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ABSTRACT

The interaction of transverse eigenmodes with a relativistic electron beam is ana-

lyzed in an overmoded cyclotron autoresonance maser amplifier, using a nonlinear self-

consistent model and kinetic theory. It is shown that all of the coupled modes grow

with the dominant unstable mode at the same growth rate, but suffer different launching

losses. The phases of coupled modes are locked in the linear and nonlinear regimes. Simu-

lations indicate that the rf power distribution among the interacting modes at saturation

is insensitive to input power distribution but sensitive to detuning.

PACS numbers: 42.52.+x, 52.75.Ms, 52.35.Mw
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One of the most intriguing problems in the generation of coherent radiation using

a relativistic electron beam is the interaction of multiple electromagnetic eigenmodes

with the electron beam. In free electron laser (FEL) oscillators', 2 and gyrotrons, mode

competition determines the temporal behavior of the eigenmodes of the cavity and the

radiation spectrum. Multimode phenomena also occur in overmoded amplifier systems,

where the temporal dependence of the eigenmodes is usually sinusoidal. In such cases,

the eigenmodes evolve spatially as a result of the interaction with the electron beam.

A nonlinear multimode theory is indispensable in order to predict the rf power in

each mode. Multiple waveguide mode interactions have been investigated using linear

theory4 and computer simulations' for FEL amplifiers, but detailed comparisons between

theory and simulations are not (yet) available. There have been few theoretical studies

of multimode interactions in cyclotron autoresonance maser (CARM) amplifiers'-" in

waveguide configurations, despite the fact that many planned CARM amplifier experi-

ments will operate in an overmoded waveguide.

In this letter, we present a general treatment of multimode interactions in an over-

moded single-frequency CARM amplifier, using a nonlinear self-consistent model and

kinetic theory. A complete set of CARM amplifier equations with multiple modes, which

are derived from the standpoint of particle-wave interactions (similar to the FEL equa-

tions derived by Kroll, Morton, and Rosenbluth"2 ), are integrated numerically to calculate

the linear and nonlinear evolution of coupled transverse eigenmodes and of the relativis-

tic electron beam. In addition, use is made of the linearized Maxwell-Vlasov equations

and the Laplace transform to derive a dispersion relation and amplitude equations for

the CARM instability with an arbitrary number of vacuum transverse-electric (TE) and

transverse-magnetic (TM) waveguide modes. The Laplace transform analysis allows for

analytical calculation of launching losses and the three-dimensional radiation field profile.

Although the present treatment is devoted specifically to the CARM amplifier, we believe
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that the basic ideas are applicable to a large -class of amplifier-type free electron devices

including free electron lasers, gyrotron traveling-wave tubes,'" Cherenkov masers,14 etc.

We consider the CARM interaction', of a relativistic electron beam with a co-

propagating electromagnetic wave (w, k) in a lossless cylindrical waveguide of radius r,

immersed axially in the uniform magnetic field BoF.. The cyclotron resonance condition is

o = kzv, + lc/-y. Here, v, and y are, respectively, the axial velocity and relativistic mass

factor of the beam electrons; I is the harmonic number; 0, = eBo/mc is the nonrelativistic

cyclotron frequency; m and -e are the electron mass and charge, respectively; and c is

the speed of light in vacuo. For simplicity, we present the analysis for the multimode

CARM interaction involving an arbitrary number of vacuum TE modes with azimuthal

dependence e'a, maintaining the general features of multimode phenomena (which will

be discussed elsewhere1 5).

It can be shown that a complete set of nonlinear equations describing an overmoded

CARM amplifier with multiple TE1, modes can be expressed in the dimensionless form8"s5

d =- Z X, (r, r)An cos bfl, (1)
di Pzf

d P. px1 d~n dA
\X.(r, r) -+ An Cos n + s ] , (2)

di PZ 1 [; di dj

__ 1 + dS, y
d 3di PZ+ PZ

+- W (r, r,) 17 - - + -A, sin On$ +P. COS On, (3)
PL nkL0t['y 0-0n)Anin d i di obn}, 3

- + - )An(i) expji[# +n(i)]
d2 2P

)3n Xn(rL, r,) Ze~ expli i0 + Sn(M) , (4
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where n is a positive integer and the normalized coupling constant g, is defined by

04(, - 1)

Equations (1)-(3) describe the dynamics of each individual particle, and Eq. (4)

governs the slowly varying wave amplitude A,(i) and phase shift 6(i) for each TEI,

mode. In the simulations, typically, we use more than 1024 particles. In Eqs. (1)-

(4), i = wz/c is the normalized interaction length; w = 27rf is the angular frequency

of the input signal; ne = Q,/w is the normalized nonrelativistic cyclotron frequency;

