(1 + e)k'. Since the present model assumes

that the phase varies slowly, i.e., le- < 1, there is only a small correction to the

previously defined L' = 27r/k'.

(c) In Eq.(25), ek' appears on both sides of the equation. It would seem necessary

to determine ek' in an implicit manner. However, consistent with the assumption

that e < 1, we can approximate Eq.(25) by

2 21r 2w2ire aw Ab 2 I cos(k'z')
ek' MC 2 - d(k'z') dp ' [-YO, p'Y, , (28)

S k',,mca 200-o763,p

12



where the relativistic mass factor -yO(z',p') is given approximately by
/2

y( = 1 +.) + + a+ ()2 - 2a. docos(k'z'). (29)

Note that in Eq.(28), k' z' is a dummy variable. Therefore, ek' is determined explicitly.

(d) Solving Eq.(29) for p' gives

P' = ±mc[y 2 - 1 - a 2(z')]'/ 2 , (30)

where a2 (z') is defined by

a2(z') = a2 + (a) 2 - 2ado cos(k' z'). (31)

It is clear from Eqs (29), (30) and (31) that there are two classes of electron orbits.

Untrapped electrons, for which p' does not change sign, have energy -yo!mc 2 satisfying

(Fig.1)

Y/ > [1 + (aw + a&)211/2 +, (32)

where it > 0 and aw > 0 are assumed without loss of generality. On the other hand,

trapped electrons, which execute periodic motion in the ponderomotive potential, have

energy _Ymc 2 in the range (Fig.1)

y'(z') = [1 + a2(z')j'/ 2 < Y' < y 1 . (33)

For the trapped electrons, the density of particles with positive and negative momen-

tum in the ponderomotive frame must be identical. Therefore fo(z', p') = f0 (ys) is

a complete description for the trapped electron distribution. However, for untrapped

electrons the complete form of the distribution function is

f,4(z',p') = f0(-t)U(p') + fo(r')U(-p'), (34)

where U(x) is the Heaviside step function defined by U(x) = 1 for x > 0 and U(x) = 0

for x < 0. In Eq.(34), f,(yo) and f<(y) are the distribution functions of the forward-

moving (p'z > 0) and backward-moving (p' < 0) electrons in the ponderomotive frame.

For the untrapped electrons, f>(-y') and f<(-y') can be specified independently.

13



(e) Although the present analysis requires that the equilibrium distribution f 0 (z', p')

be a function of -y,, it provides no information about the detailed dependence of f 0

on -y'. Generally speaking, we should account for the system evolution from some

initial state f(z',p',t' = 0) to the quasi-steady state in Eq.(20) in order to determine

the actual form of f0 (-ys). For present purposes, we first carry out a linear stability

analysis for perturbations about general f0 (-ys). Later, when the form of f0 (y') is

required to determine detailed stability behavior, a choice of fo(-ys) will be made

which makes the analysis tractable.

14



III. Linear Stability Analysis

A. Linearized Vlasov-Maxwell Equations

With regard to a stability analysis based on the Vlasov-Maxwell equations (15) and

(19), we consider small-amplitude perturbation about the quasi-steady state f0 (z', p,)

and do expiP,0(z')] described in Sec.II B, and express

f(z',p',t') = n'6 [fo(z' p' ) + Sf(z', p,t')

a,(z', t') = [a + Sa,(z', t)] exp[i6'o(z')], (35)

where h'=const is the average density of the beam electrons in the ponderomotive

frame. Here, for small perturbations in wave amplitude Se, = a, - &0 and phase

' 6' - S,, it follows that the complex perturbation Sa,(z',t') in Eq.(35) can be

approximated by Sa, = &I, + i3'&. The linearized Vlasov equation is given by

'9 2 09YO a 2ON( 1, , ,{ + mc 1p', M c ' 6p (Z , ,

Mc 2 fp' a z' a z aop' SY'(Z', p,). (36)

Here, S- = y' - y', where -y' and -y are defined in Eqs.(13) and (29), respectively.

Making use of Eqs. (28), (29) and (35), we can express Eq.(13) as

'2 = + 2a0Re(Sa,) + 1La,1 2 - 2a.Re [6a, exp(ik'z')] . (37)

Consistent with the assumption that atj < 1 and 1Sa, < 1, we approximate 6-y' by

67'1 -aRe [6a, exp(ik'z')] (38)

The perturbed complex wave amplitude Sa, is then determined self-consistently from

the linearized equation

2w', + V +iv'ek,) Sa,

4 re2a L' , exp[-ikz' - i6*(z')]= e -- " dz' dp'Sf( z,p',t /) ,. (39)
M L' f o o Z Z /(Z', .)
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In deriving Eq.(39) from Eqs.(19), (27) and (35), zeroth-order terms are eliminated

by using Eq.(23).

Equations (36) and (39) can used to determine the evolution of Sf and 8a, self-

consistently. If the perturbations 8f and 6a, grow, then the equilibrium distribution

f0 is unstable. If the perturbations damp, the system returns to equilibrium and is

stable. A useful method for solving the linearized Vlasov equation (36) is based on the

method of characteristics. We denote by z"(t") and p''(t") the particle trajectories

under the influence of the wiggler field and the equilibrium electromagnetic field.

That is, z"(t") and p'(t") satisfy the Hamilton equations of motion

d " 2 I Z P ")

Tz = mc ap. z ,0 )

d - Z" 1)d,' = - 2 ,',z" (40)

where the Hamiltonian mc 2-y6 is given in Eq.(29). We further assume that the tra-

jectories z"(t") and p'(t") pass through the phase-space point (z',p') at time t" = t',

i.e.,

Z"(t= t') = Z'

P = t') = p'. (41)

Using the chain rule for differentiation, it can be shown that the total time derivative,

following the particle trajectories in the equilibrium field -configuration, is

d 6 dz" 6 dp', 19
dt" = 8t" + dt" &z"+ dt" apl'

- + Mc -( 0 . (42)19t" 1p', 9# ," p

Moreover, making use of the fact that the equilibrium distribution function is a func-

tion only of -yb, the following identity is readily shown

ao,* a ao a = ao &70' a a"YO a 1 afo d a .:(3
Op'' z" Oz" ap' a-y a~ az" azl &pl, m e y ' .
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It is then evident that Eq.(36) is equivalent to

d f f d _ (44)

evaluated at t" = t'. For amplifying perturbations that grow temporally, we integrate

Eq.(44) from t" = -oo to t" = t', and neglect the initial perturbation (at t" = -oo).

Making use of Eqs.(42) and (43), this gives

f(z',p',,t') = af. [s'(Iz' ,t') - J dt" atY'(z",1p',t")] (45)

for the perturbed distribution function If(z', p', t'). Eq.(45) is then substituted into

Eq.(39) to determine the self-consistent evolution of the field perturbation, 8a.(z', t'),

in the small-amplitude regime. Note that the integral over t" in Eq.(45) requires a

determination from Eq.(40) of the orbits z"(t") and p'(t") in the equilibrium field

configuration.

B. Kinetic Dispersion Relation

For clarity of derivation, we express the complex perturbed wave amplitude 8a,(z', t')

explicitly in terms of its real and imaginary parts

Sa.(z', t') = Sa'(z'; t') + i6a',(z', t'), (46)

where 8a" = S , = a, - &, and Sa' = (S', - 6,) d. The linearized equation (39)

can then be expressed as

2w' + V Sa - v'ek' Sa'

A ea h'' t sin(k'z')= -e~a i~ d(k'z') I' d'cos,',z)
m 2r o -z ''(z', p') (

2w' + V' Sa'+ V'ek'Sa;

4re 2a a,, i 2,ro cos(k'z'
bI d(k.'z'. dp' If(Z',',' ., , (47)

m 2xo -o y(z, P,)
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In obtaining Eq.(47), use is made of the assumption k ' >> E' to approximate k'z'+

80(z') by k'z'. Making use of Eqs.(38) and (46) in Eq.(45), we obtain the expression

for Sf in terms of Sa' and Sa', i.e.,

Sf(z', p', t') =- 2 8a' cos(k'z') - Sa, sin(k'z') - j dt"
I -YO,

x [(~~Sa'(z",t") cos(kC'z") - Sa.,(z",t") sin(k' z") . (48)

In terms of the Fourier-Laplace transforms of 8ar and Sa', Eq.(48) can be expressed

as

aw!f 0 'd(Ak') d(Aw')
Sf(z',-pt') = 2 2 JSA(Ak, Aw') cos(k'z')

