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ABSTRACT

The motion of a relativistic test electron in a free electron laser can be altered

significantly by the equilibrium self-field effects produced by the beam space charge and

current and by the transverse spatial inhomogeneities in a realizable magnetic wiggler

field. In a field configuration consisting of an ideal (constant-amplitude) helical wiggler

field and a uniform axial guide field, it is shown that the inclusion of self-field effects

destroys the integrability of the particle equations of motion. Consequently, the Group-I

orbits and the Group-II orbits become chaotic at sufficiently high beam density. An

analytical estimate of the threshold value of the self-field parameter F, = wg/ckw for

the onset of chaoticity is obtained and found to be in good agreement with computer

simulations. In addition, the effects of transverse spatial gradients in a realizable helical

wiggler field with three-dimensional spatial variations are investigated in the absence of

an axial guide field, but including self-field effects. For a thin electron beam (k 2r2 < 1)

and small wiggler field amplitude (a, < yb2), it is shown that the motion is regular

and confined radially provided E, < ybaw/(1 + al). However, because of the intrinsic

nonintegrability of the motion, the regular region in phase space diminishes in size as

the wiggler amplitude is increased. The threshold value of the wiggler amplitude for the

onset of chaoticity is estimated analytically and confirmed by computer simulations for

the special case where self-field effects are negligibly small. Moreover, it is shown that

the particle motion becomes chaotic on a time scale comparable with the beam transit

time through one wiggler period.

PACS numbers: 05.45, 42.55.T, 52.25.W
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I. INTRODUCTION

Hamiltonian chaos (see, for example, Berry, 1978; Lichtenberg and Lieberman,

1983; MacKay and Meiss, 1987) has been an active area of research in physics and applied

sciences. The classic work of Kolmogorov (1954), Arnol'd (1961, 1963), and Moser (1962,

1967) shows that the generic phase space of integrable classical Hamiltonian systems,

subject to small perturbations, contains three types of orbits: stable periodic orbits,

stable quasiperiodic orbits (KAM tori), and chaotic orbits. Chaotic orbits are sensitive

to the initial conditions. Unlike three-dimensional, nonintegrable Hamiltonian systems

in which different chaotic regions are isolated by the KAM tori, higher-dimensional,

nonintegrable Hamiltonian systems exhibit Arnol'd diffusion behavior (Arnol'd, 1964;

Tennyson, Lieberman, and Lichtenberg, 1979; Chirikov, 1979), so that chaotic orbits can

reach almost everywhere in phase space. As the perturbation increases in strength, the

KAM tori destabilize (Greene, 1979; Chirikov, 1979; Schmidt, 1980; Escande and Doveil,

1981) and become discrete fractal sets (MacKay, Meiss, and Percival, 1983). In wave-

particle interactions, the breakdown of the last global KAM torus results in stochastic

acceleration of particles. An example of such a phenomenon is the stochastic ion heating

by a single electrostatic wave (Smith and Kaufman, 1975; Karney and Bers, 1977) in a

magnetized plasma, where the breakdown of KAM tori are essentially due to the overlap

of cyclotron resonances at sufficiently large wave amplitudes. Stochastic ion heating

by an ion Bernstein wave has been observed in recent experiments (Doveil, 1981; Skiff,

Anderegg, and Tran, 1987). The purpose of this paper is to examine chaotic behavior in

particle orbits in free electron lasers. In contrast to the stochastic heating of ions, which

is useful in controlled thermonuclear fusion research, the presence of chaoticity in the

particle orbits in free electron lasers degrades the quality of the electron beam and poses

potential problems for laser operation in certain parameter regimes.

The free electron laser (FEL) (see, for example, Colson, Pellegrini, and Renieri,
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1989; Roberson and Sprangle, 1989; Marshall, 1985) makes use of the unstable interac-

tion of a relativistic electron beam with a transverse wiggler magnetic field to generate

coherent electromagnetic waves. As demonstrated in various experiments (see, for ex-

ample, Deacon et al., 1977; Warren, Newman, and Goldstein, 1985; Fajans et al., 1985,

1986; Orzechowski et al., 1986), free electron lasers have several remarkable properties,

including frequency tunability, high efficiency, high power, and optical guiding by the

electron beam (Sprangle and Tang, 1981; Kroll, Morton, and Rosenbluth, 1981; Pros-

nitz, Szoke, and Neil, 1981; Scharlemann, Sessler, and Wurtele, 1985; Fajans et al., 1986;

Sprangle, Ting, and Tang, 1987a, 1987b). Power levels from hundreds of megawatts to

gigawatts have been produced in the infrared (Deacon et al., 1977; Newman et al., 1985)

to microwave wavelength range (Parker et al., 1982; Orzechowski et al., 1985, 1986). In

addition, free electron lasers are capable of producing coherent radiation in the visible

wavelength range (Billardon et al., 1983) and even at shorter wavelengths. An important

parameter characterizing free electron laser operation is the small-signal gain (growth

rate). According to linear theory (see, for example, Sprangle, Smith, and Granatstein,

1979; Davidson and Uhm, 1980), the gain increases as the beam density and the strength

of the wiggler field. are increased, whereas the gain decreases as the axial momentum

spread of the electrons is increased. However, in the high-current (high-density) regime

and the intense wiggler field (strong-pump) regime, the electron orbits can be modified

significantly by the equilibrium self fields of the electron beam and the transverse spatial

gradients in the applied wiggler field. This raises important questions regarding beam

transport and the viability of the free electron laser interaction process in these regimes.

In the high-current (high-density) regime, the self-electric and self-magnetic fields

(Davidson, 1990) of a nonneutral electron beam play an important role in altering the

particle orbits, and an axial guide field is often used to provide transverse confinement

of the beam electrons (Kwan and Dawson, 1979; Friedland and Hirshfield, 1980; Parker
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et al., 1982; Fajans et al., 1985). The original one-dimensional calculation by Fried-

land (1980) deals with an integrable system in which the particle orbits are solvable

analytically. This treatment neglects self-field effects and the radial dependence of the

wiggler field, and yields two classes of stable orbits which are referred to as Group-I

orbits and Group-II orbits (Freund and Drobot, 1982; Davidson and Uhm, 1982; Freund

et al., 1982; Freund, 1983). Because the ideal (constant-amplitude) helical wiggler field

$ 4)(z) = -B.[2, cos(kz) + , sin(kz)] with B = const. does not satisfy (exactly) the

steady-state vacuum Maxwell equation V x jw(i) = 0, Diament (1981) considered a

physically realizable helical wiggler field Bw(i) with three-dimensional spatial variations

and found that (helical) steady-state orbits with guiding center on the axis of the wiggler

helix exist for sufficiently small wiggler amplitude. Subsequently, a three-dimensional

theory of free electron lasers with axial guide field was developed (Freund, Johnston, and

Sprangle; 1983; Freund and Ganguly, 1983, 1986), which made use of the steady-state

orbit. Furthermore, several authors (Pasour, Mako, and Roberson, 1982; Fajans, Kirk-

patrick, and Bekefi, 1985; Freund and Ganguly, 1985) showed that particle orbits with

guiding center off-axis undergo azimuthal drifts due to the axial guide field and the radial

gradient in the wiggler field. The treatment of Pasour, Mako, and Roberson (1982) also

includes self-field effects, although their paper did not detail how the self fields alter the

particle orbits in the combined helical-wiggler and axial-guide field configuration. In ad-

dition, Ginzburg (1987) showed that the effective amplitude of the wiggler field can differ

from that of the applied helical wiggler field, due to the diamagnetic and paramagnetic

effects associated with the wiggler-field-induced transverse current of the electron beam.

