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K. Kupfer and A. Bers
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Abstract

We generalize the quasilinear-Fokker-Planck formulation for lower-hybrid current
drive to include the wave induced radial transport of fast electrons. Toroidal ray
tracing shows that the wave fields in the plasma develop a large poloidal component
associated with the upshift in k1l and the filling of the "spectral gap". These fields lead
to an enhanced radial E x B drift of resonant electrons. Two types of radial flows are
obtained: an outward convective flow driven by the asymmetry in the poloidal wave
spectrum, and a diffusive flow proportional to the width of the poloidal spectrum.
Simulations of Alcator C and JT60, show that the radial convection velocity has a
broad maximum of nearly 1 m/sec and is independent of the amplitude of fields. In
both cases, the radial diffusion is found to be highly localized near the magnetic axis.
For JT60, the peak of the diffusion profile can be quite large, nearly 1 m2/sec.

PACS Numbers: 52., 52.50.Gj, 52.25.Fi, 52.55.Fa

April 19, 1991
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I Introduction

In steady state lower-hybrid current drive (LHCD), the toroidal current in tokamaks is

sustained by fast electrons which absorb energy and momentum from externally injected

waves. The dynamics of the fast electron population is well described by balancing wave

induced quasilinear diffusion with collisional slowing down and pitch angle scattering off of

fixed Maxwellian field particles. Here we consider a quasilinear-Fokker-Planck formulation

which includes the wave induced radial transport of fast electrons, thus generalizing the

radially local, velocity space treatments of LHCD [1,2,3].

Uehara [4] has suggested that the wave induced E x B drift leads to an inward pinch of

resonant electrons during LHCD; recently this effect was incorporated in a phenomenological

model to explain the scaling of the plasma confinement time with respect to auxilliary power

and plasma current [5]. The wave induced radial flux of resonant electrons has also been

considered by Meng-Fen and Wei-Min [6], where an ad hoc quasilinear model was devised on

the basis of a limited numerical study of ray tracing results during single-pass absorption. A

neoclassical treatment of wave induced current and transport has been given by Antonsen

and Yoshioka [7] and is applicable to situations when the electron distribution is close to

a Maxwellian. An important distinction of our work, is that we consider a detailed model

of the wave fields which develop in the plasma under the relevant situation of multiple-pass

absorption. Furthermore, we treat the case when the electron tail is a strong departure from

a Maxwellian, as is typical in LHCD.

The best current drive efficiencies for LHCD experiments are achieved when the wave

spectrum launched into the plasma is narrow and close to the accessibility limit [8,9,10],
where accessibility refers to the minimum parallel index (ck11/w) which will penetrate to the

interior of the plasma while remaining in the slow wave polarization [11]. For central electron

temperatures up to a few keV, waves launched near the accessibility limit are very weakly

damped and there results a significant "spectral gap" which must be filled before the waves

can Landau damp on electrons. Because of the weak dissipation, the ray trajectories of the

waves can make several toroidal transits and suffer numerous radial reflections. It has been

shown that by including toroidal effects in the ray dynamics, the poloidal mode numbers of
the rays can upshift [12] and thus fill the spectral gap [13]. The fields required to bridge the
spectral gap thus have a significant poloidal component, which will contribute to the radial
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E x B drift of resonant electrons. We use the previously developed ray-tracing model of

Bonoli and Englade [13], to determine the fields inside the plasma, thereby allowing us to

evaluate the radial flow of fast electrons.

The paper is organized as follows. The Fokker-Planck equation is discussed in Section

II and a detailed derivation of the relevant quasilinear operator is given in Appendix A. In

Section III, we derive a wave induced radial convection velocity and diffusion coefficient.

The wave induced radial flux is discussed in Section IV. The method used to calculate the

quasilinear diffusion coefficients by ray-tracing, including self-consistent resonant damping,
is given in Section V. Our model is applied to both Alcator C and JT60 parameters, with

the results presented in Sections VI and VII. In Section VIII, we discuss the results and give

our conclusions.

II The Fokker-Planck Equation

Restricting the analysis to frequencies below the electron cyclotron frequency, allows us to

consider the guiding center orbits of electrons, where the waves do not destroy the adiabatic

invariance of the magnetic moment. During LHCD, trapped electrons absorb little of the

wave energy, so we consider only well circulating electrons. (Trapped particle effects have

been considered in [14,15] and can be important in electron-cyclotron, or fast wave current

drive.) In the absence of the RF fields, the electron orbits are assumed to follow the magnetic

field lines with a constant parallel velocity, u. We thus consider the evolution of the electron

distribution function, f(u, v±, p, t), where lIv is the perpendicular energy and p is a radial

variable which labels the magnetic flux surfaces. The evolution of f is given by

f=( ) f+ (1)

which represents a balance between RF quasilinear diffusion and collisional pitch angle scat-

tering and slowing down. Here, (0/8), is the linearized collision operator for electrons

slowing down and pitch angle scattering in (u,v±) space, as given in various references (see

e.g. [3]). The collisional contribution to radial transport has a negligible effect on the con-

finement of fast electrons and can be ignored; hence the collision operator does not act on

the p dependence of f. The quasilinear operator (see Appendix A) is
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8 1 8 8 8
( )ai f [ + D, ]f

+ a [D.0 + D., a .(2)