-SA'(Ak', Aw') sin(k'z') - dt" exp[-iAw'(t" - t')]

x exp[iAk'(z" - z')] Ai/w/SAh(k', Aw') cos(k'z")

+iAw'SA4(Ak', Aw') sin(k'z")] } exp[i(Ak'z' - Aw't')], (49)

where the transformed variables SA'(zAk', Aw') and SAi(Ak', Aw') are related to the

perturbations Sa' and Sa' by

8a ~/'dt')') d~ xpzz.') 1
Sa'(z', t') = (W exp(iAk'z') d(w)exp(--iAw'T')SA'(Ak', Aw'),2r C 27r/d(411') ex(Acz)fd(Aw')
Sa'(z',t') = Jxpirk I' . exp(-iAw't')SA(Ak', Aw'). (50)

27r C 27r

Here, the integral over Ak' is along the real Ak' axis from Ak' = -oo to Ak' = +oo,

and the contour C, which is parallel to the real Aw' axis, is so chosen such that

Im(Aw') is sufficiently large that the Laplace transform

A(Ak', Aw') = j dt'exp(iAw't')A(Ak', t') (51)

converges. Because Sar(z', t') and Sa'(z', t') are real-valued functions, it follows that

SA'(-Ak', -Aw'*) = [SA'(Ak', Aw')]* , SA(-Ak', -Aw'*) = [SA'(Ak', Aw')].

(52)
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Consistent with the assumption that Sa' and Sa' vary slowly, the integrals over

Ak' and Aw' in Eq.(49) contribute mainly from the region satisfying Ak'| < k' and

jAw' < ck' in Ak'-Aw' space. Therefore, the factor exp[iAk'(z" - z')] in Eq.(49)

varies slowly compared to sin(k'z") and cos(k'z"), so that exp[i-k'(z" - z')] can be

approximated by unity. Equation (49) can then be expressed as

Sf(z', p,, t') = Jd(k) jd(w) SF(p', k'z', Ak', Ao') exp[i(Ak'z' - Aw't')], (53)
2-7r fc 27r

where

SF(p, k' z', Ak', Aw') A- {Arcos(k'z') - SA t sin(kP'z')

- Jdt" exp[-iAw'(t" - t')]

x [iAw'SA' cos(k'z") + iw'SA1 sin(k'z")1 } (54)

Note that the argument k' z' of SF(p', k'z', Ak', Aw') corresponds to a fast spatial

variation, in contrast to the slow variation of exp(iAk'z'). Substituting Eqs.(50) and

(53) into Eq.(47) then gives

2w' i (-Aw' + v'Ak') SAV - v'1k'5A]

47re 2a. i4 2
7 sin(k'z')

I d(k1'z')I dp'SF(p', k'z', Ak', Aw')
m 27r J0'(z', p)

2w' [i (-Aw' + v'Ak') SA' + v'ek'SA'1

4 r2a.n 2x cos(k'z')- 47ra f 7r d(kJ'2 z' dp'F(p', k' z k', w') ,,) (55)
m 27r 0 -(z , 

In obtaining Eq.(55), use is made of the assumption that exp(iAk'z') varies slowly

compared to sin(k'z') and cos(k'z'), so that exp(iAk'z') can be taken outside of the

integration over z'.

For convenience, we introduce the following notation
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av -- d(k'z'1exp(k'z') exp~ikzdp') , 12 2z T1 ,r '

1dl ' i- i lai ' -- d(k'.Z')exp(ivk'z') , p O
1) -2r -Y - aya By

x dt"exp {-iALw'(t" - t')] i ik' [z"(t") - z']} , (56)

where

2 = 4rfie (57)
m

is the nonrelativistic plasma frequency-squared in the ponderomotive frame. Because

f_*, dp' 1 is an even function of z', it is readily shown that

a, = a*_, = a-, = a,,, (58)

where * denotes complex conjugate. Substituting (54) into (55), and making use of

(58), we obtain the following coupled equations relating the perturbation amplitudes

SA£ and SA'

2i'(v'Ak' - Aw') - xizaw') - x-((A') + x~(r') - x- 2(zw') }A4
2w'v' ek' - a2(a 2 - CO) + {xl(Aw') - (o') - x (AL') + X- 2( W ')} SA',

{2iw'(v'Ak' - Aw') + +x(Aw') + XOVAw') - x0 "w') - xI2( \w')] SA

-2w'v' ek' - LZ (a2 + aO) + 2x( ') + x+( w') + X (AW') + x- 2(d.') }.4r
(59)

Therefore, for SA and SA not to vanish, \k' and dw' must satisfy the dispersion

relation

[(v'Ak' - Aw') + D (v'Ak' - Aw') - D'

= [Ek' - (a 2 - ao) + D- [Vek' + (a2 + ao) - DJ , (60)
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where Di is defined by

D[ = xi(Aw') ± x,(Aw')] + (-1)n1 x~(Aw') ± x- 2(Aw')], (61)
n 4wu' L 4w' X

for n = 0,1, and x±(Aw') and a, are defined in (56). Furthermore, Ek' and v'

are defined in Eqs.(25) and (27). Equation (60) is the desired kinetic dispersion

relation describing the linear stability properties for small-amplitude perturbations

about the general equilibrium distribution function f'(y) and the wave field ao(z')

50 exp[i60(z')].

Making use of the symmetry property of Eq.(40), it can be shown that

1"(t"f, -z', -p') = -"/, ' ')

p''(t", -z', -p') = -p'(t", z',p'), (62)

where z"(t") and p'(t") are the orbits of the particle with "initial" conditions z"(t" =

t') = z' and p'(t" = t') = p'. By changing the signs of the variables z' and p' in

Eq.(56), and using Eq.(62), it is straightforward to show that

Xi-"(Aw') = X(Aw') (63)

for the cases where only trapped electrons are present in prescribing the equilibrium

distribution f 0 (ys). Therefore, the kinetic dispersion relation (60) reduces to

(v'Ak' - w'/ {v'ek' - (a 2 - aO) + x (Aw') - x0(aw')9 9 2 1 '

x vek' + (Q2 4- ao) - 2 X2 (.w)-+ X (Aw)j, (64)

for distributions f 0 (-yo,) with only trapped electrons. Equation (64) is one of the main

results of this paper and can be used to investigate detailed stability behavior for a

wide range of trapped-electron distributions f0(76).
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IV. Sideband Instability for Uniformly Populated Trapped-
Electron Distribution

As an application of the kinetic equilibrium and stability formalism developed

in Secs. II and III, we now consider an equilibrium state in which the electromag-

netic wave has constant amplitude, do =const., and the electrons are all trapped and

uniformly populated in the ponderomotive potential, i.e.,

f4(_ 1) = + (65)0, otherwise.

Here, j+" = 1 + (a, + a4)2, -2 = 1 + (a, - &O)2, and N is the appropriate normaliza-

tion constant. Moreover, a, and 0, are defined in Eqs.(6) and (22), respectively. The

contours corresponding to 701 = const. in phase space are shown in Fig.1. For the dis-

tribution described by Eq.(65), electrons are uniformly populated in the phase-space

region inside the separatrix. The normalization constant N in Eq.(65) is determined

from

d(k'z')J ' dp'f4(y ) = 1, (66)

where -yo is defined in Eq.(29). The integral over p' in Eq.(66) can be converted into

an integral over -y. From Eq.(29), we obtain

d p' = m2c2 foo = k . 7mcd0

pp' [My2 - 1 - a2(zI)]I1/2  (67)

where the plus sign corresponds to p' > 0 and the minus sign corresponds to p' < 0.

Furthermore, a2 (z') is defined by

a2 (z') = a' + do - 2ad' cos(k' z'). (68)

Making use of Eqs.(65), (66) and (67) ,it follows that

1 7r% 2-yomc
N =J-- d(k'z')I+ dy [2/ (69)

7r I) 1 - a2(z/)]1/2
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where y' (z') is defined by

/' (z) = [I - a 2( Z') (70)

Carrying out the integrals over yf and k'z' in Eq.(69) gives

N = (awd )1/2. (71)

Substituting Eq.(71) into Eq.(65), the equilibrium distribution function f0 (-y6) can

be expressed as

f( = I 8mca 1 )/ = const., '. < < 2, (72)
0, otherwise.