In contrast to the high-current (high-density) regime, an intense (realizable) wig-

gler field provides a betatron focusing force so that, in the absence of a uniform axial

guide field, the electron beam can be confined radially for the case of a helical-wiggler

field configuration, and confined in the wiggle plane for the case of a planar-wiggler field
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configuration. The betatron focusing force is due to the (transverse-gradient-induced)

axial component of the realizable wiggler field and is proportional to the square of the di-

mensionless wiggler field amplitude a2 = e2A2,/m 2c4 . It is well-known that the electrons

undergo betatron oscillations under the influence of the betatron focusing force. For suffi-

ciently small a,, the particle orbits are a superposition of well-defined helical motion and

betatron oscillations. Also, Fawley, Prosnitz, and Scharlemann (1984) pointed out that

quadrupole-like betatron focusing, provided by a realizable wiggler field or by external

quadrupole magnets, can cause a large change in the phase of the electron orbits with

respect to the electromagnetic signal wave, and therefore degrade the performance of the

free electron laser (Scharlemann, 1985). In addition, self-consistent electron beam equilib-

ria (Weitzner, Fruchtman, and Amendt, 1987; Fruchtman, 1988) have been constructed

perturbatively for a large-radius electron beam in a helical-wiggler field configuration.

Riyopoulos and Tang (1988a) have analyzed sideband-induced chaoticity in the

electron motion in the field configuration consisting of an ideal helical wiggler field,

the electromagnetic signal wave field, and the sideband wave field. Because the sideband

instability (Kroll, Morton, and Rosenbluth, 1981; Warren, Newman, and Goldstein, 1985;

Davidson, 1986; Davidson, Wurtele, and Aamodt, 1986; Masud et al., 1987; Davidson

and Wurtele, 1987a, 1987b; Riyopoulos and Tang, 1988b) is associated with the electrons

trapped in the ponderomotive potential, the sideband-induced chaoticity is not likely to

affect the free electron laser interaction until saturation of the signal wave occurs. In

addition, Chen and Schmidt (1988) have shown that the electromagnetic signal wave can

also cause chaotic electron motion in the combined helical-wiggler and axial-guide field

configuration. Such chaoticity occurs on the time scale of the order of many synchrotron

periods of an electron trapped in the ponderomotive potential. Like sideband-induced

chaoticity, this effect could be important in free electron laser oscillators in the nonlinear

regime.
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This paper examines the motion of a relativistic test electron in a helical-wiggler

free electron laser in the absence of electromagnetic signal wave. Of particular interest

are the effects of transverse gradients in the beam-produced self fields and the real-

izable helical wiggler field on the dynamics of the test electron. To analyze the self-

field effects of an intense electron beam, we consider the particle motion in the com-

bined field configuration consisting of an ideal (constant-amplitude) helical-wiggler field

ko) (z) = -B.[23 cos(kz) + e, sin(k~,z)] (with B, = const.), a uniform axial guide field

B0 = Boi,, and the self-electric and self-magnetic fields produced by the space charge

and current of a uniform-density electron beam (Chen and Davidson, 1990). By generat-

ing the Poincar6 surface-of-section maps (see, for example, Lichtenberg and Lieberman,

1983), it is shown that the inclusion of self-field effects destroys the integrability of the

motion, and consequently part of phase space becomes chaotic. In particular, the Group-

I orbits and the Group-II orbits become fully chaotic if the self fields are sufficiently large

(which requires sufficiently high beam density). Analysis of the self-field-induced reso-

nances shows that this chaoticity originates from the coupling between the guide-field-

induced betatron oscillations and the helical motion, modified by the radial gradient

of the self fields. In essence, strongly chaotic behavior is caused by the overlap of the

self-field-induced resonances. Scaling relations for the resonance widths are derived. An

analytical estimate of the threshold value of the self-field parameter = / for

the onset of the chaoticity is obtained and found to be in good agreement with computer

simulations. In addition, the characteristic time scale for self-field-induced changes in

the particle orbits is shown to be of order the time require for a beam electron to transit

one wiggler period.

In order to analyze the effects of transverse spatial gradients in a realizable wiggler,

we consider particle motion in the field configuration consisting of a realizable (three-

dimensional spatial variations) helical wiggler field and the self fields of a tenuous electron
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beam. Because the beam density is low, the particle orbits can be confined radially by the

(small) axial component of the helical wiggler field. A condition for radial confinement

of the particle orbits is derived analytically for a thin electron beam (k2,r2 < 1) and

small wiggler amplitude (a./yl < 1). This condition is analogous to the condition for

radial confinement (Davidson, 1990) of the particle orbits in a nonneutral electron beam

by a uniform axial magnetic field. Because the motion is intrinsically nonintegrable,

it can exhibit chaotic behavior when the wiggler amplitude (a.) is sufficiently large.

To demonstrate the chaoticity, the Poincar6 surface-of-section method is used again to

examine the phase-space structure in the vicinity of helical orbits with guiding center on

the axis of the wiggler helix. Indeed, the surface-of-section plots show that the regular

region of phase space diminishes in size as the wiggler amplitude is increased. In the

limit where self-field effects are negligibly small, it is found that the onset of chaoticity

for electron orbits with guiding center on the axis of the wiggler helix occurs whenever

the dimensionless parameter A = a,/[2([y -1-a .)]1/ 2 exceeds the critical value Ac(O)

0.28, which corresponds to the maximum allowed wiggler amplitude a', - 0.37( b - 1)1/2

for the existence of helical, steady-state orbits for given electron energy Yb (Diament,

1981). Furthermore, it is shown that the onset of chaoticity for off-axis electron orbits

occurs at some values of A less than Ac(0). This suggests that there is an upper bound

on the wiggler field strength for free electron laser operation. Similar results are also

obtained for off-axis particle orbits in a planar-wiggler field configuration.

The organization of this paper is as follows. In Sec. II, a general formulation of the

dynamical problem is given in canonical variables. In Sec. III, self-field effects on particle

orbits are examined in the applied field configuration consisting of a uniform axial guide

field and an ideal helical wiggler field. Chaotic behavior is demonstrated by generating

Poincar6 surface-of-section plots, and an analytical estimate of the threshold value of the

self-field parameter is given for the onset of chaoticity. In Sec. IV, the particle orbits are
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examined in a realizable helical wiggler field in the absence of an axial guide field, but

including self-field effects. After deriving an analytical condition for radial confinement of

the particle orbits, computer simulations are used to show that the motion is intrinsically

nonintegrable and can be chaotic. The condition for onset of chaoticity is calculated.
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II. THEORETICAL MODEL AND ASSUMPTIONS

We consider a relativistic, cylindrical electron beam with radius rb propagating in

the z-direction through the externally applied magnetic field configuration

B5"*(1) = BoF. + f.(i)

= BoF. - B.{[Io(kwr) cos(kz) + I2(k.r) cos(kz - 2|)]|2 (2.1)

+[Io(kwr) sin(kz) - I2(kar) sin(k,z - 20)]6'u - 2I1(kwr) sin(k,z - 0)6*}.