Assuming that the RF fields remain in the slow wave (electrostatic) polarization, the quasi-

linear diffusion coefficients are:

re2 ~ dV X
= - dV Id ' X |, 26(uk - w)(kg

DPU = 2r - CWV~ d x |(j ,|2(ukl' - w)kl' kp2 m.B I

ir CI- dV B 1 12(kj )D, JP 2B2 B 'I 2 5(ukj - w)(k) 2  , (3)

where Du, = Do. Here B = IB(x)I, where B is the equilibrium magnetic field. Also,
J(p) = BdV/dp and

pdV
D = dV-1 I cx B(x) ,(4)

where the spatial integration is over the infinitesimal volume dV surrounding a flux surface,
hence it represents a flux surface average. The RF scalar potential, P,. (x, t), is represented

in eikonal form,

, (x)exp i dx' -k,(x') - wt) + c.c. , (5)

where -, and k, axe assumed to be slowly varying. The quantities ks and kp are defined as:

k = k, - b (6)

k'= b x k, , Vp (7)

where b is the spatially varying unit vector along the equilibrium magnetic field. A detailed

derivation of (2) is given in Appendix A.

For a small inverse aspect ratio tokamak with circular flux surfaces, we take p = r +

A(r) cos 0, where A(r) is the Shafranov shift [16]. In this case, we may take dV = 47r2R pdp,

where R is the major radius. Furthermore, in the expressions for D. and DP, we take

B z . s B., where the B, is the toroidal field on axis. The basic physics of (2) is simple;

resonant electrons experience a diffusion in u, due to the wave's parallel field, as well as a

diffusion in p, due to the radial component of the E,. x B drift. Because these two processes

are coupled, the quasilinear operator also includes cross flows that are proportional to D,
and Du.
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We simplify the problem of solving (1) by approximating the electron distribution func-

tion, f, as a fixed Maxwellian with respect to the perpendicular energy. In particular we

assume

f = F(u, p, t)(2rv2)- exp(_V2 /2v2) , (8)

where v,(p) = kT,(p)/m.. This approximation ignores the enhancement of the perpendic-
ular energy due to the pitch angle scattering of resonant electrons with large parallel energy

[2,3]. The main effect of the fully consistent perpendicular dynamics is to increase the cur-

rent drive efficiency [3,17], since collisional losses to the bulk plasma are reduced at higher

energies. Substituting (8) into (1) and integrating over the perpendicular energy yields the
following equation for the evolution of F(u, p, t):

8 _18 8 8
aF(u,p,t) = a p[D ,,,- + D ]F

&~ P Op Op O
+ [(D. + De ) + Dre + Du,, 5F , (9)

where

D. = (Zi + 2)vov,/us , (10)

v. = w , In A/(47rnv,) , (11)

and Z, is the ion charge state.

In the usual treatment of LHCD [1,2], it is assumed that the electron distribution function

is established on a fast time scale by the RF diffusion in u seeking a radially local balance

with collisional pitch angle scattering and slowing down. The radially local, one-dimensional

Fokker-Planck equation is

8 8 8 u
F(up,t) = [(D.+ D.)L + De-]F(up,t) , (12)

which has the steady state solution

F(u,p) = Nexp ( - , (13)
(fV2 (D. + D.)

where N is determined by normalizing F. Since there are relatively few electrons in the tail,
we may take N = n,(p)/[v.(p)v 27], where n.(p) is the local electron density. With F given

by (13), it follows that the local RF power absorbed by the resonant electrons,

8
Srif(P) = -Me duuDtiu;F(u,p) ,(14)
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is completely dissipated by collisions with the bulk plasma. The local current density driven

by the RF is

Jr(p) = e du uF(u, p) (15)

III Radial Convection and Diffusion

The Fokker-Planck equation, (9), is complicated by the presence of cross flows which come

from the coefficients DP and D,. It is possible to introduce a new "radial" coordinate,
x(u, p), such that (9) takes on the simplified form:

8 1 8 8
aF(u, z, t) 1 J J[D - V.]F(u, ,t)

18 8
+ J ;J{Du - ]F(u, x, t) ,(16)

where

J = pFp(u, z) . (17)

To find an expression for p, as well as for the coefficients D., V, Du, and Vu, we transform

(16) into the (u, p) coordinates and compare the result with (9). This yields the following:

Du = D.+ D. (18)

Vu = -D. (19)

8 uD0D(
SV2p(u, ) =+ D.)

8 D2
D.[ p(U, X)]2 = D" D (21)

a D
p;(u, ) = DU+D . (22)

Equation (22) can be integrated by the method of characteristics,

= A(u',p') , (23)

where A(u, p) = Dp/(D. + D.). By integrating (23), subject to the initial condition

p'(0) = x, one obtains p = p'(u). We note that A(u,p) is a non-singular function that

is finite only in the resonant region of velocity space. Let us consider the relevant case,
when the resonant region is limited to the interval ul < u < u2 , where ul and u2 can be

functions of p. Since A(u, p) vanishes outside this interval, it follows from (23) that p = z
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for u < ui. Integrating (23) beyond ui leads to a displacement between p and x. Again,

because A(u,p) vanishes outside of the resonant region, p = p'(U2) for u > U2 . Defining

Ap(u, x) = p(u, x) - x, one sees that Ap will typically be small compared to the length scale

of the radial variation of F, i.e. |Ap8F/8pj < 1, where lApi ~ (U2 - ui)jD,U/(Duu + DC).