The equilibrium phase shift of the electromagnetic wave, Ek , is determined from

Eq.(28). Substituting Eq.(72) into Eq.(28), and using Eq.(67) to convert the inte-

gral over p' into an integral over -/b, the equilibrium phase shift ek' for a uniformly

populated trapped-electron distribution is given by

- t 12 1 ' k cos(kz')
Ek' = 7 a " d(k'Z') +Z d-y' co "p'' (73)

" 8k'c 2 ($z) 3/ 2 2r -I_ _ [ o(2) -1 - a2(z')]1/2'

where = 47rfi4e 2/m is the nonrelativistic plasma frequency-squared in the pon-

deromotive frame. The integral over -. can be carried out to give

ai/2  ,j' + (4aa0)'/2 cos
e kP = _ d(k'z') cos(k'z') In +2

32k'c 2 (O) 3 / 2 - n - (4ae&0)'/ 2 cos

-7/ 24_ F(4aw&c)1/2 1
= W (74)4C2 (aO)3/2

where W(x) is defined by

W(x)E dj cos(2) In +x cos ) (75)
2 0 X -xCos 0

For Jxf < 1, which is the regime of practical interest, it can be shown that the power

series expansion of W(x) is

W47(x) = C2k-1 2k-1
k2k+1

(m - 1)(m - 3)---.2 =2- . ("_-!
Cm =m-1).3 = (76)
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for odd integer m. For example, the first three terms of Co are

2 8
C,"T = .C - -, C;U = .C 3 15

In the regime of practical interest, a, is of order unity and < < 1. Therefore, it

is a good approximation to replace W [(4awdO)1/2/if ] in Eq.(74) by (4aw&0)1/ 2 /3/.

The expression for ek' correct to the lowest order is then given by

'2

ek, =(77)
6k'c2 S+

For future reference, we introduce the small dimensionless parameter ',, and the

bounce frequency 's (-y) of a deeply trapped electron with energy -Y defined by

a 2 _ Q

0 4u;'i3ckP

412( a ac 2k'2  (78)
'21)0

In the definition of F, the characteristic energy j' of an electron trapped in the

ponderomotive potential is given approximately by

= (1 + aw)1/2 (79)

[see Eq.(29) with p' = 0 and to < aw.] Making use of Eq.(78), and the approximation

% ~j' (for & < aw), Eq.(77) can be expressed in the equivalent form

, = 2(F ck') 3  80V Ek' = LLO') , (80)

where v' is defined in Eq.(27). In Eq.(78), (31/2/2)',ck' is the familiar small-signal

gain (temporal growth rate)7 5 calculated in the ponderomotive frame.

A. Particle Orbits at the Separatrix

The kinetic dispersion relation (64) contains integrals over t", which require a

determination of the orbits z"(t") and p'(t") from the equations of the motion. For the
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distribution function given in Eq.(72), it follows that 8f 0/8'9y = -(I/N)S(-y; - 4').
Therefore, to evaluate the necessary orbit integrals, the relevant orbits are those of

electrons moving on the separatrix with -y = -'. Setting '/, equal to ', Eq.(29)

readily gives

,, 2 c2  2(Z"), (81)

where I2 1 + (a, + do)2, and a2 (z") is given in Eq.(68). The "initial" conditions

of the orbits are

Z"(" = t') =z

z "(t") - 1 - a2(z')] 1/2 (82)

The plus sign in Eq.(82) corresponds to electrons moving in the forward direction

(p' > 0), whereas the minus sign corresponds to electrons with p' < 0. Making use

of Eq.(68) and the definition of ', Eq.(81) can be expressed in the form

1 d(k'z") I
= ±- cos

2 dt" 7B K2

1 audoCak' 2

S= ) = 92 (83)
2j27B 7+

Again, the plus (minus) sign in Eq.(83) corresponds to forward-moving (backward-

moving) electrons in the ponderomotive frame. Because of the periodicity of the equi-

librium configuration, without loss of generality, we concentrate on the ponderomotive

potential in the region centered at z' = 0 and spanning the interval -7r < k'z' < 7r.

The solution to Eq.(83) subject to the "initial" conditions in Eq.(82) is given by

k'z"(t") = -r + 4 tan- [uexp(± )l,

' = t" - t1,

= tan kPZ/ ). (84)
4

For t" -- oo, it follows from Eq.(84) that

k'z"(t" -co) = ±7r, (85)
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which means that all the forward-moving (backward-moving) electrons approach

k'z' = 7r (k'z' = -7r) as t" approaches infinity.

B. Evaluation of Dielectric Coefficients

Converting the integral over p' in Eq.(56) to an integral over 7' by using Eq.(67)

gives

(Mc. d' 2 12 1 'z') dy& af0 exp[i(v - )k'z'
WP _7rw' f iwa jd(k'z')J -QO 0-Y _Y2  1/2'~ 22r 1f -I_ (2' 06 0y 76 1 - a(z')]1/

xj d' exp (-iw'-r') {exp[ik'z"(r')] + exp[ikP'z"(r')]} (86)

for distributions containing only trapped electrons. Here, z'(r') is the trajectory of

an electron with initial conditions z"(r' = 0) = z' and p''(r' = 0) = ±mc[-Y' - 1 -

a(z')]1/ 2. Furthermore, a(z') and -y' (z') are defined in Eqs.(68) and (70), respectively.

Interchanging the order of the k'z' and -y0 integrations, it follows that

d(k'z') j ) d,1' - d7 of -pd d(1' z') - (87)
-1 '4_1 (Z') -,2-,,z (

for the trapped electrons. In Eq.(87), j'. [1+(aw -0) 2 1 / 2 is the absolute minimum

value of -y'(z') = [1 + a2 (z')]1/ 2 , which occurs for k'z' = 0. Moreover, the turning

points ±z'r(yg) for a trapped electron with energy -y' are determined from

= 1 + a2 (zk) = 1 + a, + (do)2 - 2a, cos(kz'), (88)

or equivalently,

_Y = i'2 + 4a,&O sin 2 [k' z'(y')/2]. (89)

Making use of Eq.(87) to interchange the order of the k'z' and -y' integrations in

Eq.(86) gives

, 2 . , , d-y OfO k'z'(i') d(k'z') exp[i(v - 1)k'z']
2 -_ 70' k-, - (, ) 27r. [2 - 1 - a(z')]/ 2

x I d-r'exp (-iAwu'r') f exp[ik'z" (-r')] + exp[ik' z" (r')]) (90)
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for distribution functions containing only trapped electrons. Similarly, the first equa-

tion in (56) can be expressed in the equivalent form

a2 [ mcd I Of 0  k'z(,') d(k'z') exp(ivk z')

2 JP y' y J-kp.4(- ) 27r I - 1 -a(Z

mc ,2 f. 1 dyo Ofo k'Pr(Y,6) d(k'z') exp[i(v - 1)k'z']

) Z Jyo J-hi/a(y6) 2ir [ 2  - 1 - a(Z)]1/2

x f d7-'exp(-iAdv'r') exp(ik'z'). (91)

Combining Eqs.(90) and (91), we obtain

wmf 1 Y dc. x(z4(.)) d(k'z')
4 W l -o -0 -,, T4(.y. 27r
exp[i(v - i)k'z'] 0

x/2 dr' exp (-iAw'')
[' - 1 - a(z')]/2

x {2exp(ik'z') - exp[ik'z''(r')] - exp[ik' z"(r')]}, (92)

which is the required combination in the dispersion relation (64) for v = 0,2.

Equation (92) is valid for any equilibrium distribution function which contains

only trapped electrons. Differentiating Eq.(72) with respect to -yo gives

f0 a
=4mc(aw&0)1/2 [(;- ' ) -6(y - S')], (93)

for a uniform distribution of trapped electrons. It is evident from Eqs.(92) and (93)

that the relevant electron orbits are those either on the separatrix (7' = j') or

trapped at the bottom of the ponderomotive potential (-y = '). The orbit of

an electron with -yo = ' is simply z''(r') = z"(r') = z', and it is evident from

Eq.(92) that the corresponding contribution to the dielectric function 1LYVc -xg (Aw')

vanishes. Therefore, substituting Eq.(93) into Eq.(92), the dielectric function reduces

to

,'2 - x+{ ') = w -SW ,a w dr'exp(-i2w'r')64 j' , f--.
ir exp~i(v - I)' '

X Jd(k'Z/) 2z'] {2exp(ik'z')
cos(k' z'/2)

-exp[ik'z" (r')] - exp[ik'z"(r)) (94)
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where k'z (r') is given by Eq.(84). In deriving Eq.(94), use has been made of Eq.(68)

to express [i - 1 - )]1/2 as

[i -- 1 - a2 ( 1/2 = (ama")'/ 2 [2 + 2 cos(k'z')] 1/2 = 2(a. &)/ 2 cos(k'z'/2). (95)

Moreover, the order of the k'z' and r' integrations has been reversed.