Here, B0 6 is the uniform axial guide field, and B,(z) is the realizable helical wiggler field

with amplitude B, = const. and wiggler wavelength A, = 27r/km = const. In Eq. (2.1),

I,(x) is the modified Bessel functions of the first kind of order n, r = (x 2 + y 2 )1/2 is

the radial distance from the axis of the helix, and (r, 9) are cylindrical polar coordinates

with x = r cos 9 and y = r sin 9 (Fig. 1). It is readily shown that the wiggler field defined

by Eq. (2.1) satisfies the vacuum Maxwell equation V x J.(S) = 0 (Diament, 1981). In

addition, the electron beam is assumed to have uniform density

(nb= const., 0 < r < rb,

(r)(r= (2.2)
0, r > rb,

and uniform axial current density J,0,(r) = -n0(r)e, 2bc over the radial cross section of

the electron beam. Here, -e is the electron charge, c is the speed of light in vacuo,

and 1 Zb = 0bc = const. is the average axial velocity of the electron beam. It is readily

shown from the steady-state Maxwell equations that the beam space charge and current

generate the self-electric and self-magnetic fields (Davidson, 1990)

E., = - (XIF + y)(
2e (2.3)
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and

B, = e (y. - X4), (2.4)
2e

in the beam interior (0 < r < rb). In Eqs. (2.3) and (2.4), m is the electron rest mass,

and wb = (47rnbe2 /m)1/ 2 is the nonrelativistic plasma frequency of the beam electrons.

It is the primary purpose of this paper to examine the motion of an individual test

electron in. the combined applied field configuration and self fields described by Eqs. (2.1),

(2.3) and (2.4). In this regard, it is convenient to represent the equilibrium fields as

$'(s) = -V~b.(2), (2.5)

and

F3zt(i) + B'(i) = V x i(s), (2.6)

where

2
,() (X2 + y2) (2.7)

4e

is the electrostatic potential for 0 < r < rb. In Eq. (2.6), the total vector potential A(i)

can be expressed as

= Bx + +(X) + b(F@(x)eZ, (2.8)

where V x (BoxEy) = Bo6z, V x [B-2 b(()ez] =s(F), and the vector potential for the

helical wiggler field is defined by
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2
A ) mc aw

(i) = m a{[Io(kwr) cos(kwz) - I 2(kwr) cos(kw- - 20)],

+[Io(kwr) sin(kwz) + I 2 (kwr) sin(kwz - 20)]6*}. (2.9)

In Eq. (2.9), aw = eBw/mc2kw is the usual dimensionless measure of the wiggler field

amplitude.

The equations of motion for a test electron within the beam (0 < r < rb) can be

derived from the Hamiltonian

H = [(cP + eA)2 + m2c4]1 /2 - e'b, =ymc2 - e1).. (2.10)

In Eq. (2.10), P5 is the canonical momentum, [y = + (g/mc)2 ]1/ 2 is the relativistic mass

factor, J= P + eA/c is the mechanical momentum, the electrostatic potential (%(i) is

defined in Eq. (2.7), and the vector potential A(;i) is defined in Eqs. (2.8) and (2.9).

Because H is independent of time, the Hamiltonian is a constant of the motion, i.e.,

H(x, y, z, P., Py, P2 ) = ymc 2 - eb., = const., (2.11)

which corresponds to the conservation of total energy (kinetic plus potential energy) of

the test electron.

For notational convenience, in the subsequent analysis we introduce the dimension-

less potentials, A(;i) and >,, and Hamiltonian H defined by

A eA(i) H e() H 2
A - c2  ic 2  

- 71 c2  (2.12)

In addition, the notation
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eB0  eB.
ao = and aw = mck (2.13)

mc 2k nmc2kd

is introduced, where ao is a dimensionless measure of the axial guide field (Bo), and aw

is a dimensionless measure of the wiggler field amplitude (Bw). Because the electric and

magnetic self fields, '(i) and B'(i), are proportional to w = 47rnbe2 /m in the beam

interior (0 < r < rb), it is also useful to introduce the dimensionless parameter

2
W2  

(2.14)
Ea c2k2,'

which is a measure of the strength of the equilibrium self fields. Combining Eqs. (2.12)-

(2.14) with Eqs. (2.7), (2.8), and (2.10) then gives

H [(P/mc + A) 2 + 1]1/2 - 4,, (2.15)

where

1 2
,(1) = -Ek 2(X2 + y2 ), (2.16)

4 w

and

A(i) = aokxsy + A,(i) +zb ez. (2.17)

In Eq. (2.17), A.(F) = eAw()/mc2 is the dimensionless vector potential for the

helical wiggler field, and iw(i) is defined in Eq. (2.9). In Secs. III and IV, it is assumed
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that Or' < 1. Therefore, expanding A1,() correct to order awkr 2 , we obtain (for

r < rb)

7 ~(0) 4-(2)A.(g) = A. (;i) + A. (i) + O(atkar4 ). (2.18)

In Eq. (2.18), A. is the leading-order vector potential for an ideal helical wiggler, i.e.,

-.(O)
A = aw[F, cos(kwz) + 6' sin(kwz)]. (2.19)

2(2)2 
2Moreover, Aw represents the correction to Eq. (2.19) of order awk r2 defined by

~(2) a
S[(k 2 + 3k 2y2 )cos(k z) - 2k xy sin(k z)]6,

+[(k 2Y 2 + 3k2 X 2 ) sin(kwz) - 2k 2xy cos(kwz)]6,}. (2.20)

From Eqs. (2.15)-(2.17), it is clear that there is a large region of the parameter space

(ao, am, E,) in which the motion of an individual test electron can be investigated. The

remainder of this paper focuses on the following two cases: (a) in Sec. III, electron motion

is investigated for a thin (k2,r2 < 1) electron beam propagating parallel to a strong axial

guide field (BO : 0 and ao > aw); (b) in Sec. IV, electron motion is investigated for a beam

propagating through zero axial guide field (BO = 0 and ao = 0) and a strong-focusing

wiggler field (aw $ 0 and k2,r2 < 1, but not necessarily k 2 < 1).
.(2) (0)

In case (a) (Sec. III), the assumption k 2 < 1 corresponds to IA. I < 1A I

[compare Eqs. (2.19) and (2.20)]. Therefore, we approximate the vector potential for
7: -Z (0)

the wiggler field by the ideal value Aw = A, = a,[j, cos(kwz) + 6' sin(kwz)]. Because

ao > aw is assumed, the axial magnetic field Bo0 , plays an important role in providing

radial confinement of the electron orbits in the presence of the (defocusing) space-charge
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field E5 (;). Indeed, for the special case where a, = 0, an electron with axial velocity

V, * Vs =b ,3 bc and small transverse momentum (p' +p') 1 /2 < -Ybmc is radially confined

provided (Davidson, 1990)

27zs,(1- o2) < a , (2.21)

where =Yzb 0 2-1/2, E, = 1 -/C2bk 2 , and ao = eBo/mc 2k,, = Lc/ck.. Equation

(2.21) is equivalent to the familiar inequality 2yjzbWb(1 - 02b) < W2, required for radial

confinement of a nonneutral electron beam by an axial guide field BO(,.