This is because of the relative slowness of the radial diffusion in comparison to the diffusion
in u. Hence we may take Op/ , 1, in (17), (20), and (21).

Equation (16) allows for some straight forward physical interpretation. First, consider

the collisionless diffusion of electrons between ui and U 2 (i.e. take D, = 0, so that VU = VV =

0). Since the diffusion in u takes place on a faster time scale than the diffusion in x, the

distribution function is flattened in u at fixed x. An electron diffusing between u and U2

at fixed x, is actually following the diffusion path p = x + Ap(u, x). The fast diffusion in u
appears as an incoherent oscillation in p about a slowly varying average, which is x. We may
thus think of x as the "oscillation center". On the slow time scale, the "oscillation center"

diffuses, due to the action of D.. Now introduce the collisional drag, so that electrons are

slowed down in u, at a rate of Vu. The effect of this on the radial motion, is to induce a slow

drift of the "oscillation center", at a rate of V.. When D. is large enough that a typical

resonant electron can diffuse back and forth between ui and U2 , before being slowed down

below ui, then we may average D. and V. with respect to u, for u1 < U < U2 . Hence, we

obtain an average radial diffusion and convection of resonant electrons.

IV The Radial Flux

In this section, we make the connection between the radial convection and diffusion of Section

(III) and the usual radial flux, which is obtained by integrating (9) over u. Using r,.f to

denote the RF induced radial flux, one finds from (9) that

,. = -f du[D,,a + D, 0 ]F(u,p) . (24)

Following the usual approach to transport theory, we may assume that F = F. + eF1 + 2F2 +

..., where e is a small parameter characterizing the slow radial evolution of (9) relative to

the fast velocity space evolution. The RF Fokker-Planck elements are assumed to obey the

relative ordering D,, ~ eD. ~ 62D.. Balancing the zeroth order terms in (9) yields (13)
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as an equation for F.(u, p). The radial flux in (24) can now be expressed as

1,=J du[VF, - (D,, - + FeD, )] (25)

where
uD.D (26)

V(U IP) V 2(D. + D.) .

To consistently determine the radial flux through second order in e, we must obtain eF1 as

driven by the first order velocity space flux D.,OF,/p. The first order equation is

[(D. + D ) + ]DF = -Dp F.(ulp) , (27)

which is easily solved by the use of an integrating factor. Let us assume that in the resonant

region the RF diffusion in u is dominant over the collisional drag, then (27) reduces to

e-F1~ -F.(UP). (28)
ouD. + D, 0p

Substitution of (28) into (25), leads to the radial flux

J,.f = du(VF. - DF), (29)
ap

where

D,= D, - D2 /(D.+ D) (30)

Comparing this with the results of Section (III), we integrate equation (16) over u. This

leads to a flux in z which is nearly identical to (29). The differences are small because

p = x + Ap(u, z) and Ap(u, z) is assumed to be of order e, thus V - V. and D, - D..

Meng-Fen and Wei-Min [6] obtained a similar result to (29), except that they assumed an

ad hoc relation between k, and k in their definitions of D. and D,,. Furthermore, they

did not obtain the second term in D, (i.e. the one dependent on D,).

It is important to point out that an attempt to solve (9) by expanding F as a power

series in e, does not yield conventional transport equations. One finds that only the density

moment of the second order equation will annihilate terms depending on F 2. Therefore, to

obtain an equation for the energy flux one would have to solve an additional inhomogeneous

equation for F 2. The underlying physical reason for this is that the RF delivers energy

directly to the non-Maxwellian tail of F.. The above expression for l,.q may yield only a

small radial flux because of the relatively small population of resonant electrons. Of course

this small population of electrons is important because it is very energetic and carries a
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large plasma current. For example, the confinement properties of resonant electrons can be

important in broadening the RF driven current profile [18] and reducing the current drive

efficiency [19]; this is in spite of the fact that the total radial particle flux remains relatively

small.

V Ray Tracing Calculation

We now discuss the ray-tracing calculation which determines the quasilinear diffusion coef-

ficients inside the plasma. Following Bonoli and Englade [13], the wave vector is expressed

as k = ke,. + (m/r)ee + (n/R)eo, where R = R, + r cos 0. Here r and 0 are ordinary polar

coordinates and 4 is the toroidal angle. The equilibrium magnetic field is given by a small

inverse aspect ratio expansion including the Shafranov shift, so that B = B,.e,.+Bees+B~e4.

Using these expressions for k and B, we find that

kl = [k,.B,. + (m/r)Be + (n/R)Bo]/B (31)

and

=k,.B,. mBaB.0 nB,,32
B,, rB, B RB

where B,2 = B2 + B,2. The wave vectors inside the plasma are determined by ray tracing

from some initial values at the plasma edge. The local dispersion relation is denoted as

D,(x, k, w) = 0, so that the ray equations are

. ODo/Ok,

= D./Om

= D./On= 8D/rOD./&

OD./w
OD,/00

-8D 0 /Ow

.8D./0w

* = _D./_ . (33)

To evolve the ray trajectories in time we use [13], where the dispersion relation includes

electromagnetic and warm plasma effects and is given in Appendix B. The equilibrium is
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axisymmetric so that n is conserved. The toroidal nature of the equilibrium makes D,(x, k, w)

dependent on 0, so that m is not conserved. The initial edge values for kl are chosen to

represent the spectrum which couples into the plasma from the waveguide array. The initial

edge values for m and 0 are taken to be zero, where as r is chosen near the edge of the

plasma towards the inside of the cut off layer. (Note, the edge value of k, is determined by
the dispersion relation.)