Making use of Eq.(84), it can be shown after some algebraic manipulation (Ap-

pendix A) that

1' d(kz') 1 - exp[ik'z'L()-k Z']
cos(kpz'/2)

32(F - 1)Fn 16(r - 1)2 32(r - 1)r(

(r + 1) + (r + 1)2 (r+) , (96)

where

F = exp(- -). (97)
7B

Substituting Eq.(96) into Eq.(94) for v = 0 gives

L2 - l(Aw') -- a dr' exp(-iZW'r')
2 0, -'1J

x 2r(r - 1) mE + (F 1)28)

(r + 1)3 (F + 1)2.

Similarly, it can be shown from Eq.(84) that (Appendix A)

/, exp(ik'z')
d(k'z') ) {exp(ik'z') - exp[ik'z" (r')]}

cos(kplz /2) +

1 6 r2 + lor + 1 2( + 1) (99)
= I6 3(r - 1)2 -(F _ 1)33 nF.(9

Substituting Eq.(99) into Eq.(94) for v = 2 gives

j dw'a.c4 r
Ct2 - X - O d-'rexp(-iz w'r-')2 - f' o

[r2 + 1 + I 2r(r + 1) (n - (100)
S3(r - 1)2 ~(r _ 1)3 1
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After further algebraic manipulation (Appendix B), the dielectric functions in Eqs.

(98) and (100) can be expressed as

Gjo- X0+ = - 1 + ia[1 - 2Za -Y(ai)]'PbaO-X + ±Tdi~ ak)

',2 + awb 2a2Z(a) - (2ia + 1). (101)
Wb C42 - X2 = 2;ai -icat2aZ) z

Here, a = Aw'rB, and the functions Y(a) and Z(a) are defined by

dx exp(iax)
Y _ exp(x)+1

d/ exp(-iax) i Jrma<-1
o exp(x) + 1 a sinh(ra)'

/ x x exp(iax)

Z(a) = o exp(x)-i1 ' (102)
_ d + 2 Im < -1.

0 exp(x) - 1 a 2  sinh2 (-ra)' --

Evidently, properties of the functions Y(a) and Z(a) are key in describing detailed

stability behavior.

C. Maximum Growth Rate in the Weak-Pump Regime

Substituting Eqs.(101) and (102) into the dispersion relation Eq.(64) and making

use of Eqs.(27), (80) and (83), the dispersion relation can be expressed as

(AK'- An')2 = _(A)2 I + A' +(A')+iAQ'Z(AQ')
P d(AQ')

x [1 + iAQ' - (60')2 + ( 'd(A' ) _(2 3Z( ')}103)

for a uniform distribution of trapped electrons extending from the bottom of the

ponderomotive potential to the separatrix at -y' = j'. Here, AK' and An' are the

normalized wavenumber and frequency defined by

AK' = V /Ak'TB, AQ = rB. (104)
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Moreover, the dimensionless parameter P, which is a measure of the pump strength,

is defined by

P (105)
9(v',EkP'rB)2 4 , c k'

In obtaining Eq.(105), use has been made of Eqs.(80) and (83), and the approximation

' ~~ -' (for d' < a.).

Equation(103) can be solved numerically for the real oscillation frequency Re(AQ')

and the growth rate Im(AQ') in terms of AK', ek' and rB. For a uniform population of

trapped electrons it is evident from Eq.(103) that properties of the sideband instability

depend on the average electron density (cg) and the amplitudes of the wiggler field

(a.) and the equilibrium wave field (0") only through the combination occurring in

the dimensionless pump parameter P. The numerical results for different values of

the pump strength P will be presented in Sec.VI and compared with those for a

general step-function distribution of trapped electrons which does not extend to the

separatrix y = j.

Although the growth rate Im(AQ') must generally be determined numerically

from Eq.(103), analytical estimates of the maximum growth rate can be made in the

weak-pump limit(P < 1). It is evident from Eq.(105) that this limit corresponds

to the regime with high electron density (large - ) and small wave amplitude d'.

However, it should be kept in mind that Ek' < k' is assumed in the present analysis.

Therefore, the limiting case where 0 approaches zero at finite value of the electron

density is excluded from the present model.

For Icl > 1 and Im(a) > -1, the functions Y(a) and Z(a) can be expanded in

an asymptotic series in powers of 1/a as

-idY(a) = 1(2)2 _ 1(1)3 + (±5 - ( i 1729
dat 2 oz 2 cc 2 a 2 ae 2 a

Z(a) = ( )1(1 +1( )7 1(-).... (106)
a 2 at 6 a 30 a 42 a 30 a
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Substituting Eq.(106) into Eq.(103) gives the approximate dispersion relation

(AK' - 9 ()2 = 1 + (107)

for Jal = |' >> 1 and Im(AQ') > -1. Close examination of Eq.(107) (Appendix

C) shows that the maximum growth rate occurs at

(AK') ~ /2 (108)

Moreover, the maximum normalized growth rate and the corresponding normalized

real frequency are given by

31/2 1
Im(Af')M = 24/3 p1/6

1 1
Re(A' 24 3 p1 / (109)

Therefore, in the weak-pump limit, the maximum growth rate for a uniformly popu-

lated trapped-electron distribution is given by

31/2 1 v/5 31/2 1k 3

Im(Aw')I - 24/3 P1/6 r 2 I''(Fck') = / 34 'w. (110)

It is noteworthy that, in the weak-pump limit, the maximum growth rate is indepen-

dent of the equilibrium amplitude of the signal wave. If solved in the ponderomotive

frame and in the weak-pump limit (P < 1), the dispersion relation obtained by David-

son and Wurtele 24 for deeply trapped electrons gives the same maximum growth rate

as Eq.(110).
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V. Dispersion Relation for General Trapped-Electron Dis-
tribution

In this section, we remove the assumption that the distribution of trapped elec-

trons is uniform, and simplify the dispersion relation (64) for general distribution

function f"(Iy).

A. Trapped-Electron Orbits (-'_ < 7 < )

For trapped electrons with energy -y,, Eq.(29) readily gives

dz" 2( dto -c 2 [y4 - 1 - a2 ( (

where 1 + (a= + 20)2 > > j12 1 + (a l - 0)2, and a(z") is defined in

Eq.(68). The "initial" conditions for the orbits are

z"(t= t') =Z'

d Z a (Z (112)
dt = t') = Y - 1

As before, the plus (minus) sign in Eq.(112) corresponds to electrons moving forward

(backward) in the ponderomotive frame. We define

=2 - i' +24aw,3
KT - 4(113)

and introduce the new independent variable rl" defined by

KT sinl" sin(k'z"/2). (114)

Equation (111) can then be expressed as

'2(B)(1 - T sin 2 ;"), (115)

where the bounce frequency O' (Y) near the bottom of the ponderomotive potential

is defined in Eq.(78)
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Equation (115) can be solved for r"(t") in terms of elliptic integrals, and then

the orbit z"(t") calculated from Eq.(114). 2 ' Without presenting algebraic details, we

obtain the trapped electron trajectory"'

sin(k'z"/2) = r1T sinq" = KTsn[' (Y')(t - t') + -K(KrT), (116)

where 00 is related to the initial condition z'= z"(t= t') by

sin(k'z'/2) = Krsn [ K(KT)o] . (117)

The range of 00 is chosen such that

- < elt"=t, > 0,-, < 90 [d" i 0
2 25j dt" j~=

-7r < 0 -,or 1 < 9o 7 r, dz:: < 0.