By contrast, in case (b) (Sec. IV), the axial guide field is zero (BO = 0 and ao

0), and the defocusing space-charge force associated with P8 (i) is counteracted by the
- (2)

(focusing) magnetic force associated with the second-order vector potential Aw for the

wiggler field defined in Eq. (2.20). For an electron with axial velocity v, V ,"b OzbC,

perpendicular momentum (pi + p21/ 2  mcas, and total mechanical energy y - Yb

[(1 + a2 z2b)1/ 2 = Yb(l + a2 )1/ 2 , it can be shown that the condition for radial

confinement of the electron orbits is given by [Eq. (4.9)]

-/b6,( $2b < a 2 (2.22)

Here, , /,/c2k2, and a, = eBw/mc 2kw w wcw/ckw, and the inequality in Eq. (2.22)

can be expressed in the equivalent form _YbWb(1 - !3) < CID . In Eq. (2.22), yb, O,,

and a, are related by 1 - Ofs = (1 + a ,)/y'. For specified beam density nb, note from

Eq. (2.22) that sufficiently large wiggler amplitude aw is required for confinement of the

electron orbits.
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III. PARTICLE ORBITS IN COMBINED AXIAL GUIDE FIELD

AND IDEAL HELICAL WIGGLER FIELD

We first examine the motion of an individual test electron for the case where Bn $ 0

and the axial guide field is sufficiently strong that

ao > aw. (3.1)

For a thin electron beam with kjr2 < 1, it follows from Eqs. (2.15)-(2.20) that the

Hamiltonian H H/Mc2 can be approximated by (for r < rb)

- 1
H(kwx, key, k.z, P,/mc, P, /mc, P./mc) = [(P/mc + A) 2 + 1]l/2 - -~ki(x2 + y 2 ), (3.2)

4 w

where

Z~z) = aok~x2, + am~L, cos(kwz) + 2, sin(kwz)] + IZSki(x2 + y2 ). (33)

71 ~- ' (0)

Note in Eq. (3.3) that Aw(i) has been approximated by A. (i) = aw[(Fcos(kwz) +

E' sin(kwz)] for an ideal helical wiggler field.

A. Hamiltonian in Guiding Center Variables

As stated in Sec. 1I, because H does not depend explicitly on time t, the total

energy H = y - E,k 2 (x 2 +y 2 )/4 is a constant of the motion. In order to find an additional

constant of the motion and calculate the resonances, it is useful to perform the canonical

transformation to the new variables (<, V, kez', kmP4/mc, kwPV,/mc, Pz'/mc) defined by

(Chen and Davidson, 1990)

16



/2 k.P 4, 1/2 2 k.P 1/2

k~x = -- ) sin(O + kz') - ) cos(4' - kz'), (3.4)
(ao mc ) ao mc)

2kwP P 1/2 2 k P4 1/ 2
1wy - -" sin(O - kwz') - (- cos(1 + kz'), (3.5)

ao mc ao mc

kwz = kwz', (3.6)

'w (2aokwP' )1/ 2 cos(4 + kz'), (3.7)
mc Mc

P / k.P4 1/2
y = 2ao U) cos(V - kwz'), (3.8)

Mc mc

P2  PE'+ k-% k P (3.9)
mc mc mc mc

where ao = eBo/mc2kw. It is shown later in Sec. III.B [see Eqs.(3.17)-(3.19)] that

kwre = (2kwPO/aomc)1/2 and kwrg = (2kwPo/aomc)1/ 2 are the normalized gyroradiis

and guiding-center radius, respectively, of the steady-state orbits. In Eqs. (3.4)-(3.9), we

introduce the dimensionless variables

k w P o ' k P p P . , - P . ( 3 . 1 0 )
mc mc mc

Some straightforward algebra then shows that the Hamiltonian H H/Imc2 in the new

variables can be expressed as

H(O, V), PO, ]v, 2, = const.)

= [2ao0 & + 2aw(2aoPO)1/' cos 0 + (P , - P4 + PV, + a3 <I>,) + a2, + 111/2 - i> (3.11)

= const.
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Here, a, = eBR/mc2 km, and the normalized self-field potential , e(./mc2 is defined

by

, = [P4 +P 1 -2( OPO) 1 / 2 sin(O - 0)]. (3.12)
2aO

Because H in Eq. (3.11) does not depend explicitly on z', it follows that P., = const.

Also, note that the analysis presented in this section is restricted to the case of nonzero

axial guide field B062. [The canonical transformation in Eqs. (3.4)-(3.9) becomes singular

in the limit ao = eBo/mc 2k, -+ 0.]

B. Integrable Limit (e, = 0)

In the limit where self-field effects are negligibly small (r, = 0 and I, = 0), the

Hamiltonian in Eq. (3.11) reduces to

= [2aoP, + 2a.(2aoP4) 1 2 cos 0 + (Pr, - P4 + P) 2 + a, + 1]1/2 Yo. (3.13)

Equation (3.13) possesses three constants of the motion, namely, Pb, .' and yo. The

motion is integrable and has been analyzed by several authors (Friedland, 1980; Diament,

1981; Freund and Drobot, 1982; Davidson and Uhm, 1982; Freund et al., 1982; Freund,

1983; Littlejoin, Kaufman, and Johnston, 1987; Chen and Schmidt, 1988). It is readily

shown from Eq. (3.13) that the steady-state orbits (d4/dr = 0 and dJ%/dr = 0 with

r = ckjt) are given by

cos 0 = ±1, (3.11)

(2aoPo)1/2 aao > 0, (3.15)
Pzo - ao
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where Pzo = PZ, - P'6O + P0 is the normalized axial mechanical momentum. Substituting

Eqs. (3.14) and (3.15) into Eq. (3.13) yields

Z 11 + a)2] + 1 =Y, (3.16)

which determines the values of P,0 = pzo/mc in terms of the parameters aw, ao, and

-Yo. Equation (3.16) is a fourth-order algebraic equation for P.0, which has at most four

real roots. Figure 2 shows the dependence of P3z0 on the strength of the axial guide

field ao for the case aw = 0.2 and -yo = 3.0. Here, the solid (dashed) curves represent

stable (unstable) orbits, and the dotted line represents the magnetoresonance condition

PzO = ao. The stable orbit with P.0 > ao is known as the Group-I orbit, whereas the

stable orbit with P.0 < ao is known as the Group-II orbit. It is clear from Fig. 2 that

the Group-I orbit exists for ao in the range 0 < ao < a' and merges with the unstable

orbit at ao = a' a 2.1. In general, the value of ac for the merging of the Group-I orbit

and the unstable orbit depends on y1 and a,. Substituting 0 = ko, = /)o + .owr,

kwz' = kwz +0.Q-r, P4 = Pek and P0 = Pvo into Eqs. (3.4)-(3.6), it is readily shown that

the steady-state trajectories can be expressed in Cartesian coordinates as

kox(r) = ±(2P40/ao)1/ 2 sin[kz(r)] - (2Po/ao)1/ 2 cos 00, (3.17)

kwy(-r) = T(2Po/ao)1/ 2 cos[kwz(r)] + (2P5o/ao) 1/ 2 sin 4'o, (3.18)

kwz(r) = k. zo + oz#or, (3.19)

for cos 0o = ±1. Here, )z0 = Pzo/yo, and r = ckht is the normalized time variable.