The quasilinear diffusion coefficients expressed in (3) are computed using the ray equa-
tions, where each ray is associated with some increment of the total RF power launched

into the plasma. We assume that this increment of power, P, propagates along the th ray
trajectory in a tube of cross-sectional area o. The total propagating energy density inside

the tube is W, = P,/(ov,), where v, is the group velocity (i.e. v, = 1x1 as given by the ray

equations). Assuming that the rays which penetrate to the interior of the plasma remain in

the slow wave polarization, W, and I @,2 are related by

W, = 4 4,JIJ2k2w K(x,k, w) (34)

where K(x, k, w) is the permitivity function associated with the dispersion relation, as given

in Appendix B. To simplify the notation, it is implied that quantities depending on k
and x are evaluated along the ath ray trajectory. The quasilinear diffusion coefficients are

expressible as the sum of individual contributions from each of the rays. For example, D.

in (3) is expressed as the the sum of incremental contributions AD,., where

2ire2  d~w FP-
AD. = dV- 1  - . (I)26(ukii - W) . (35)

J.M! V'a (wOK/Ow) k

Writing v, = dl/dt, where dl is the infinitesimal pathlength along the ray trajectory, the

integral over the volume dV is easily done by assuming that the power is constant inside the

cross sectional area o, outside of which it vanishes. Hence o cancels out of the calculation.

We now assume that the volume, dV, is finite and that the ray enters this volume at

t = t, and leaves at t = t, + At. It is easily seen that the contribution to D. is simply

27re 2  t.+At dtp2
AD u.= dV~1 f ( k ) 6(Uk - w) . (36)

Jt. e (wOK/Ow)(k (kI

The final expression for D. is obtained by summing over all the individual contributions,
AD., made by each ray on each transit through the volume dV. In a completely analagous
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way, the incremental contributions to D. and D, are

27re t +At dtP. (kvkii)6(UkJJAD =dV-1 ' ( ) _uk w)AD* -emBo t. (wOK/Ow) k2

27r t-+At dtP k2AD,,, - dV- 1  ' ()A(Ukii - w) (37)
e0B, t, (wOK/Ow)

The power associated with each ray, P, is damped as the ray propagates into the plasma.

In particular, P.,(t) is determined along each ray according to dP./dt = -2(f.+ yc) P,, where

y. is electron Landau damping and y, is collisional (non-resonant) damping. The collisional

damping is relatively weak, except in the cooler plasma near the edge. The electron Landau

damping is given by

i. = (Kw O (38)

where F(u, p) is determined by (13). To start the calculation, we assume that F in (38)

is Maxwellian. An ensemble of rays are launched at the edge of the plasma with specified

initial values of P,. The ray trajectories are calculated until each value of P, has damped

to approximately one percent of its initial value. During this time, D. is computed by

summing up the increments AD, given by equation (36). When the rays have damped,

F(u, p) is re-computed from (13), which changes the damping according to (38). The rays are

re-initialized and the procedure is iterated until consecutive calculations of D. are in good

agreement. Generally, convergence is obtained in the least number of iterations by starting

with relatively low input power, so that the first few iterates are not strong departures from

a Maxwellian. Gradually the power is brought up to its full value and several more iterations

are needed to obtain good results. An important self-consistency check is to calculate the

power dissipated according to the integral

P,f = 47r 2& pdp S, (p) , (39)

where Sf(p) is determined by (14). This should agree with the total power which is electron

Landau damped as calculated directly from following the evolution of P along each of the

rays. The total RF driven current, I,, is determined by integrating the current density

calculated directly from (15). Convergence is assumed when consecutive values of P,.1 and

If are in agreement; we used the criteria that on consecutive iterations, P,.1 and I, should

change by less than 10 percent, with no increasing or decreasing trends. In addition to D.,

we also calculate DP and D, by using (37). The radial convection velocity, V,, and diffusion

coefficient, D,, are then obtained from (26) and (30).
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The power spectrum which couples into the plasma from the waveguide array, can effec-

tively be represented by

(S. if n. < nl < nb
S(nj) Sb ifnb <nl <nc , (40)

0 otherwise

where nl = ckll/w. The total RF power injected is Pi = S.(n. - nb) + Sb(ne - nb). Consider

a ray launched at the edge with an initial power of P(0), at a parallel index of nl,,; we

take P,(0) = S(n 1.)(Ang),, where (Anil), is a small increment of nl associated with the

Sa ray, so that P;n = E, P,(0). A large portion of the total RF power is launched in a
relatively narrow spectral band between n. and nb, i.e. (nb - n.)S. > (n. - nb)S and

(nb - n.) < (nc - nb). Typically, n. is close to the critical value of nil for wave accessibility.

A "spectral gap" occurs when nb is too small for electron Landau damping to be effective,
i.e. nb < c/4ve. Rays launched in this part of the spectrum can make many passes through

the plasma during which time k1 is altered from its initial value due to large shifts in m.
When kll upshifts sufficiently, the rays will Landau damp, quasilinearly forming the electron

tail.