In Eqs.(116) and (117), the functions K(u) and sn(u) are the complete elliptic inte-

gral of the first kind and the sine-amplitude of the Jacobian elliptic function, respec-

tively.8 ' The function sn(u) is periodic with period 4K(rT). Therefore, the trapped

electron motion given in Eq.(116) has bounce frequency

W'(-y) = 2lrfb = .e'0) (118)
2K(rT)

Equation (116) can also be expressed in harmonic representation as21

z = z' + zT{sin(2n - 1)[w (y )(t" - t') + Oo] - sin(2n - 1)9o}, (119)

where the coefficient z,, is defined by

n-1/2
T 8 1 aT

Zf k (2n - 1) 1 + 22n-1

(~~K [(- r)1/2]
ar = exp r. K[(i) . (120)

Taking the limit rT < 1, which corresponds to the orbit of a deeply trapped electron,

Eq.(119) reduces to the motion of a simple harmonic oscillator with bounce frequency

L' (-/). For general value of trapped electron energy yo, it is evident from Eqs.(118)

and (120) that the bounce frequency ws(y') decreases as -y is increased, and the

higher harmonics in Eq.(119) play a significant role.
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B. Evaluation of Dielectric Coefficients

In this section, use is made of the trapped-electron trajectories [Eqs.(116) and

(117)] to carry out the integrals over t" and k'z' in Eq.(56). Making use of Eqs.(67),

(87) and (117), the following conversion of integration variables is obtained for the

trapped electrons

d(k' z' dp' + - - d90 d(k'z') /rnc (121)
-- d90  [y' - 1 - a2(Z')]1/2

Here, a2(z') is defined in Eq.(68). By differentiating both sides of Eq.(117), it can be

shown that

d(k'z') 4K(KT) ,2 2 (ZI) 1/2

dO0  r(4ai0a)1/2[yo

d d6o d(kz') 7 _me

f -"7 d~o [y' 2 - 1 - a2(z')1/2

d= Y d~ o mc2k , (122)j -rndOO,(7)

where w (-y) is defined in Eq.(118). It readily follows from Eqs.(121) and (122) that

the quantities a,, and X,(Aw') given in Eq.(56) can be expressed as

a, mc2k, %4  dy 0f 0 ~d 0 e~v'a- 2-o af ' w') o'
2 7/ d22 ex p(ivk' ),2 27r 41_ 02s(6 7r

1 2 mc 2 ,' d-yof4 WO7 O xpzk'X+(w' - iAw'a2 71 x~ik '2 27r fi W0@(7)86-

x J dt" exp{-i[w'(t" - t')] + ik' [z"(t") - z'1}. (123)

Making use of the Cauchy integral formula"3 it can be shown from Eq.(117) that

E(rT) + r2  a/ 2

cos(k' z') = 2 -(T + K2 ±4,. I - exp(ilo),
K(rT)K2n)1-a

sin(k'z') = (-i) a 2 L exp(il~o), (124)
K1i,. KT) I + aT

where aT is defined in Eq.(120). Moreover, K(k) and E(k) are the complete elliptic

integrals of the first and second kind, respectively. In obtaining Eq.(124), use is made
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of the following series expansions of the Jacobian elliptic functions8 2

1 1 + k2 +(u)
sn[u + iK(k)] = - + 6k O(U),ku 6k

i 2 - k 2
dn[u + iK(k)] = - - - k 0 (u'), (125)u 6

to evaluate the residues. Here, sn and dn are Jacobian elliptic functions.8' Squaring

the two equations in (124), adding them together and then operating on the sum with

f_, d9o readily gives the identity

E 12 7r 4  1 12 r 1
I1= [2 -)_112+ aT7 (126)K(K(r) =KT) (1 - a')2 ±_ .K 4 (KT) (1 + a )2(

Substituting Eq.(124) into the first equation in (123) for v = 0 and v = 2, we

obtain

a 2,mc 2 k, dy 9f'

aO = 2 -i2 7y62w~y)&
_2 2 2k d- &fo E(KT) 1 2
C1 <1 -o2 -

2 J y O2 ,'(-y') &6- K(KrT)

12 r4  12 r4 r 1
+ 7 a -- 7 aT (127)

K 4 (NT) (1 - a')2 K 4 (KT) (1 + air)2 -

Following the procedure used in deriving Eq.(124), it can be shown from Eq.(116)

that

2 1/2
cos(k'z") = 2 - 1 + exp{il[w'(y')(t" -- ') + o]},

K(N) 1=±2, . K 2 (KT) 1 - aT

hr 2  1/2
sin(k'z") = (-i) + . K 2 () 1 ar exp{il[w'(-y')(t" - t') 9 Oo]}, (128)

K2 KT 1+ aT

where z" is the electron trajectory in Eq.(116), and the bounce frequency wb(-ys) is

defined in Eq.(118). Substituting Eq.(128) into the second equation in (123) for V = 0

and v = 2, and carrying out the integrals over t" and 00 give the desired results
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L')= l22k' 2f r]

1=±2,*4, K4( 0' ) (1 - a)2)

174 I _ _'

1=ii3,. K 4 ( a) (1 + A L)2 - (
((K') Of0  2 E() 2

2 2 'y?2ws(ys,) 8y K(KT)

127 4  1 Aw'

1=±2,±4,... K 4 (KT) (1 - a)2 ALw/ - lw(rO)

+1 23,... K4(Ki ) (1 + a )2 . (12 -

Substituting Eqs.(127) and (129) into the kinetic dispersion relation (64) and

making use of the identity in (126), we obtain

(v' sk' - aw')2  = fv' 6k' - a(imc 2 k' % dys Of 0

12 4 1ro~

4( ) ( -a a )2 (ZW -)2  _L, 2;' (_yO )

,, aY~gmc2 k' %_d___&
x =± ,±,3 

- ~ l4( a )fys , W W (129)

K 4(T) (1 + a)2 [ bI2 _ l2wg(yg)

where k' is defined in Eq.(28). Making use of Eqs.(121), (122) and (124), the equi-

librium phase shift ek'can be expressed as

2Jm~ d,,LZ'mck [ E(KT) 1 ~

= am k'' y2 2 E - 1 fO (') (131)
2 k ',X o v ,(7y) K (0 ) ) a

Equation (130), which is one of the main results of this paper, is the desired form of the

kinetic dispersion relation. Note that Equation (130) is valid for general distribution

function f (iyn) consisting only of trapped electrons (12 yh <eu).
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VI. Sideband Instability for Step-Function Trapped-Electron
Distribution

A. Dispersion Relation

To study the influence of the distribution function on the sideband instability, we

consider the particular form of trapped-electron distribution specified by (Fig.2)

-(' = N( ) (132)
0, otherwise.

Here, -yil < ' is a parameter characterizing the maximum electron energy and

N(-y' ) is the normalization constant determined from

1 7r 00 di '
1 = - ( d(k' z') J dp' f0(-6) = mc2k' ) f+(y ). (133)

27r -- - Z 1i -I /(-Y)

In obtaining Eq.(133), use has been made of Eqs.(121) and (122) to convert the

integration variables from z' and p' to y. Making use of Eqs.(118) and (133), the

normalization constant N(-yi') is found to be

N_ = - 1)K(KfA) + E(sivi)], (134)
7r

where

7M' i/2 +4awdo Y/2 - /2
32_72 + 4N1 _y?- '2 (135)m 4adl 4a,,O

The equilibrium phase shift ek' for the choice of distribution function in Eq.(132) is

determined from Eqs.(131), (132) and (134). This gives

v' ek' = v'5ok'GAI(-y), (136)

where

, , 21 )3

1 2 n 2E~sr
G'11 bkr) (r -A-1 (137)

3 (41 - 1)K(Ai) + E(niv)
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Here, F' and L2j") are defined in Eq.(78). In obtaining Eq.(136), use has been

madle of the assumption a >> a, to replace 1/y6 by 1/j' - 1/(1 + a2,1/ 2 and bring

it outside the integral over -/ in Eq.(131). From Eq.(132) it follows that

Of0  1(18
Bys-Iy ) (18b - '_) 6(' - Y')] (138)

where N(-y) is defined in Eq.(134).

The kinetic dispersion relation (130) then reduces to

(v Ak' - Aw')2 =(v'ok) 2 GAIYi ) + K(KM)/2

(KA - 1)K(m) + E(.M)

X l7r4 aTM U*$2 -M

2,.. K 4 (Km) (1 - alf)2 (ALw) 2 - J2 2

x IG(-y) + K(Km)/2
!M (K2 - 1)K(Km) + E(r1 )

147r4 a w2(Y }(139)
3,. K 4(nft) (1 + a'i )2 (Aw') 2 _- W2 2

where

S K (l - K2)1/21
aTM exp {7r - Al (140)

K(KAI)

and - k'c 2/w'. In terms of diTnensionlcss variables Af Aw'/-(-Y) and A K' -

v'A'k'/e ) the dispersion relation Eq.(139) can be expressed in the equivalent

form

{G(yK~) + ~ Q 'A)1

x GAI( ) 2Q -(M)
2K(M A) 2 J

Here, the quantities P and Q*(rm) are defined by

g 2 (Fok,) 2 - 4 [ Fock,

(K) K(Km)/2 4
r aT

(KI, - 1)K(r,,) + E(KI1 ) K4 (nm) (1 ± a M)2
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(142)

(AK' I A ')2 =



Note that the dimensionless pump strength P defined in Eq.(142) is identical to that

defined in Eq.(105) for a uniform distribution of trapped electrons extending to the

separatrix - = y.