Equations (3.17)-(3.19) describe helical trajectories with normalized gyroradius krc

(21,o/ao)'1 2 and guiding-center radius kwrg = (2it,/ao)1 2
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Figure 3 shows the typical phase-space structure for the two cases 0 < ao < a' and

ao > ac. Here, the elliptic (hyperbolic) fixed points correspond to the stable (unstable)

steady-state orbits. The Group-I orbit has greater axial momentum than the Group-

II orbit in Fig. 3(a), whereas only the Group-II orbit is allowed in Fig. 3(b). In free

electron laser operation, the electron beam is injected typically into the Group-I orbit or

the Group-II orbit.

An orbit which deviates slightly from the stable (Group-I or Group-II) orbit, i.e.,

1601 = 1q - 4Oo < 1 and I68Ph = jP, - Pol < 1, exhibits harmonic, guide-field-induced

betatron oscillations. It is straightforward to show from the equations of motion for 0

and P5,# that the frequency of the guide-field-induced oscillations is given by (Chen and

Davidson, 1990)

O w 0  P0 -zo ~o o Pto 3 1/2

Ckw O( 1/ (3.20)

where Pto = awpzo/(Pzo - ao) is the normalized transverse mechanical momentum. Siub-

stituting 80(r) = 80ocos(egor) and 8P#(r) = bP,6osin(c2,or) into Eqs. (3.4)-(3.9), and

approximating Eq. (3.20) by Lno Pzo - aol/-yo for I to/zoa 1< aw/aO, it is readily

shown that the normalized mechanical momentum of an orbit adjacent to the stable,

steady-state orbit can be approximated by (Freund and Drobot, 1982)

P.(T) = Pto cos(izor) + 5#to cos(aor/-yo), (3.21)

Py(r) = to sin(Oor) + bpto sin(aor/yo), (3.22)

p,2(r) = p.0 - 8p to(P to/Pzo) cos[(ao/yo - Ozo)r], (3.23)
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where p p,/mc, fy py/mc, and pz pz/mc. Here, 8pto = (Pzo - ao)OejO/a, is the

amplitude of the betatron oscillation, and I6iPol < lPtol is assumed.

C. Chaotic Motion (E, / 0)

For E, : 0, the self-field contribution , j 0 in Eq. (3.11) invalidates the constancy

of Pp. The motion described by the Hamiltonian in Eq. (3.11) occurs in the three-

dimensional phase space (k, V, P,), because PO is determined from ft = const. The time

scale T, for self-field-induced changes in the particle orbit can be estimated from the rate

of change of the phase 0+' in the electrostatic potential V, defined in Eq. (3.12). For an

electron with 0 O qo and Pz, Pz O Oz2bY, because d(O + O)/dr a d4/dr = i3H/O ,

P-/7 + O(E,) - Ozb or d(O + O)Idt k kV, the time required for the phase 4 ± # to

advance by 27r is given by

2w A~
T. = ,7r -A (3.24)

Equation (3.24) is the characteristic time scale for the electron to experience self-field-

induced modifications as the electron undergoes the helical motion described by Eqs. (3.17)-

(3.19). In Eq. (3.24), A, = 2ir/km is the wiggler period.

For Ek2,r? 2< 1, in the vicinity of the Group-I orbits or the Group-II orbits, the

particle motion occurs on a torus as illustrated in Fig. 4. In Fig. 4, the circular, (lashed

line represents the orbit (oo Po); the toroidal angle represents 0(/r); the poloidal angle

c(r) represents the phase of the betatron oscillations 8q = 0 - qo = 60o cos a(r), and

6P" = P, - POO = 6P sin a(r); and 3zb and W-3 0 are the normalized angular velocities of

the two angles ip and a, respectively. Clearly, an approximate resonance condition is

nfW00 + 10zb = 0, (3.25)
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where 1 and n are integers. A detailed resonance analysis has been carried out (Chen

and Davidson, 1990). For example, for 1 1, it is found that the resonance condition

and the resonance width i, are given by

Ip-o -aol (o to\)3 ]11/2 +z p.0 E( P.O\1i -/ z = 0, n = 0, ±1, ±2,., (3.26)
b L aw Po / yb 2aO \ b

and

868J(4) (ooeo) 14 = 4 -Ybrc:rgIlJ,(80o)] . (3.27)
Lao . Ozb rbIA

Here, tbn is the width of the separatrix of the resonance of order n projected along

the P2-axis. [For example, for a pendulum described by the Hamiltonian H(O, PO) =

P2/2 - A cos 0, the separatrix width is given by 7v = 4A'/2.] In Eqs. (3.26) and (3.27), rb,

Ib and -ymc2 are the radius, current and energy of the electron beam; IA = mc3/e ̂ 17

kA is the Alfv6n current; and r, = (2Po/k 2 ao)1/ 2 and rg = (2POo/kVao)1/2 are the

gyroradius and guiding-center radius, respectively. Figure 5 shows plots of the resonance

curves (the solid curves) corresponding to the solutions to Eq. (3.26) for E, = 0.64,

b = yo = 3.0, aw = 0.2, and n = -1, -2 and -3. The dashed curves in Fig. 5 are the

integrable steady-state orbits calculated from Eq. (3.16). When the resonance curves of

order n intersect integrable, stable, steady-state orbits, islands of order n are expected

to appear in the vicinity of the steady-state orbits in phase space.

In order to demonstrate that the particle motion is indeed chaotic, Poincar6 surface-

of-section maps have been generated by numerically integrating the equations of rnotifon

derived from the Hamiltonian in Eq. (3.11). Figure 6 shows nonintegrable surface-of-

section plots for H = 3.0, a, = 0.2, and the two cases: (a) 0 < ao = 2.0 < a' 2.1 and

E, = 0.16, and (b) ao = 4.0 > a' and 6., = 0.64. The integrable limits corresponding to
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Figs. 6(a) and 6(b) are shown in Figs. 3(a) and 3(b), respectively, for the case e, = 0.

In Fig. 6, the initial condition for P, is fixed at the value k.rg = (2Po/ao)1/ 2 = 0.25,

whereas the initial condition for P. is allowed to vary. The second-order island appearing

near the Group-II orbit in Fig. 6(b) occurs near the intersection between the n = -2

resonance curve and the Group-II orbit at ao = 4.0 in Fig. 5. It is evident from Fig. 6 that

the self fields are not intense enough [e, = 0.16 in Fig. 6(a), and e, = 0.64 in Fig. 6(b)]

to cause high-degree chaoticity in the vicinity of either the Group-I orbit in Fig. 6(a) or

the Group-II orbit in Fig. 6(b).

