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L. Introduction

In steady state lower-hybrid current drive (LHCD), the toroidal current in tokamaks is
sustained by fast electrons which absorb energy and momentum from externally injected
waves. The dynamics of the fast electron population is well described by balancing wave
induced quasilinear diffusion with collisional slowing down and pitch angle scatterin
off of fixed Maxwellian field particles. Here we consider a quasilinear-Fokker-Plan
formulation which includes the wave induced radial transport of fast electrons, thus
generalizing the radially local, velocity space treatments of LHCD [1,2,3].

The best current drive efficiencies for LHCD experiments are achieved when the wave
spectrum launched into the plasma is narrow and close to the accessibility limit. For
central electron temperatures up to a few kev, waves launched near the accessibility limit
are very weakly damped and there results a significant “spectral gap” which must be filled
before the waves can Landau damp on electrons. Because of the weak dissipation, the ray
trajectories of the waves can make several toroidal transits and suffer numerous radial
reflections. It has been shown that by including toroidal effects in the ray dynamics,
the poloidal mode numbers of the rays can upshift [4] and thus fill the spectral gap [5].
The fields required to bridge the spectral gap thus have a significant poloidal component,
which will contribute to the radial E x B dgift of resonant electrons.

I1. The Fokker-Planck Equation

In the absence of the RF fields, the electron orbits are assumed to follow the magnetic
field lines with a constant parallei velocity, u. We consider the evolution of the electron
distribution function, f(u,v.,p,t), where %v_z,_ is the perpendicular energy and p is a radial
variable which labels the magnetic flux surfaces. For a small inverse aspect ratio tokamak
with circular flux surfaces, we take p = r+ A(r) cos 8, where A(r) is tﬁe Shafranov shift.
The evolution of f is given by

2=+ Qs ()

which represents a balance between RF quasilinear diffusion and collisional pitch angle
scattering and slowing down. Here, (6/ 3t)c is the linearized collision operator for fast
electrons slowing down and pitch angle scattering in (u,v.) space, as given in various
references (see e.g. [3]). The collisional contribution to radial transport has a negligible
effect on the confinement of fast electrons and can be ignored; hence the collision operator
does not act on the p dependence of f. The quasilinear operator is
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Assuming that the RF fields remain in the slow wave (electrostatic) polarization, the
quasilinear diffusion coefficients are:
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where D,, = D,, and B, is the toroidal field on axis. The angular brackets in (3)
represent a flux surface average. The RF scalar potential, ®,;(x,t), is represented in

eikonal form, 1 .
$. ;= 3 Z ®,(x)exp (/ dx’' - k,(x’) — wt) +cc. |, (4)

where &, and k, are assumed to be slowly varying. We have also defined ki=k,-b
and k; = b x k, - Vp, where b is the spatially varying unit vector along the equilibrium
magnetic field. The basic physics of (2) is simple; resonant electrons experience a diffusion

in u, due to the wave’s parallel field, as well as a diffusion in p, due to the radial component
of the E,; x B drift. Because these two processes are coupled, the quasilinear operator

also includes cross flows that are proportional to D, and D,,. We use the previously
developed ray-tracing model of Bonoli and Englade [5], to determine the fields inside the
plasma, thereby allowing us to evaluate the radial flow of fast electrons.

III. The Radial Flux

The radial flux of fast electrons, I',, is obtained by integrating (1) over the velocity
space coordinates, P P

I‘,.f = —/21rv_1_va_d‘u. (Dpp-a-; + Dwga)f . (5)

To calculate I'y; we ignore the enhancement of the perpendicular energy of f due to the
pitch angle scattering of resonant electrons with large parallel energy [2,3]. One then

finds that 6
L= [ dulV,F(u,p) = Dyg-Flusp)] (6)
where uD.D,,
‘/;’(u7 p) = vg(Dc + Duu) (7)
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Here D, = (Z; + 2)v,v;/4®, v, = wi InA/(4nn.12), Z; is the ion charge state, v, =
VTc(P)/m
v —D.udu
F(u,p) = N exp (/ m) : (9)