B. Maximum Growth Rate in the Weak-Pump Regime

The dispersion relation (141) can be used to determine detailed properties of the

sideband instability for the choice of distribution function in Eq.(132). Although the

dispersion relation (141) generally must be solved numerically, analytical estimates

of the maximum growth rate can be made in the weak-pump regime.

First of all, a useful identity can be derived from Eq.(124). It is readily shown

from Eq.(124) that

Q1, (rNf) + Q1- (rM)
1=1,3, -- =2,4,---

K(nm)/2 1 2, dO d 2 - d ,2
E(nm) + (K2 - 1)K(nM) 2 0 cos(kz) + [d- sin(k')

K(Km)/2 1 27r dO0 d(k'z') 2

E(nm) + (r - 1)K(nm) 2 Jo 27r do0

After some straightforward algebra, it follows from Eqs.(117) and (143) that

Q1 ) Z Q1-(KM)= 2K() (144)

where Q'(KM) is defined in Eq.(142).

In the weak-pump regime (P < 1), the dispersion relation Eq.(141) can be ap-

proximated near the maximum growth rate by (Appendix D)

(AK'- Ai) 2 = G + 2K(K]n 2  Q1 M)}

x Gm(-r) + 2K(r)A' 1 = Q(M)}. (145)
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Close examination of Eq.(145)(Appendix D) shows that the maximum growth occurs

for

(AK')m , (146)
P/ 2

and the corresponding growth rate and real frequency shift are

Im(AQ')m = /_
24/apl/6'

1
Re(-') = 2 4 /3PI/6 (147)

Several points are noteworthy with regard to the stability properties calculated

above in the weak-pump regime. These can be summarized as follows:

(a) The maximum growth rate and the corresponding real frequency shift Eq.(147)

do not depend on -y', although (AK')m does [Eq.(146)].

(b) Since the uniformly-populated trapped-electron distribution in Eq.(65) is a

limiting case (-4' -+ 5') of the general step-function distribution in Eq.(132), it is

not surprising to find that the maximum growth rate and the corresponding frequency

shift in Eq.(147) are identical to those given in Eq.(109).

(c) The real frequency shift at maximum growth is given by

Re(Aw')m = 2'4P1/) > w(y 1 ) (148)

in the weak-pump regime (P < 1). By contrast, it will be evident from the numerical

results presented in Sec.VI C that

Re( ') w'(y) (149)

in the strong-pump regime (P > 1). Indeed, the synchrotron oscillations of the

trapped electrons constitute the basic mechanism driving the sideband instability.

(d) The maximum growth rate in the weak-pump regime (P < 1) is given by

v 5 (/2 a 2 c 2 k 2 1/3

Im(zow')A = I'' ck'C= -, 1 (150)
2 w i i2 4 tt

which is independent of d', the equilibrium amplitude of the signal wave.
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C. Numerical Results

The dispersion relation (141) has been solved numerically for different values of

pump strength P. In this regard, the effects of system parameters such as the beam

density and the amplitudes of the wiggler field and the signal wave on stability behav-

ior are investigated. On the other hand, by varying -y' for a fixed value of P, we are

also able to examine the dependence of stability properties on the degree to which the

ponderomotive potential is populated by the trapped electrons. For -Y' very close to

i' , the distribution function (132) corresponds to deeply trapped electrons. In this

limit (-yr ~ j'_ and nm ~ 0), the equilibrium phase shift [Eq.(136)] reduces to

, 2(F'ock',) - 'la,,Ek, = = (151)
B99' 2k'cgo'

and the dispersion relation (141) reduces to

1 (Q)2
(A '- 60')2 =- .~i) (152)

Equations (151) and (152) agree with the results obtained by Davidson and Wurtele.

In the limit of a fully populated ponderomotive potential where 7y, is very close

to j' (-/' ~ j' and rvM ~ 1), the equilibrium phase shift [Eq.(136)) reduces to

S2 (Pock')' _ ba,,ek, (153)
/ 3 CA(j') 6k,c 2 &myo'

which'is identical to the result for a uniformly populated trapped-electron distribution

given in Eq.(80). In this limit, however, the dispersion relation (141) is not well

defined. Therefore, in calculating the growth rate and real frequency shift for Km = 1,

use will be made of Eq.(103). The complete dispersion relation (141) [or Eq.(103)

for KAI = 1] has been solved numerically for three different values of pump strength

(P = 10', P = 1.0 and P = 10-') and six different values of nAt to determine the

complex oscillation frequency AQ' as a function of real wavenumber AK'. The results
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are shown in Figs.3-8. Although multiple roots are found for a given value of AK',

only the unstable root with Im(AQ') > 0 is presented in the figures.

Shown in Figs.3 and 4 are the normalized growth rate Im(AQ') = Im(Aw')/G( r)

and the corresponding real frequency shift Re(A2') = Re(Aw')/4(y 1 ), respectively,

for the choice of pump strength P = 10 3 , which corresponds to the strong-pump

regime. The following important features are observed in this regime:

(a) The growth rate curves have sharp peaks at

2
AK' = 2 where n = 1, 2,- (154)

and the growth rate Im(Aw') is much smaller than L<(7 4 ).

(b) The normalized real frequency shift Re(AQ') for the unstable sideband mode

is nearly equal to AK'. Together with the sharp peaks at AK' = n ' , this

implies that the instability has strong resonance features when the real frequency

shift Re(Aw') is equal to harmonics of wu,(-y') = gAf'g(yI), which is the bounce

frequency of electrons with energy -y. = -y. Therefore, in the strong-pump regime, it

can be argued that the sideband instability is driven by the synchrotron oscillations

of trapped electrons in the ponderomotive potential.

(c) For small values of r.M, only the fundamental peak (n = 1) has a significant

growth rate. As nAl is increased, the growth rate of the higher harmonics becomes

comparable to the growth rate of the fundamental. However, the separation between

adjacent peaks decreases and the maximum growth rate drops. When 'r" is equal to

unity, the distinct peaks coalesce into a single smooth curve, and the maximum growth

rate decreases substantially relative to that obtained for deeply trapped electrons

(tik ~ 0 and y', ~ %).

Shown in Figs.5 and 6 are the normalized growth rate Im(Af') = I

and the corresponding real frequency shift Re(AQ') = Re(Aw')/LD, (-y'), respectively,

plotted versus AK' for the choice of pump strength P = 1.0, which corresponds to
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intermediate pump strength. In this regime, the general features of the instability

are:

(a)The growth rate curves have wider bandwidth than those in the strong-pump

regime, and the maximum growth rate is comparable to "'( ).

(b) The maximum growth rate does not occur exactly at harmonics of the bounce

frequency w'( y). However, the sideband instability is still driven by the synchrotron

oscillations of trapped electrons in the ponderomotive potential. Moreover, the growth

of the sideband signal is so strong (with growth rate comparable to the real frequency

shift) that the resonances broaden.

(c) The increase of nm causes a decrease in the maximum growth rate and a

corresponding merging of the peaks in the growth rate curves. This is similar to the

behavior in the strong-pump regime.

Shown in Figs.7 and 8 are plots versus AK' of the normalized growth rate Im(A2') =

Im(Lw')/2'(-y') and the corresponding real frequency shift Re(AQ') = Re(Aw')/G'(7/')

respectively, for the choice of pump strength P =10, which corresponds to the

weak-pump regime. The general features of the stability behavior in this regime can

be summarized as follows:

(a) No resonance peaks are observed. The normalized growth rate, real frequency

shift and wavenumber at maximum growth agree with those predicted in Eqs.(146)

and (147).

(b) Increasing the value nAj has little effect on the maximum growth rate, other

than shifting the location on the AK' axis where the maximum growth occurs.

Shown in Fig.9 are the plots of the maximum growth rate versus the pump strength

P, calculated from Eq.(141) for four different values of nj-j. The same results are

displayed in (a) a linear-scale plot, and (b) a log-scale plot. It is evident that the

larger the pump strength P, the more the maximum growth rate is affected by the
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level of electron population (- and rA) in the ponderomotive potential.
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VII. Conclusions

In the present analysis, we have made use Vlasov-Maxwell equations to investi-

gate detailed properties of the sideband instability for a helical wiggler free electron

laser. The model describes the nonlinear evolution of a right-circularly polarized pri-

mary electromagnetic wave with frequency w,, wavenumber k,, and slowly varying

amplitude d.(z, t) and phase 5,(z, t) (eikonal approximation). The theoretical model

and the equilibrium analysis were described in Sec.II. It was found in quasi-steady

state (c/9t' = 0) that the phase of the primary electromagnetic wave has slow spatial

variation [Eq.(28)]. In Sec.III, the formal kinetic dispersion relation [Eqs.(60) and

(64)] was derived in terms of the dielectric functions c, and Xd(Aw') jEq.(56)].