The threshold values of the parameter E, for the onset of chaoticity can be estimated,

using the scaling relation in Eq. (3.27). The criterion used here is that the onset of

chaoticity occurs whenever the half width of the self-field-induced resonance near the

stable, steady-state orbit is greater than the momentum separation between the resonance

and the steady-state orbit. For example, the onset of chaoticity for the case corresponding

to Fig. 6(b) can be estimated by making use of the secondary resonance at k 2 0.857r

and 2 2 2.5 in Fig. 6(b). Substituting the values n = -2, 5 o a 0.157r, yb = 3.0,

ao = 4.0, kwrg = (2Po/ao)1/2 0.25, and kerc = (213,6o/ao)1/ 2 = [a./(ao - Z20)]1/2

[0.2/(4.0 - 2.8)]1/2 = 0.4 into Eq. (3.27), we find that the width of the resonance scales

as ti- 2 = 0.43E,/2. Note from Fig. 6(b) that the momentum separation between the

Group-II orbit and the resonance is Z O 0.3. Therefore, it follows from lb 2/2 = Ai3

that the estimated value of E, for the onset of the chaoticity is given by E, a 1.2. In

reality, the actual onset of chaos for the Group-II orbit [corresponding to the Group-II

orbit in Fig. 6(b)] occurs at e, 2.5 and is shown in Fig. 7, where ao = 4.0, H = 3.0,

a, = 0.2, /3 b = 0.93, and kerb = 0.65. As an example, for A, = 3.0 cm, the dimensionless

parameters in Fig. 7 correspond to rb = 0.31 cm, Ib = 4.3 kA, B" = 710 G, B o = 1.2

kG, O zb = 0.93, and yb = 3.0.
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IV. PARTICLE ORBITS IN A REALIZABLE HELICAL WIGGLER FIELD

In this section, we examine the motion of an individual test electron for the case

where the axial guide field is zero (Bo = 0 and ao = 0) and the wiggler magnetic field is

described by a realizable helical wiggler. For an electron beam with Or2 < 1, it follows

from Eqs. (2.15)-(2.20) that the Hamiltonian H = H/Mc2 can be approximated by (for

r < rb)

it(kx, kwy, kwz, Po, 1Y, p.) = [(P + A) 2 + 1]1/2 - ek 2(x2 + y2 ). (41)

Here, P = P/mc is the normalized canonical momentum, and the dimensionless vector

potential is defined by

-. -:(0) -( 2) 1
A(i) = A. (i) + A. (i) + -j2zE.,(x 2 + y 2 )-z. (4.2)

4

SZ (0) -Z(2)

In Eq. (4.2), we have approximated Aw(Y) 2 Aw (i) + Aw (i) for a realizable helical
1 (0) -r(2)

wiggler field, and Aw (i) and Aw (;i) are defined in Eqs. (2.19) and (2.20).

A. Condition for Radial Orbit Confinement

We first consider the case of a thin electron beam with kwr < 1. Because "P +2

k2r2a2 [see Eq. (4.13)], the Hamiltonian defined in Eqs. (4.1) and (4.2) can be expanded

to order k2r 2 . For r < re, this yields

H + 0  1  (4.3)

where

fto(kwz, P.,Py, P) = {P +2a,[P, cos(kwz) + Py sin(kwz)] +a, + 1}1/2 4. 4)
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and

2 + 62 (0) 2(2) z)k2X2+2. (4521= +2A . A, , - (1 -3z, k2(2 . (4.5)

For the case of zero transverse canonical momentum with P, = PY = 0, it follows from

Eq. (4.4) that the lowest-order (helical) particle orbit is described by

xo(r) = r, sin[k, zo(7-) + x ,

yo(r) = -r, cos[kwzo(r)] + yg, (4.6)

zo(r) = (lzo/k.)r + zo(0).

In Eq. (4.6), r = ck.t, 1 = [1 - (1 + aw02 ] 1 / 2 = const., r, = aw/kwyo3#0 is the radius

of the helical orbit, and xg and yg are slow variables describing the guiding center of the

helix. Note from rc < rb that the assumption kr' < 1 requires a 2 <Y 20.

To calculate the guiding-center trajectories, we substitute Eqs. (2.19),. (2.20) and

(4.6) into Eq. (4.5) and average over r for one period 27r/3,o. For yo 2 Yb and i3o 2- /3 =

[1 - (1 a)/Y]1/ 2, some straightforward algebra shows that the average Hamiltonian

can be expressed as

(H1) = 2 + 2 + 72 1 I_2) k 2 (X2 + y2)+ const., (4)

where

_ow ck - aw 0.8)
ckt, V/2-y
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is the normalized frequency of the wiggler-field-induced betatron oscillations in the ab-

sence of self fields. It follows from Eq. (4.7) that the guiding center of the helical orbit

oscillates harmonically about r = 0 provided YbE,(1 - 23z') < a' , and diverges radially if

-sE,(1 -- 
3b) > a'. Therefore, the condition for radial confinement of the particle orbits

can be expressed as

YbE(1 - 3 22) < a2, (4.9)

or equivalently,

yb~l- b) ww (4.10)

Here, wb = (47re 2 nb/m)1/ 2 is the nonrelativistic plasma frequency, and wew = eBw/mc =

ckwaw is the nonrelativistic cyclotron frequency associated with the wiggler field ampli-

tude Bw. Note that the condition in Eqs. (4.9) and (4.10) is analogous to the condition

for radial confinement of particle orbits in a nonneutral electron beam by a uniform axial

magnetic field (Davidson, 1990). Expressing F, = wvs/c 2 k, = (4/O2bkbrIb/IA), where

Ib is the beam current and IA = mc3/e = 17 kA is the Alfv6n current, it readily follows

that the condition in Eqs. (4.9) and (4.10) can be expressed in the equivalent form

Ib < Ib' s~sis
<ml. 4 1 +Izbj a2 ' (.11aw

As an example, for aw = 0.4, kwrb = 0.2, -y = 3.0, and 3 zb [1 - (1 + a b)/yI21/ = 0.93

the critical value of beam current defined in Eq. (4.11) is Ib' 65 A.

Solving the equations of motion determined from (H1 ) in Eq. (4.7) for radially con-

fined orbits, we find that the guiding-center trajectories are given by xg(r) = xm cos(9-,
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oa,) and y(r) = y, cos(L2-r + a). Here, a,, and a. are the phases of the betatron os-

cillations, xm and ym are the amplitudes, and

j. = [ 1 - - 1 _ 3 2) (4.12)

is the normalized frequency of the wiggler-field-induced betatron oscillations including

self-field effects. Because P, = -yod(kwx,)/dr, P,= yod(kwy,)/dr, and x2 + y2 < r2, it

is readily shown that

Pa,2 + 52 <krW2 a2  (4.13)

which assures the validity of the expansion in Eq. (4.3).

Figure 8 shows typical transverse trajectories for the two cases: (a) 'F < 6-

a/yb(1 - 0I2b) -yba 2/(1 + a 2), and (b) e, > ec. The orbits in Fig. 8 are obtained by

integrating numerically the equations of motion derived from the Hamiltonian defined in

Eqs. (4.1) and (4.2). In Fig. 8(a), because the focusing force due to the wiggler and self-

magnetic fields is greater than the defocusing force of the self-electric field (E, < er), the

guiding center of the orbit oscillates about the axis of the wiggler helix, corresponding to

a real value of Ljw.. In Fig. 8(b), because the defocusing force exceeds the focusing force

(E, > E'), the radius of the guiding center of the orbit oscillates between some minimum

radius rmin and maximum radius rma. The focusing force provided by higher-order

terms in the vector potential expansion in Eq. (2.18), which become increasing large as

r increases, prevents the particle orbits from diverging indefinitely in the radial direction

in Fig. 8(b). Figure 9 shows the plots of the parameter er/yb versus a,. Here, the solid

curve corresponds to the analytical estimate Er /b = a /(1 + a2), and the dashed curves

are obtained from numerical integration of the equations of motion. In Fig. 9, the two
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dashed curves correspond to -yb = 4 and i'b = 10 used in the simulations. It is evident

from Fig. 9 that the analytical and numerical results are in good agreement.