The distribution function, F(u, p), and the quasilinear diffusion coefficient, Du(u, p), are
represented numerically on a velocity space grid at each of 40 flux surfaces throughout the
plasma. The grid points in u are spaced by an amount Su, where Su = u26nil/c and Snj
is fixed. Because of the sensitivity of F(u, p) to the value of D,(u, p) at low velocities, to
obtain good results we had to make 6 u/v, < 10-2 at u ~ 4 v.. Because the corresponding

Sn1 is so small (typically less than 10-'), many rays had to be launched into the plasma in
order to prevent D. from having gaps between grid points. To obtain the results presented
in Sections VI and VII, we launched 100 rays between n. and nb and an additional 150
between nb and n,; each ray was followed numerically until P,(t) was damped to less than
one percent of its initial value.

VI Numerical Results - Alcator C

Let us consider the Alcator C experiment, which was previously simulated by Bonoli and
Englade [13]. The parameters are n., = 7.5 x l0l cm-3 , T. = 1.5 keV, T, = 0.7 keV,
a = 16.5 cm, R = 64 cm, = 170 kA, and B. = 10T. Here n.., T., and T;. are the peak
values of the electron density, electron temperature, and ion temperature, Ip is the toroidal

12



plasma current, and a is the minor radius of the plasma. The assumed profiles are described

in Appendix C. The RF frequency is 4.6 GHz (i.e. w/27r). The Brambilla power spectrum

is modeled by (40), where n. = 1.25, nb = 2.0, and nc = 7.0; S. and Sb are determined so

that 70 percent of Pi is launched between n. and nb. (Note, we have ignored any power

which couples into the plasma at negative nil.) For Pn = 440 kW, we found that the total

power resonantly absorbed by electrons was P, = 390 kW, with the remaining 50 kW being

damped non-resonantly through electron-ion collisions in the plasma periphery.

It is convenient to introduce the normalized diffusion coefficient,

D(up) - , (41)

where Du is determined by the method described in Section V. For the Alcator C parameters

given above, b(u, p) is shown in Figure 1(a) at a flux surface in the plasma core (p/a = .16).

The normalized diffusion coefficient is non-zero in the interval, ui < U < U2 , where ul ~ 4v.

and U2 ~ c/n.. From (13) it is easy to see that when b >> (U2 - Ui)v./u2, the electron

distribution will be nearly flat in the resonant region. The tail of the electron distribution

function is easily visualized by subtracting the bulk Maxwellian from the total distribution

function. We define

FT(u, p) = -F(u, p) - 1 , (42)
n.' 1 2exp(-s2 /2v2) (2

where F is given by (13). Figure 1(b) shows FT(u,p) as a function of u. We see that FT

rises rapidly to its maximum value near ui and then has a gentle negative slope until u

approaches i 2, at which point the distribution function is rapidly depleted. In this case, the

electron distribution is insensitive to the large fluctuations in the RF diffusion coefficient

throughout most of the resonant region, because b remains above a threshold value, which

is typically about 3 [3]. However, the height of FT is quite sensitive to the value of b

in the vicinity of ui, where the upshifts are important in determining the spectrum. The

effect of calculating D. with the self-consistent quasilinear damping, (38), is to enhance

D. for velocities near ui, resulting in a substantial increase in the height of FT. Close

to ui the self-consistent damping is decreased from that of the initial Maxwellian, because

the slope of the distribution function is decreased by the RF diffusion. At larger values

of u the Maxwellian damping rapidly decreases to zero, while the self-consistent damping

remains relatively constant throughout the resonant region. The later effect tends to makes

the non-self-consistent -D. too peaked at high velocities where the rays experience little

dissipation.
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The radial profiles of the absorbed RF power density and RF driven current density,
defined by (14) and (15), are shown in Figure 2. The integrated RF driven current for
the above case was I = 90 kA. As pointed out in the previous section, the current drive
efficiency is enhanced when the collisional vj dynamics of the resonant electrons is properly
included. By comparing the efficiency of our one-dimensional model to that obtained from
numerical solutions of the two-dimensional Fokker-Planck equation [3,17], we expect that the
current would be enhanced by a factor of 2 to 3. In fact, this is consistent with the results of
Bonoli and Englade [13], who report that for nearly the same absorbed power, I, increases
from 70 kA to 170 kA when the enhanced perpendicular energy of the resonant electrons is
taken into account. To represent a steady-state situation in which all of the plasma current
is driven by the RF, we want to inject enough power to make I, = I,,. However, because
of the reduced efficiency obtained with the one dimensional model, we only injected enough
power to bring I within a factor of 2 of the required plasma current, otherwise we would
be overestimating the required P,,.

Figure 3 shows V as a function of u at two flux surfaces in the plasma. We see that V is
large and positive (radially outward) for u near ui and it becomes negative for u near U2 . For
the upshifted part of the spectrum, the convection velocity will always be radially outward.
This can easily be seen by considering the relevant physics. The dynamics of the resonant
wave-particle interaction results in a correlation between the radial E x B drift, which is
proportional to k, and the parallel acceleration, which is proportional to k1i. Assuming that
m is upshifted, then an outward radial drift occurs when electrons are accelerated by the
waves to higher u. (Likewise, the radial drift is inward when electrons are slowed down
by the waves.) On average, the waves accelerate electrons to higher u and the momentum
gained from the waves is destroyed by collisions. Since the upshifted spectrum accumulates
at lower phase velocities, V, tends to be positive in this region. In addition to the upshifted

spectrum, there will also be a component of the spectrum with m's that have shifted in the
negative direction. In this case, when electrons are resonantly accelerated by the waves, the
radial convection is inward. Since this part of the spectrum tends to accumulate near the
accessibility limit, V, will become negative for u near Us2 .