In Sec.IV, we considered the case where the trapped electrons uniformly populate

the ponderomotive potential up to the separatrix (-y' = '). Making use of the ex-

act trajectory of an electron on the separatrix [Eq.(84)], the dispersion relation was

obtained in closed form [Eq.(103)], and the maximum growth rate was determined

analytically in the weak-pump limit (P < 1). For general distribution function con-

sisting of trapped electrons only, the dispersion relation was simplified to a tractable

form [Eq.(130)] which involves integrals over only the variable -Y (Sec.V). In Sec.VI,

a closed form for the dispersion relation was obtained for a step-function distribu-

tion [Eq.(132)], and in the weak-pump limit (P < 1) the maximum growth rate

was determined analytically. The closed dispersion relations (103) and (141) were

solved numerically for different values of the dimensionless pump parameter P and

maximum energy 7' , and detailed stability properties were examined. In was found

in the strong-pump regime (P > 1) and in the intermediate-pump regime (P ~ 1)

that plots of the growth rate versus wavenumber exhibit a strong resonance struc-

ture, which indicates that the interaction between the sideband signal and the bounce

motion-of the trapped electrons is the driving mechanism for the instability. It was
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also observed in these regimes that an increase in -yr causes a decrease in the maxi-

mum growth rate and a decrease in separation between adjacent growth peaks, which

coalesce in the limit ', - -4. By contrast, in the weak-pump limit (P < 1), no

resonance structure was observed, and a change in -y, has little effect on the growth

rate. The maximum growth rate in the weak-pump regime is determined analytically

to be

V3_ 3 9 1/22 2 2 1/3
im(w')AI - -(r'ck,') =, (155)

2 2 4 '3 L

which is independent of -y' and iz. It should be pointed out that if the small-

signal dispersion relation in the high-gain Compton regime [e.g., Eq.(26) in Ref.75

with k. - w/c and F = 1] is transformed to the ponderomotive frame, and solved

for complex frequency w' with real wavenumber k', the maximum growth rate is

Im(w')A = -(r' ck,), the same as that obtained for the sideband instability in the

weak-pump regime. This indicates that the mechanism responsible for the sideband

instability in the weak-pump limit is similar to that of the usual free electron laser

instability in the small-signal regime. The bounce motion of the trapped electrons in

the ponderomotive frame plays a minor role in the weak-pump limit.

Although the dispersion relations (103) and (130) have been obtained in terms

of "primed" (ponderomotive frame) variables z k' and Aw' in the present analysis,

these equations can be expressed in terms of laboratory frame variables Ak and Aw

by means of the transformation

Ak' = yp(Ak - V\). (156)
C2

Here, for real Ak' and complex Aw', both Ak and \w are complex. Also note that

the characteristic time scale for the slow variation of system parameters is 1/L' (j')

[Eq.(78)], where L" ( ') is the bounce frequency of a deeply trapped electron with
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energy j'. In the laboratory frame, the characteristic time scale is I/QB, where

QB = CB( ')/p = (C kPawa4 y231/

(1 + v,/c)[amd'/(L + 2)]'cko (157)

is the characteristic bounce frequency in the laboratory frame. Here, k' has been

approximated by k' = (k, + ko)/y, = -,(1 + vp/c)ko.

To summarize, a kinetic formalism which accommodates general electron distribu-

tion has been developed (Secs.II and III) for investigating detailed properties of the

sideband instability over a wide range of system parameters. For a particular form of

trapped-electron distribution function (i.e., a step-function distribution), the stabil-

ity properties were analysed in detail. When the dimensionless pump strength P is

of order unity or larger, it was found that the maximum energy y' of the trapped-

electron population has a significant influence on stability properties. Moreover, the

dispersion relation (130) can be used to study the sideband instability for general

form of the trapped-electron distribution. A study of stability behavior for distri-

bution functions f 0 (-y') that vary smoothly with -y) will be the subject of a future

investigation, and it is expected that the form of the distribution function will change

the resonance structure from that obtained in the present analysis, where fo(y) is

assumed to be a step function. Furthermore, while emphasis in the present analysis

has been placed on the case where only trapped electrons are present (Secs.IV-VI),

the general dispersion relation (60) can also be used to investigate detailed stabil-

ity properties in circumstances where untrapped electrons play an important role in

modifying detailed stability behavior.
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Appendix A. Derivation of Equations (96) and (99)

Making the change of variable u = tan[(kPZ' + 7r)/4] gives

cos(k'z'/2) = sin[(k'z' + r)/2] 2u1+ U2

exp(±ik' z') = ( 2±2u 2  2i 1 2. (A1)

Making use of Eq.(84), it can also be shown that

exp[ik' z"(r')] -i 1) , (A2)

where

F± = exp(T ). (A3)
TB

After some straightforward algebra, it follows from Eqs.(AL) and (A2) that

d(k' exp(-ik'z') {exp(ik'z') - exp[ik'z'(-r')]}-, cos(k,,z/2

8(r± - 1)ij du U1 + z (4)92 ( +)2( + 1 )2. (A4)

Carrying out the integral over u, Eq.(A4) reduces to

d(k' z') eexp(ik'z') - exp[ik,z'(r')]}

_ 32(1± - 1)r± ln r± + 16(1± - 1)2 .32(1± - 1)r±7r

(r± + 1)3 (r± + 1)2 (r± + 1)3
_ 32(r - 1)r 16(r - 1)2 32(r - 1)r7r

= (r + 1)3 I IF + (r + 1)2 (r + 1)3 (A5

where r =+. Similarly it can be shown that

d(k'z') cz') {exp(ik'z') - exp[ik4z"(r')]}

= 8(F± - 1)i du I u (u: i)2 (u + )2 2

fo"OU +I (U+ 22 (U+ 22(U+ i7±)2

- 16 ±i + 10ri + I 2Fi(ri + 1)Inr
[ 3(1± - 1)2 (r± - 1) n

= 16 72 + 107 + I 2r(r + 1) ln F. (A6)
S3(r - 1)2 (r _ 1)3
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Appendix B. Dielectric Responses for Uniformly-Populated
Trapped-Electron Distribution

Making the change of variable x = -- r'/rB gives

j dr'exp(-i w'r') 2F(F- 1)inr ( - 1)2
-o (F + 1) 3  (r + 1)2

4 7B j dx exp[(ia + 1)x]
Aw' 0o [exp(x) + 1]2

+2, f d x exp[(ia + 1)x][exp(x) - 1]

d [exp(x) + 1]3

where a = 2'Br. To express Eq.(B1) in a more compact form, we define

Y(a) dx exp(ix)
Jo exp(x) + 1

Ima > -1.

Integrating by parts, it can be shown that

0d exp[(ia + 1)x] _ + ,
0 (x exp(X) + 1]2 2+

0d X exp[(i +-1)x][exp(x) - 1 + 12iaY() +ia2 dY(a).
[exp(x) + 1]3 2da

Substituting Eq.(B3) into Eq.(BL), it follows from Eq.(98) that

(Bl)

(B2)

(B3)

a.'a2 d~ - 2  ) -- +2-ha; ji + ic(1 - 2ia2  Y(a)], (B4)

where a = A.'rB. Equation (B4) is valid for Ima > -1. Moreover, the analytic

continuation of Y(a) into the region of the complex a-plane where Ima < -1 can be

obtained by deformation of the integration contour in Eq.(B2). Without presenting

the detailed derivation, the result is

f 0dx exp(iax) Ia>-1
Y(a) expx)* .+ .. (B5)dx exp -Zax) + I 7ri Ima < -1(

fo exp(x) + 1 a sinh(7ra)' - '

The function Y(a) defined in Eq.(B5) is analytic over the entire complex a-plane

except for the discrete poles located at a = -in, where n = 1, 2, 3 - - .. It can also be
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shown that Y(a) has the recursive property

Y(a - i) = Y(a)

over the entire complex a-plane.

Similarly, it can be shown that

J0 dr'exp(- z ,r') r2 + 10 + 1 2l(F + 1) in r
-1 3(r - 1)2 - (T - 1)3

= + 2-rB = dx exp(iax) exp(x)Jo [exp(x) - ]
x{2[exp(x) - 1] - x[exp(x) + 1]}.