B. Chaotic Motion in the Strong-Pump Regime

We now examine the particle orbits in the regime where the wiggler field amplitude

a,,, is sufficiently large that

aw -bfzb. (4.14)

Because the normalized beam radius k.rb and gyroradius kwre = aw/ysbO 2b are allowed

to be of order unity, the analytical treatment in Sec. IV.A is no longer valid. For k.r <

kwrb < 1, however, the approximate Hamiltonian defined in Eqs. (4.1) and (4.2) still

provides an adequate description of the particle motion. In the remainder of this section,

we show that the motion is nonintegrable and exhibits chaotic behavior when aw is

sufficiently large.

To simplify the analysis, we assume that self-field effects are negligibly small (F, = 0

and <. = 0), and focus on the region of phase space in the vicinity of helical orbits with

guiding center on the z-axis (rg = 0), electron energy -y = y, and normalized axial

velocity 1 = [ - (1 + a2 /y]1/ 2. In addition, it is useful to introduce the

dimensionless parameter

a = N = a"(4. [5)

ckw3 2 b [2(-/ - 1 a2 )1/2'

which is a measure of the nonintegrability of the motion. Physically, Aw/A is the axial

distance through which an electron with energy y = yb and axial velocity v2 = f2be

travels in one betatron oscillation period 27r/w 0e.

For present purposes, it is convenient to describe the particle motion in cylindrical
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polar coordinates (r, 9, z). The Hamiltonian in Eq. (4.1) can be expressed as

ft {[r+a- (1+--r cos(O-kwz)] + [ -a (+ )sin(-kwz)1+Pz2+1
8 k,,r 8

(4.16)

where the dimensionless variables

Pm
Mc and Po =

mc
(4.17)

have been introduced. Because the combination 9 - ksz appears in ft, it is useful

to perform the canonical transformation to the new variables (kr, x, kz', P5,x',P )

defined by

x = 0 - kz, kz' = kz,

5x = PO, PP 21 = + P^.

(4.18)

(4.19)

Here, the generating function is given by F2 (kmz, 6; Pa', P) = kmzP 2, + ( - kz)P^. The

Hamiltonian in the new variables can be expressed as

H(kwr, x, Pr, Px, 7P, = const.)

[Pr. +a (I+ kr 2 )cosX] 2 + x
8 k..r

-P)
2  1/2

= const.

3k2r 2  2

aw( 1+ 3 sin X
8 ) I

(4.20)

Equation (4.20) possesses two constants of the motion, namely, k and P,. The motion
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occurs in the three-dimensional phase space (y, , P,.), because kr can be determined

from H const.

The (helical) steady-state orbits with guiding center on the z-axis are the solutions

of the steady-state equations of motion derived from the Hamiltonian in Eq. (4.20).

Following Diament (1981), it can be shown for 0 < A < 0.28 (Appendix: A) that the

steady-state orbits with normalized axial momentum P = P, - Px > 0 are given by

kr = kro, x = Xo = 37r/2, P, = P,., = 0, &, = (3am/4)(koro) 3 , (4.21)

where the normalized gyroradii kro = kr< and kro k,1r> are the solutions of the

algebraic equation (Diament, 1981)

f(kro) = 2 (1 + k2 r )1 + 9k r 2 - 2] A . (4.22)

Because the function f(kwro) satisfies f(0) = f(oo) = 0 and has a (single) maximum

fm 2 0.28 at kr o 2 0.625, it follows that Eq. (4.22) has two real solutions when A is in

the interval 0 < A < fi, and no real solution otherwise.

Poincar# surface-of-section maps are generated to demonstrate the chaoticity in the

phase space in the vicinity of the steady-state orbit in Eq. (4.21) with kwro = kr<,

where r< is the smaller of the two solutions to Eq. (4.22). Figure 10 shows the Poincara

surface-of-section plots in the (x, P,) plane at P, 0 for H yb = 6.0 and e,

0, corresponding to the two cases: (a) A = 0.18 < fm 0.28 (or aw = 1.5) and

(b) A = 0.22 < fm (or aw = 1.8). The orbits in Fig. 10 are calculated numerically

from the equations of motion derived from the Hamiltonian in Eq. (4.20). Because

Px = -(P. - 0.,) [Eq. (4.19)], a reversal of the vertical axis in Fig. 10 corresponds to

the normalized axial momentum Pk relative to the constant k,. It is evident that the
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phase space contains regular and chaotic orbits. In fact, the axial velocity of a chaotic

orbit can be negative at random time intervals even though the initial axial velocity is

positive. In Fig. 10, the fixed point at x = X0 = 3r/2 and PX = PXo corresponds to the

steady-state orbit defined in Eq. (4.21). Each contour in Fig. 10 corresponds to an orbit

with guiding center oscillating about r = 0 approximately at the betatron frequency

wa,. As the contour size increases, the amplitude of the betatron oscillation increases,

and consequently the coupling between the helical motion and the betatron oscillation

is enhanced, leading to chaoticity. Furthermore, as the value of the parameter A (or

a,) is increased, the area of the regular region in the phase plane decreases [compare

Fig. 10(b) with Fig. 10(a)]. Therefore, it is of interest to calculate the threshold value

of the parameter A = Ac(kwrgm) for the onset of chaoticity for an electron orbit with

maximum normalized guiding-center radius k, rm from the axis of the wiggler helix

(r = 0). For electron orbits with guiding center on the axis of the wiggler helix, we find

that threshold value is given by

Ac()= 0.28 . (4.23)

Figure 11 shows the dependence of Ac on k, rgm, as obtained from the computer simula-

tions. It is found that the function Ac(k.rgm) is independent of the value of the electron

energy -. In Fig. 11, although Ac decreases monotonically in a weak manner as kurgm

varies from 0 to 0.5, there is a discontinuous drop in A, at k. r.m 0.5. This may be

associated with changes in the resonance structures in phase space. This discontinuity

also occurs in a realizable planar-wiggler field configuration, where the discontinuity in

Ac(kwrgm) coincides with changes in the resonance structures and can be calculated an-

alytically. Solving for a, = ac from Eq. (4.15) with A = Ac(0) = 0.28, it readily follows

that the threshold value of the dimensionless wiggler amplitude for the onset of fully
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developed chaoticity is given by

ac = 0.37(_Y2 _ 1)1/2 (4.24)

For given -yb, the phase space is fully chaotic if aw > a' (yb), whereas there is a regular

region with some finite area in phase phase if a. < ac (-yb).
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V. CONCLUSIONS

We have investigated the effects of equilibrium self fields and an inhomogeneous

wiggler field on the dynamics of a test electron in a helical-wiggler free electron laser

in the absence of electromagnetic signal wave. It was shown that the transverse spatial

gradients in the self fields and a realizable helical wiggler field can cause chaoticity in

the particle orbits. In addition, the characteristic time scale for radial-gradient-induced

changes in the particle orbits is of order the beam transit time through one wiggler period.

The following is a brief summary of the principal results and conclusions.

First, the influence of equilibrium self fields on the particle orbits was analyzed

in the field configuration consisting of an ideal helical wiggler field and a uniform axial

guide field. It was shown that the inclusion of the equilibrium self-field effects destroys

the integrability of the motion, and results in chaotic particle motion at sufficiently high

beam density. In particular, the Group-I orbits and the Group-Il orbits can become fully

chaotic. The origin of this chaoticity is the coupling between the guide-field-induced

betatron oscillations and the helical motion, modified by the radial gradient of the self

fields. An analysis of the self-field-induced resonances was carried out, and scaling re-

lations for the resonance widths were derived. Good agreement was found between the

computer simulations and the analytical estimate of the threshold value of the self-field

parameter for the onset of chaoticity.