Since there are relatively few electrons in the tail, we may take N = n, / vev/27), where
n. is the local electron density. Because D, is so large, electrons are diffused rapidly in
the resonant region, where F(u, p) develops a tail. It is therefore appropriate to consider
the following velocity averages of V, and D,:

V(p) = Ni* [duV,(u,p)Fr(u,p) (10)
Dy(p) = Ni* [duDy(u,p)Fr(u,p) (11)

where Fr(u,p) = F(u,p) — (ne/vev2r) exp(—u?/2v?) and Nr(p) = J duFr(u,p).



The quantity 17,, is the average convection velocity of resonant electrons and, simi-
larly, D, is their average radial diffusion coefficient. The radial convection depends on the
amount of momentum absorbed from the waves and the ratio of k,/k at resonance; since

the momentum absorbed from the waves is balanced by the momentum destroyed in col-
lisions with the bulk plasma, the radial convection is proportional to D, and independent
of the wave amplitude. There is generally a large asymmetry in the k, spectrum, because
toroidal effects on the wave propagation tend to fill in the spectral gap. In general, the
upshifted spectrum, which ﬁﬁs the spectral gap, drives an outward radial convection.

IV. Numerical Results

Let us consider the Alcator C experiment, previously simulated by [5]. The param-
eters are ne, = 7.5 x 10'*em™3, T,, = 1.5 kev, T}, = 0.7 kev, a = 16.5 cm, R, = 64 cm,
I, = 170 kA, and B, = 10T. Here n.,, T, and T, are the peak values of the electron
density, electron temperature, and ion temperature, I, is the toroidal plasma current,
and a is the minor radius of the plasma. The assumed profiles are described in [5]. The
RF frequency is 4.6 GHz (i.e. w/2xr). The Brambilla power spectrum is modeled by

Sa ifng <mj<my
S(n") =< S, ifn, < ny < n s (12)
0 otherwise
where n| = ck/w. For Alcator C, we take n, = 1.25, ny = 2.0, and n. = 7.0; S, and S,
are determined so that 70 percent of P;, is launched between n, and ny. (Note, we have
ignored any power which couples into the plasma at negative n.) For P, = 440 kW,
we found that the total power resonantly absorbed by electrons was P,y = 390 kW, with
the remaining 50 kW being damped non-resonantly through electron-ion collisions in the

plasma periphery.

The parameters for the JT60 current drive experiments are [6]: n., = 3.0 x 10*3cm™3,
Teo = 3.0kev, T, = 3.0kev, a = 70 cm, R, = 310 cm, I, = 1.5 MA, and B, = 4.5T.
The RF frequency is 2 GHz. The power spectrum of the multi-junction waveguide array
is very narrow and is modeled by (12), where n, = 1.25, n, = 1.75, and n. = 4.75; S,
and S, are determined so that 80 percent of P, is launched between n, and n;. For
P;n = 4.6 MW, the total power resonantly absorbed by electrons was P,y = 4.2 MW, the

remainder being absorbed non-resonantly through collisions.

The results of our numerical simulations are given in Figures 1 and 2. For both
Alcator C and JT60 the radial convection velocity 1s outward across most of the plasma
and has a broad maximum of nearly 1 m/sec. In both cases, the radial diffusion is found
to be highly localized near the magnetic axis. For JT60, the peak of the diffusion profile
can be quite large, nearly 1 m?/sec.
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Figure 1: Model results for Alcator C; radial profiles of (a) average radial convection velocity,
V, (m/sec) and (b) average radial diffusion coefficient, D, (m?/sec).
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Figure 2: Model results for JT60; radial profiles of (a) average radial convection velocity,
V, (m/sec) and (b) average radial diffusion coefficient, D, (m?/sec).