Integrating by parts, it follows from Eqs.(100) and (B7) that

-'2L-/2 + (Aw_) a
wa2 - X(2 (w)= a

{ 1
- -ia[2c

2 Z(a) -(2ia +-1)] , (B8)

where Z(a) is defined by

Z(a) = dx , Ima > -1. (B9)

Extending the definition of Z(a) to the entire complex a-plane by analytic continu-

ation gives

Z(a) ={ I dx x exp(lax)o exp(x) - 1-

- fd x exp(i*ax)
Jo exp(x) - 1

1
t a2

r 2

sinh2(7ra)'

Ima > -1,

Ima < -1.
(B10)

(B11)

The function Z(a) has the recursive property

Z(a - i) = 2+ Z(a)
a2

over the entire complex a-plane.
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Appendix C. Maximum Growth Rate for a Uniformly-
Populated Trapped-Electron Distribution in
the Weak-Pump Limit

To determine the maximum growth rate in the weak-pump limit (P < 1) from

Eq.(107), we investigate two limiting cases.

Case I: kAK' > JAQ'I > 1

In this limit, the leading order solution to Eq.(107) is

AK'= 3P1/2. (C)

Correct to the next order, Eq.(107) can be approximated by

1 1 3
9P(1- 6A'P'/2 ) = + (,A.I)2 (C2)

Solving Eq.(C2) for Af' gives

1 3P 1 5+,V
(AQ')M = 2'/3 P1 /6  + . (C3)

Case II: 1A'Q' > IAK', IzAQ' >> 1

In this limit, the leading order solution to Eq.(107) is

1QI (C4)
'3P /2-

We express Af' as

1
A'= 3P1/2 + SO'. (C5)

Correct to the next order, Eq.(107) can be approximated by

[I + 6P 1/ 2(SQ' - AK')] -(1 + 27P). (C6)
9P 9P

Solving for Af' gives
9

S = AK'+ -P1/2 . ((7)
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Since AQ' is real-valued, correct to order P 1/2 , the maximum growth rate must be

smaller than P' 2 in the weak-pump limit (P < 1). This implies that the growth

rate for Case I is larger than that for Case II.

After examining other possible cases, we conclude that the maximum growth rate

obtained from Eq.(107) occurs in the limit described in Case I, and the corresponding

growth rate and real frequency shift are given in Eq.(C3).

Appendix D. Maximum Growth Rate for a Step-Function
Trapped-Electron Distribution in the Weak-
Pump Limit

The condition for Eq.(145) to be a good approximation to Eq.(141) is

Q'(r.Al) < Gff(-yk), for Il , 
2K(A) Af , (DI)I M 7r

which will be shown to be satisfied at maximum growth in the weak-pump limit.

Similar to appendix C, we investigate Eq.(145) in two limiting cases.

Case I: IAK' > J'I > 1

In this limit, the leading order solution to Eq.(145) is

AK' = P1/2 (D2)

Correct to the next order, Eq.(145) can be approximated by

G2i(-yAi) 2P1/2 Gi(7ki) + 1  ( ] . (D3)

P GM(711) j P G~l)(0)

In obtaining Eq.(D3) use has been made of Eq.(144). Solving for Af' from Eq.(D3)

gives

1(1 v 5\
' = 2+/P / + .(D4)
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Case II: IAG'I > IAK'I, LJA'I > 1

In this limit, the leading order solution to Eq.(145) is

AIIQ' = G, (). (D5)p1/2

We express AQ' as

P1/2 + '. (D6)

Correct to the next order, Eq.(145) can be approximated by

G_(__y__) 2P1/2 GK" Gi(yki) IP
+ G ) (6{' - IK')1 + . (D7)

P Gu7)P G 3~ir

Solving for Ail' gives

pl/ 2

Q' = AK' + . (D8)

Since Af' is real-valued, correct to order P1'/2 , the maximum growth rate must be

smaller than P1/ 2 in the weak-pump limit (P < 1). This implies that the growth

rate for Case I is larger than that for Case II.

After investigating other possible cases, we conclude that the maximum growth

rate obtained from Eq.(145) occurs in the limit described in Case I, and the corre-

sponding growth rate and real frequency shift are given in Eq.(D4).

Making use of Eq.(D.4), the condition in Eq.(D1) can be expressed as

Q'(nl) < Gf(yf'), for IllI 2Kr 1/A) . (D9)I M 2'/ 3 Pl/'/(9

For specified value of gy', it is evident that the condition in Eq.(D9) can be satisfied

for sufficiently small values of the dimensionless pump strength P.
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FIGURE CAPTIONS

Fig.1 In the equilibrium state, the electron motion in the phase space (z', p') occurs

on surfaces with -y = const, where y' is defined in Eq.(29).

Fig.2 Schematic of trapped-electron distribution function f0 (-yo,) versus -YO', for the

case in which electrons uniformly populate the ponderomotive potential up to

an energy y' <

Fig.3 Plots of the normalized growth rate Im(Aff') = Im(Aw')/a(yg) versus nor-

malized wavenumber AK' = v'Ak'/a(y'1 ) obtained from Eq.(141) for the

choice of pump parameter P = 10, and several values of KM corresponding

to (a).Af = 0.1, (b)rm = 0.7, (c)Km = 0.9, (d)Km = 0.99, and (e)Km = 0.999.

Shown in (f) is the result corresponding to KM = 1.0, which is obtained from

Eq.(103) for P = 10'.

Fig.4 Plots of the normalized real frequency shift Re(AQ') = Re(Aw')/c(Zy') ver-

sus normalized wavenumber AK' = v'Ak'/ (;y') obtained from Eq.(141) for

the choice of pump parameter P = 10', and several values of I.g corresponding

to (a)ntl = 0.1, (b)Km = 0.7, (c)A = 0.9, (d)KM = 0.99, and (e)Km = 0.999.

Shown in (f) is the result corresponding to Km = 1.0, which is obtained from

Eq.(103) for P = 10'.

Fig.5 Plots of the normalized growth rate Im(AQ') = Im(Aw')/aQyl) versus nor-

malized wavenumber AK' = v'Ak'/4' (-yf) obtained from Eq.(141) for the

choice of pump parameter P = 1.0, and several values of KM corresponding

to (a)KAf = 0.1, (b)Km = 0.7, (c)Km = 0.9,(d)Km = 0.99, and (e)Kn = 0.999.

Shown in (f) is the result corresponding to KM = 1.0, which is obtained from

Eq.(103) for P = 1.0.
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Fig.6 Plots of the normalized real frequency shift Re(AQ') = Re(Aw')/ (-y' ) ver-

sus normalized wavenumber AK' v'k'/a(y',) obtained from Eq.(141) for

the choice of pump parameter P 1.0, and several values of KM corresponding

to (a)KxI = 0.1,(b)A, = 0.7,(c)KAI = 0.9, (d)nI= 0.99, and (e)K, = 0.999.

Shown in (f) is the result corresponding to KMt 1.0, which is obtained from

Eq.(103) for P = 1.0.

Fig.7 Plots of the normalized growth rate Im(Af') = Im(A')/(4') versus nor-

malized wavenumber AK' = v'Ak'/;4(y'[) obtained from Eq.(141) for the

choice of pump parameter P = 10-, and several values of KM corresponding

to (a)nj = 0.1, (b)nA = 0. 7 , (c)nA = 0.9, (d)nj = 0.99, and (e)m = 0.999.

Shown in (f) is the result corresponding to I. = 1.0, which is obtained from

Eq.(103) for P = 10-3.

Fig.8 Plots of the normalized real frequency shift Re(,AQ') = Re(Aw')/c(y ') ver-

sus normalized wavenumber AK' v'Ak'/'(-y'1 ) obtained from Eq.(141) for

the choice of pump parameter P =10, and several values of KM, (a)ru

0.1, (b)AI, - 0.7, (c)iAj - 0.9. (d)K - 0.99, and (c)N = 0.999. Shown in (f)

is the result corresponding to KAI - 1.0, which is olbtained from Eq.(103) for

P - t0-'.

Fig.9 Plots of the normalized maximum growth rate ' P' / 6 'M(AW -AI/

Im(Aw')A/('F'ck') versus pump strength P'/ = " ( ')/(21/ 3 ck') for sev-

eral values of nKA. The curves for rAf = 0.1,n = 0.7, and KA = 0.99 are

calculated from Eq.([41). The curve for nA = 1.0 is calculated from Eq.(103).

The same results are displayed in (a) a linear-scale plot, and (b) a log-scale plot.
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