Second, the effects of wiggler-induced betatron oscillations on the particle orbits

were analyzed for a realizable helical-wiggler field configuration in the absence of axial

guide field, but including the influence of equilibrium self fields. For a thin electron beam

and small wiggler amplitude, a condition for radial confinement of the particle orbits

was derived analytically and verified in computer simulations. Although the p)article

orbits consist of well-defined helical motion and betatron oscillations when the wiggler

amplitude is small, it was shown that the particle trajectories become strongly chaotic
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when the wiggler amplitude is sufficiently large. As the wiggler amplitude is increased,

the area of the regular region in phase space decreases in the Poincar6 surface-of-section

plots. For the special case where self-field effects are negligibly small, the threshold value

of the wiggler amplitude for the onset of fully developed chaoticity was found to be

a - 0.37(-y? - 1)1/2, which corresponds to the maximum allowed value of the wiggler

amplitude for the existence of regular helical orbits for given electron energy Yb.

ACKNOWLEDGMENTS

This work was supported in part by the Department of Energy High Energy Physics

Division, the Office of Naval Research, and the Naval Research Laboratory Plasma

Physics Division. The authors wish to thank Jonathan S. Wurtele for helpful comments

on the manuscript.

34



APPENDIX A: ANALYSIS OF STEADY-STATE ORBITS

The equations of motion derived from the Hamiltonian in Eq. (4.20) have the form

d(kur)
dr

aft

ap,.
, + aw

kr 2 )
cosx] , (A.1)

-a 1+

- -awkwr[p
ly 4

3kr 2 )

8

+ a,,

sin X ] 2 x 2 +

kWr2)[ pX

8 kwr
- aw 1

sin

28

+ k r
8

- P' + P,

Cos) CosX
3a4k r .In I

3k r 2

8
sinX1 sinx

+aw. ± 3k+ r2
+ aw (i + kw cos X] cos x .}

Here, T = ckht and ft = -. It is readily shown from Eqs. (A.I)-(A.4) that the steady-state

solutions (kero, Xo, P,.o, Pxo) are given by

-[3kwro + 2) +-a, .4 (1 + kwro)+ kmr o +

Cos Xo = 0

P,. = 0 ,

Pxo = -(3aw/4)krg sin xo
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aP
dX
d-r = y kwr [kr

dP,.
dr

+x+L[kwr

a f
o(k,,r)

- awQ+ I

(A.2)

3k 2r 2 )

dPx
dr

(A.3)

(A.4)

3k2,r)
W0sin Xo = Pe, ,

8 )
(1.5)

(A.6)

(A.7)

(A.8)

- a. 1+
'9x -Y



which correspond to helical orbits with guiding center on the axis of the wiggler helix.

Subtracting Eq. (A.8) from Eq. (A.5) yields the axial momentum

1zO =z' - Po a. I + 9kro sinxo . (A.9)
I kuro 8

It is clear from Eq. (A.9) that Po > 0 when Xo = 37r/2, and POa < 0 when Xo = 7r/2.

Substituting Eqs. (A.5)-(A.8) into Eq. (4.20) gives (Diament, 1981)

72 -19kr2
- = (+ 1( + . (A.10)
a k r 8

Making use of Eq. (4.15) and -y = yb, it is readily shown that Eq. (A.10) can be expressed

as

A= f(kwro) = 2-2 1 + k ( ± 9kr 2  (A.1)

which determines the gyroradius of the helical orbit. For x > 0, the function f(x)

is always nonnegative and possesses the (single) maximum fm - 0.28 at x 2 0.625.

Therefore, equation (A.11) has two real solutions for 0 < A < fm.
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FIGURE CAPTIONS

Fig. 1. Schematic of relativistic electron beam and coordinate system. Here, nb, rb, and

T"zb are the density, radius, and average axial velocity of the electron beam,

Booi is the axial guide field, and B.(i) is the transverse wiggler field.

Fig. 2. Plot of the integrable steady-state orbits calculated from Eq. (2.16) for E, = 0,

-o = 3.0, and a. = 0.2. The solid (dashed) curves correspond to the stable

(unstable) orbits, and the dotted straight line designates the magnetoreso-

nance condition 1
3

z ao.

Fig. 3. Contour plots in the integrable phase plane (O,p,) calculated from Eq. (3.13)

for e, = 0, yo = 3.0, and a, = 0.2. The two cases correspond to (a) ao = 2.0 <

ac 9 2.1 and (b) ao = 4.0 > a.

Fig. 4. Schematic of torus in the vicinity of the stable, steady-state orbit (0, 40).

Here, /
3 ,b and L Z60 are the normalized angular velocities of the angle V) and

the phase a of the betatron oscillation, respectively.

Fig. 5. The equilibrium self-field resonance curves (solid curves) correspond to the

solutions to Eq. (3.26) for F, = 0.64, -yo = 3.0, a, = 0.2, and n = -1, -2, and

-3. The dashed curves are the integrable steady-state orbits calculated in

Fig. 2, and the dots mark the intersections between the resonance curves and

the steady-state orbits.

Fig. 6. Typical nonintegrable surface-of-section plots in the (4, A) plane at 4 0 (mod

27r) for the two cases: (a) 0 < ao = 2.0 < a' 2.1, and (b) ao = 4.0 > a.

Other system parameters are: (a) e, = 0.16, H = 3.0, a, = 0.2, and f3 8b 0.9!,

and (b) E, = 0.64, H = 3.0, a, = 0.2, and f3 6b 0.93.

Fig. 7. Surface-of-section plot at the onset of chaoticity in the Group-I orbit for

the choice of system parameters E, = 2.5, ao = 4.0, H = 3.0, a. = 0.2, and
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03 b = 0.93, corresponding to Fig. 6(b). Here, the normalized effective gyroradius

krc , (2Pk/ao)'/ 2 ranges from 0.17 to 0.35, the normalized guiding-center

radius is krg = (2PO/ao)1/ 2 2 0.25, and the normalized beam radius is

krb = 0.65.

Fig. 8. Plots of typical transverse trajectories for the two cases: (a) E, < E=

yba2/(1 + a 2), and (b) e > E-. Here, the choices of the system parameters for

the two cases are: (a) e, = 0.13, aw = 0.2, Yb = 4.0, and E' = 0.154, and (b)

r, = 0.18, aw = 0.2, yb = 4.0, and E' = 0.154.

Fig. 9. Plots of E-/yb versus aw. Here, the solid curve corresponds to the analytical

estimate Er/yb = a'/(1 + a' ), and the dashed curves are obtained by solving

numerically the equations of motion for yb = 4 and yb = 10.

Fig. 10. Poincar6 surface-of-section plots in the (x, Px) plane at P, = 0. Here,

50 iterations are plotted for each orbit with the initial conditions marked

by the crosses. The choices of system parameters for the two cases are:

(a) A = 0.18 (aw = 1.5), f = yb = 6.0, and e, = 0, and (b) A = 0.22

(aw = 1.8), f = yb = 6.0, and E, = 0.

Fig. 11. Plots of A, versus kwrgm for the onset of chaoticity in electron orbits with

maximum guiding center radius rgmi as obtained from the computer

simulations. The value of A, = Ac(kwrgm) is found to be independent of

the electron energy Yb, for values of Yb up to 100.
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