Based on this physical picture, it is possible to derive a simple expression for V(u,p).
Since D. > D. for u1 < U < U2 , we find from (26) that

V ~ . .U (43)
Ve D'
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Thus the convection velocity depends on the details of the wave spectrum through the ratio

D/D.,A, which is independent of the overall amplitude of the fields. We define the following

average:

(A) f da, Za 11.12 5(ukl - w)A(k, x)
A)= r daz E. 1.,I 26(uki - w) '

which is a weighted average of all the resonant contributions to A(k,x) on a given flux

surface (A is arbitrary). Using this average and the definitions of D,, and D. in (3), we

may rewrite (43) as

V = 2, (45)

where w,. = eB,/m.. From (31) and (32) it follows that k1 a (n + m/q)/R, and k, ~ m/r,
where we are assuming that the dominant contribution to k, occurs when m is large (i.e.

Iml can be of order n). Here we ignore terms of order r/R., so that there is no distinction

made between p and r. Since n is conserved and the initial edge value of m is taken to be

zero, one finds that k11, ; n/R, and m - (kI1 - kl.)Rq, where k1l. is the initial edge value of

kii. Thus one obtains the expression

k (kil - k1.) . (46)

Substituting (46) into (45), we find that

V = (2 + Z;) *v.Rq (1,)21 _ !(n\] ,(47),o= 2 Z)w,,r U c

where we have used the identity (nII) = c/u. According to (44), (nII.) is a function of u and

p, whose precise calculation depends on the details of the ray trajectory. However, because

the power spectrum of the source, S(n1 ), is narrow compared to the spectrum which is found

inside the plasma from the ray tracing, we may take (nI10) to be a constant. The prediction

of (47) is shown in Figure 3 as a dotted line, where have taken (nII.) - nb = 2.0. Thus, we

see that the 4, spectrum inside the plasma develops an asymmetry due to upshifts in the m

values of the rays. This asymmetry contributes to V, which can be estimated reasonably

well by treating (nII.) as a constant in (47).

The average defined in (44) may be used to obtain an expression relating D, to D..

Since D. > Dc it follows from (30) that

D, ; D,, - D2/ . (48)
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Using the definitions of D., D,, and D, we may rewrite (48) as

D, = D.( " )P((k) ) (49)

Thus D, depends on the spectral width, ((k2) - (k,) 2). Figure 4(a) shows D,(u,p) at a flux

surface in the core of the plasma and Figure 4(b) shows D,, at the same flux surface. We

see that D, is significantly smaller than D,,. This is because there is a large asymmetry in

(k,). Under such circumstances, it is important to include the effect of D, in determining

the overall radial diffusion.

Because D. is so large, electrons are diffused rapidly between ul and U2. It is therefore

appropriate to consider the following velocity averages of V and D,,:

V,(p) = Nj1  duV,(u,P)FT(u,p) (50)

D,(p) = Nl JduD,(u, p)F(u, p) (51)

where NT(p) = f duFr(u, p). The quantities V,(p) and D,(p) are shown in Figures 5(a) and

5(b). We see that IV,(p) is positive over a broad region of the plasma. The radial diffusion

coefficient, D,(p), has a relatively narrow profile which is sharply peaked near the center.

VII Numerical Results - JT60

The parameters for the JT60 current drive experiments are [10]: n., = 3.0 x 1013 cm-',
T.. = 3.0 keV, T. = 3.0 keV, a = 70 cm, R, = 310 cm, I, = 1.5 MA, and B. = 4.5T. The

RF frequency is 2 GHz. The power spectrum of the multi-junction waveguide array is very

narrow and is modeled by (40), where n. = 1.25, nb = 1.75, and n. = 4.75; S. and Sb are

determined so that 80 percent of Pin is launched between n. and nb. For P. = 4.6 MW,

the total power resonantly absorbed by electrons was P,.1 = 4.2 MW, the remainder being

absorbed non-resonantly through collisions.

The normalized diffusion coefficient, b, defined in (41), is shown in Figure 6(a) at a flux

surface in the core of the plasma (p/a = .16). As expected, b, is non-zero in the interval

ul < u < U2, where u1 ~ 4v, and u2  c/n.. The corresponding distribution function,

FT, defined in (42), is shown Figure 6(b). Comparing Figure 6 with Figure 1, we see that

throughout most of the resonant region, b is significantly larger for JT60 than for Alcator

C, but the height of FT is nearly the same in both cases. This is because FT is not sensitive
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to the value of b, except in a narrow region near ul. (Because b is so large, one might

be concerned about trapping effects [20]. However, a brief calculation shows that for JT60

parameters r,,/T,. ~ 10-2 [21].) Figure 7 shows the radial profiles of S,.1 and J,.f; the

integrated RF driven current is I = 730 kA, which is a factor of 2 smaller than Ip.

The radial convection velocity, V,(u, p), is shown in Figure 8 at two flux surfaces in the

plasma. The prediction of (47) is shown as a dotted line, where we have taken (nil.) ~ n, =

1.75. Comparing this to the Alcator results shown in Figure (3), it is seen that the JT60
results are predicted more closely by (47) at the low end of the phase velocity spectrum.