P2 = pz/mc = -yO., P± = p±/mc = y#3±, and y = (1 + p2 + p2 )1/2 are, respectively,

the normalized axial and transverse momentum components, and the relativistic mass

factor of an electron; lb is the beam current; IA = mc3 /e a 17 kA is the Alfv6n current;

Xn(rL,rg) = Jo(kar,)Jj(karL) and W.(rL,r,) = Jo(kr,)J(k.rL)/krL are geometric

factors; Jo(x) is the lowest order Bessel function; J((x) = dJ(x)/dx is the derivative of

the first-order Bessel function; u,, is the nth zero of Jj(x); kn = un/r,. is the transverse

wavenumber associated with the TEin mode; go = w/ck., = (1 - c2 kW 2)- 1/2 is the

normalized phase velocity of the vacuum TEIn waveguide mode; rL = p±/mlc is the

electron Larmor radius; r, is the electron guiding-center radius which is assumed to be

constant; < ... > denotes the ensemble average over the particle distribution.

The rf power flow over the cross section of the waveguide for the TE 1. mode, Pn(z),

is related to the normalized wave amplitude A, by the expression

1n() mc I (v2 _)[, V) 2 d- +on
.e)= -(2 [ 2  + -- nA2() (5)

where m 2 c5 /e 2 2 8.7 GW. Equations (1)-(4) are readily solved numerically to yield the

three-dimensional radiation field profile and the distribution of rf power among coupled
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modes in the multimode CARM interaction. For the simulation results presented below,

the particles are loaded such that the right-hand side of Eq. (4) vanishes at z = 0,

corresponding to an initially unbunched electron beam.

By performing the Laplace transform of the linearized Maxwell-Vlasov equations,

a dispersion relation and amplitude equations can be derived for the multimode CARM

interaction, with an arbitrary number of vacuum TE and TM waveguide modes coupling

to the electron beam. For example, applying our results to the coupling of a cold,

thin (kar, < 1), azimuthally symmetric electron beam with the TE1, modes at the

fundamental cyclotron frequency (1 = 1), and assuming dEn(O)/dz = 0, the Laplace

transform of the equations for the amplitudes E.(z) - A,.(z) exp[ik.,z+ 6,(z)] to leading

order in c2kI/(w - Q./- - khv.) 2 can be expressed in the matrix form'"

(2 2 + W2 N )n,k2,(W 2 + C2 s 2 )
E. ,, (w - Qr /y + ivs)2

N2

= sEn(0) + ,,kr,v, En,(0)z. (6)
,E (w - ,/y + iv.s)2

In Eq. (6), s = ik is the Laplace transform variable; , = v./c and OJ. = v±/c are,

respectively, the normalized axial and transverse velocities of the equilibrium beam elec-

trons; ckN is the largest cut-off frequency below the operating frequency w; and the

dimensionless coupling constants , are defined by

4ni= ( [ Xn(rL, r,)Xn,(rL, r,)
-yo. kA/ [(V2 - 1)(V2, - 1)]1/2j,(Vn)J,(Vn,)

Therefore, the amplitudes En(z) and the dispersion relation can be obtained by solving

Eq. (6) and performing the inverse Laplace transform of Zn(s).

For two coupled modes, TEI, and TEIn, it is readily shown from Eq. (6) that the

dispersion relation is
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{2 + k.2-' kj k, -C 2w - 02~v

= [Efllki(kW + k ) - + k (k2 + k - w) - c2/2) (7)

When the two modes are well separated and enk2(k + kl, - w2 /c 2 ) > fk(k2 +

k- W2/c2), corresponding to the beam cyclotron mode, w = kzv, + c/jy, in resonance

with the TEI, mode, w = c(k! + kz)1/2, the coupled-mode dispersion relation in Eq. (7)

becomes the usual single-mode dispersion relation' 9

+ e"4'k2(w 2 -c 2k2)
C2 (w - - k~v.) 2

for the TE1, mode.

Typical results from the computer simulations and kinetic theory are summarized

in Figs. 1-3. Figure 1 shows the dependence of rf power, in the TE11 and TE12 modes,

on the interaction length z for (a) single-mode CARM interactions and (b) the CARM

interaction with both modes coupling to the beam. The system parameters in Fig. 1 are

beam current lb = 500 A, beam energy Eb = 1.0 MeV (y = 2.96), initial pitch angle

OP = O'3o/0,o = 0.6, waveguide radius r. = 2.7 cm, and axial magnetic field BO = 3.92

kG, corresponding to the TE1 1 mode in resonance, and the TE12 mode off resonance, with

the electron beam. The solid curves are the simulation results obtained by integrating

numerically Eqs. (1)-(4) with 1024 particles; The dashed curves are obtained analytically

from Eq. (6). The inclusion of the coupling of the TE11 and TE12 modes results in

instability for the TE12 mode as seen in Fig. 1(b), while the single-mode theory predicts

complete stability for the TE12 mode as seen in Fig. 1(a). In fact, in Fig. 1(b), the

TE12 mode grows parasitically with the dominant unstable TE11 mode, and the two

coupled modes have the same spatial growth rate -ImAk, > 0, corresponding to the
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most unstable solution of the dispersion relation in Eq. (7). Because the TE11 mode is in

resonance with the beam mode and the TE12 mode is detuned from resonance, the TE12

mode suffers greater launching losses than the TE11 mode.

The simulation also shows that the relative rf phase AO(z) = (k, 2 - k, 1)z + 62(z) -

61(z) for the coupled modes is approximately constant in the exponential gain regime.

Such a phase-locking phenomenon is expected from linear theory, because the dispersion

relation in Eq. (7) yields a unique solution of k. with a negative imaginary part, which

determines the spatial growth rate and phase shifts for both modes in the exponential

gain regime. What is remarkable is that phase locking persists even in the nonlinear

regime, at least for some finite interaction length after saturation. This reveals two

general features of the multimode CARM interaction: (1) all of the coupled modes have

the same growth rate, but suffer different launching losses which depend upon detuning

characteristics; (2) the phases of coupled waveguide modes are locked in the exponential

gain regime, and remain locked for some finite interaction length after saturation.

Another interesting feature of the multimode CARM interaction is that the rf power

distribution among the coupled modes at saturation is insensitive to the small-input rf

power distribution at z = 0. Figure 2 shows the results of the simulations for the coupling

of the TE11 and TE12 modes with two different distributions of input rf power. In Fig. 2,

the two solid curves depict the linear and nonlinear evolution of rf power in the TE12 mode

obtained from the simulations with the two input rf power distributions: (a) Po(TE11 )

= 1.0 kW and PO(TE12 ) = 1.0 kW, and (b) Po(TE11 ) = 1.0 kW and Po(TE12 ) = 1.0 W,

while the two dashed curves are the corresponding analytical results from Eq. (6). Here,

only the TE12 mode is plotted because the TE11 mode remains virtually unchanged for

the two cases.

Figure 3 depicts the detuning characteristics of the saturated rf power distribution

among four coupled TE1, modes (n = 1, 2,3,4), as obtained from the simulation with an
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input power of 100 W per mode. By increasing the axial magnetic field B0 in Fig. 3, the

beam mode is tuned through the resonances with the TE11 , TE12 , TE13 , and TE14 modes

at Bo = 3.74, 4.29, 5.33, and 6.98 kG, respectively. The fractional rf power for a given

mode reaches a maximum at its resonant magnetic field, while the power decreases rapidly

for off-resonance modes. In the transition from one resonance to another, however, two

adjacent competing modes can have comparable rf power levels at saturation.

In summary, we have presented a general treatment of multimode interactions in an

overmoded CARM amplifier using a nonlinear self-consistent model and kinetic theory.

Good agreement was found between the simulations and kinetic theory in the linear

regime. It was shown analytically, and confirmed in the simulations, that all of the

coupled waveguide modes grow with the dominant unstable mode at the same spatial

growth rate, but suffer different launching losses which depend upon detuning. Phase

locking occurs among coupled waveguide modes in the linear and nonlinear regimes. The

saturated rf power in each mode was found to be insensitive to input power distribution,

but sensitive to detuning. An accurate calculation of the growth rate and saturation

levels in overmoded CARM amplifiers requires the use of a multimode theory in the

linear and nonlinear regimes. We believe that the present analysis can be generalized to

treat multimode phenomena in various free electron devices.
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FIGURE CAPTIONS

Fig. 1 The rf power in the TE11 and TE12 modes is plotted as a function of
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interaction length z for (a) single-mode CARM interactions and (b) the

CARM interaction with the coupled modes. Note in Fig. 1(b) that the

TE12 mode grows parasitically with the dominant unstable TE11 mode

at the same spatial growth rate due to mode coupling, despite the differences

in launching losses.

Fig. 2 The TE12 rf power is plotted as a function of interaction length for a CARM

with the TEII and TE12 modes coupling to the beam. Here, the two solid

curves depict the linear and nonlinear evolution of rf power for the TE12

mode obtained from the simulations with two input rf power distributions:

(a) Po(TE11) = 1.0 kW and PO(TE12) = 1.0 kW, and (b) PO(TE1 1) = 1.0 kW

and Po(TE12) = 1.0 W, while the two dashed curves are the corresponding

analytical results from Eq. (6).

Fig. 3 The fractional rf power at saturation in four coupled TEI, modes is plotted

as a function of detuning. Here, the values of the resonant magnetic field for

the TE11 , TE12 , TE13 , and TE14 modes correspond to BO = 3.74, 4.29, 5.33,

and 6.98 kG, respectively.
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