We think that this is because the source spectrum S(nl1) is narrower, so that taking (nil.) to

be a constant is a better approximation. The radial diffusion coefficient, D,(up), is shown

in Figure 9(a) at fixed p. For comparison, Figure 9(b) shows the Fokker-Planck coefficient

D,,(u, p). Again we see that there is a significant reduction in the radial diffusion due

to the off-diagonal Fokker-Planck coefficients. Figure 10 shows the profiles of the average

convection velocity and the average radial diffusion coefficient, defined by (50) and (51).

The average convection velocity is positive throughout the core of the plasma, with a broad

maximum at p/a ~ 0.1. The diffusion coefficient is highly peaked near the magnetic axis.

This is because the poloidal component of the wavefield becomes large as the rays approach

the central portion of the plasma. However, rays with finite m never actually pass through

the magnetic axis, because this is disallowed by the ray equations (33), thus D, vanishes on

axis.

We may obtain further understanding of the RF induced radial diffusion by examining

the relationship between D, and D.. Substituting (46) into (49), we find

D, =D.(:!2 )I [a(Up)U_2 ,(52)
rWce c

where

,(u, p) = [(n,) - (n11.)2]/2 . (53)

Because the source spectrum is relatively narrow compared to the spectrum in the plasma,

we may try approximating a as a constant determined by the width of S(nil). Of course,

one must know D. in order for (52) to be useful. Using the results of the above JT60

simulation, we calculate D, from (52), assuming that a ~ .3(n6 - n.) = .15. The result

is shown in Figure 11(a), which should be compared to D, obtained directly from the ray

tracing, as shown in Figure 11(b). We see that with a taken as a constant, the prediction

of (52) only gives good agreement at the high end of the phase velocity spectrum. Using
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this approximation for Alcator C yields worse results than for JT60; we believe this is due

to Alcator's broader source spectrum.

We would like to comment on two aspects of the calculation. First, the power spectrum

of the source, S(nj), includes a low intensity, high nl tail between n6 and n,. The presence

of this part of the spectrum is important in filling the spectral gap at intermediate radial

positions, where the plasma is cooler and the electron damping is weaker. Figure 12 shows

b(u,p) and FT(up) at p/a = 0.49. We see that although D is relatively small for u/v.

between 4 and 5.5, it is nonetheless effective in elevating a substantial value of FT. When

the high ng part of the source is not included, then D is too small at low phase velocities

and FT drops by orders of magnitude. The result is that the power deposition, S,.(p),
becomes more concentrated near the center, where the local current drive efficiency is lower

(the efficiency is inversely proportional to the density) and the total RF driven current is

substantially reduced.

We would also like to comment on the role of self-consistency in determing the Fokker-

Planck elements. We have already discussed how the self-consistent spectrum tends to be

enhanced at lower phase velocities in comparison to that obtained with a fixed Maxwellian

electron population. This result, however, has little effect on the convection velocity, since

(47) holds whether the fields are self-consistent or not. The radial diffusion coefficient, as

expressed in (49), is proportional to D. and will be affected by the details of spectrum

inside the plasma. To make a direct comparison of the results, we examined the above

JT60 case by doing the ray tracing part of the calculation on a fixed Maxwellian plasma, i.e.

without iterating to obtain the self-consistent damping. Using the D. from this calculation,
we then calculated F(u, p) according to (13). The total RF driven current obtained from

this distribution function was four times smaller than that obtained in the self-consistent

calculation. The average convection velocity, V,(p), changed very little. The profile of D,(p),
was somewhat broader in the non-self-consistent case, with the peak being reduced by less

than a factor of 2.

VIII Conclusions and Discussion

We have extended the quasilinear-Fokker-Planck formulation of LHCD to include the wave

induced radial transport of fast electrons, as given by (2). The dominant transport mecha-
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nism is the Eq, x B drift that arises when the waves in the plasma have a significant poloidal

component. The radial flux of resonant electrons is determined by the convection velocity

V, defined in (26), and the diffusion coefficient D,, defined in (30). The convection velocity

depends on (k), as given in (45), where the averaging procedure is defined in (44) and re-

quires knowledge of the fields inside the plasma. Similarly, D, depends on ((k,) - (k,) 2 ), as

given in (49). It is interesting to note that while D, is proportional to <IVP, Vtends to be

independent of the amplitude of the fields. The radial convection depends on the amount

of momentum absorbed from the waves and the ratio of k,/k 1 at resonance; since the mo-

mentum absorbed from the waves is balanced by the momentum destroyed in collisions with

the bulk plasma, the radial convection is proportional to Dc and independent of the wave

amplitude. There is generally a large asymmetry in (k,), because toroidal effects on the wave

propagation tend to fill in the spectral gap. This leads to a net outward radial convection,
which can be well understood on the basis of (47). Toroidal wave propagation tends to

significantly broaden the poloidal spectrum, leading to an enhancement in D,, the scaling

of which is easily seen in (52). These results, together with the results of our numerical

simulations, given in Figures 5 and 10, are entirely new.

It is evident from our numerical results for Alcator C and JT60, that the wave induced

radial convection velocity is outward, on average. This stands in direct contradiction with

the inward pinch effect of Uehara [5]. Uehara assumes that the wave vector of the RF field

inside the plasma maintains the relation k = ke#4 + k e,.. Making this assumption, it follows

that kl - k6 and k, ~ -k#Bo/B. Substituting these relations into (45), one finds that

V ; -uDcBe/(v2wmB), which indeed corresponds to an inward flux of resonant electrons.

This inward pinch cannot occur in LHCD, because as the waves propagate into the plasma

toroidal effects drastically alter the direction of k, so that it is not valid to ignore the poloidal

component of the fields. (Evidently Uehara also ignores the self-consistent flattening of the

electron distribution function across the resonant region, which occurs because D. > Dc.

This effect substantially reduces V,, so that it tends to be independent of the amplitude of

the RF field.)

We now turn to a discussion of the physical results of our calculations. It is important

to compare the RF induced radial diffusion and convection, with the effects of anomalous

electron confinement. The anomalous confinement time of fast electrons is often assumed

to have the form n = -r.7P, where Tr is the empirical confinement time of the bulk electrons

and -y = (1 - v 2/c 2)-'/ 2 . The factor -f" appears as an enhancement of the confinement time
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at high energies [22], which is in agreement with observations of runaway electrons. For

Alcator C, -r. 5 msec and p ~ 3, so that a typical resonant electron has 71 f< 10 msec

[13]. This confinement time corresponds to an anomalous radial diffusion process of roughly

1m 2/sec. Hence, for Alcator C the wave induced radial diffusion, shown in Figure 5(b), is

clearly dominated by anomalous diffusion and can thus have little effect on the dynamics

of the fast electrons. On the other hand, the wave induced radial diffusion calculated for

JT60, shown in Figure 10(b), is competitive with anomalous diffusion in a narrow radial

shell near the magnetic axis. Because the radial extent of D, is so narrow, we must conclude

that anomalous diffusion is also the dominating effect on JT60. A crude way of judging the

importance of the wave induced radial convection velocity is to compare it to anomalous

diffusion acting over a gradient length scale of the order of the minor radius, i.e. radial

convection is important when V, ~ DA/a, where DA is the anomalous diffusion coefficient.

For both Alcator C and JT60 the radial profile of V, is positive across most of the plasma

and has a broad maximum of nearly 1 m/sec. Assuming DA - 1m 2/sec, we see that the

convection velocity on JT60 may be of consequence, where as on Alcator C it is more

clearly dominated by anomalous diffusion. We note that studies done on Versator II, using

an innovative cyclotron diagnostic, concluded no noticeable difference in the fast electron

confinement time for LHCD when compared to inductive current drive [23]. Because of the

short electron confinement time on Versator II, this result does not contradict our calculations

of the expected wave induced diffusion and convection.

We would like to briefly comment on the validity of the ray-tracing calculation, which

determines the spectrum inside the plasma. Inspection of the ray trajectories reveals that

as the rays reflect near the center of the plasma, the variation of k,. becomes rapid, and

the validity of geometric optics becomes questionable. Because the rays make many transits

through the plasma, it may be more appropriate to consider a normal mode description of

the RF fields [24,25]. It is likely that such considerations would lead to a modification of

our results in a narrow region near the magnetic axis. This would be most important for the

radial diffusion, since it is so highly peaked near the center.

Finally, we would like to comment on several aspects of the calculation that should be

improved for future studies. The main deficiency of the calculation, is that we solve for

F(u, p) without self-consistently including the radial fluxes. In particular, we solve for the

steady-state of (12), as opposed to (9). A steady state solution of (9) could be obtained by

replacing the time derivative of F with a low energy electron source in the central portion
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of the plasma, intended to compensate for the loss of fast electrons at the edge. One then

solves (9) as an elliptic equation with the appropriate boundary conditions on the distribution

function; numerical techniques based on this approach have been used successfully to solve

for the radially local, electron distribution function in two-dimensional velocity space [26].

Using this approach, one could study the effect of anomalous radial diffusion, by simply

adding DA to D, in (9). A remaining problem, regards the self-consistent v_ dynamics,
which leads to a well known enhancement of the perpendicular energy of resonant electrons.

Without this effect, our current drive efficiency is too small by a factor of 2 to 3. Since it

is computationally too expensive to solve for the three dimensional distribution function,

f(U)v 1 ,p), and self-consistently determine the Fokker-Planck elements from a ray-tracing

calculation, a remaining problem is to find a way of reducing this to a two-dimensional

model, while still retaining the effects of the fully consistent three-dimensional dynamics.
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Appendices

A Quasilinear Theory

To derive the quasilinear operator for LHCD, including radial diffusion, we proceed from the

drift kinetic equation, using the guiding center theory of Littlejohn [27]. Our approach is

quite similar to that used by Chiu [28]. The guiding center equations of motion for electrons

are
B* b ,

B= + (V 4, - M VB) , (54)

il (55

where B* = B-(mu/e)V x b and B = b.B*. (Note, that we use e to denote the magnitude

of charge on an electron, i.e. it is positive.) Here M is the magnetic moment of an electron,
and is an adiabatic invariant (to lowest order in the guiding center expansion M = vl/2B).
Also we have evaluated t,.f at the guiding center, so that kivI/wm. is assumed to be small.

The drift kinetic equation for the gyro-averaged electron distribution function is

a a
[i + -V +i ]f(x'UM,) = 0 .(56)

We now write

i = ,+ i, (57)

where k1 is the term in (54) which is proportional to D, and i, is defined in an analogous

manner. Similarly, we write f = f. + fi, so that the linearized drift kinetic equation is

d (
(58)

where
d 8 8

)= [+(59)

The quasilinear equation for f. is
d )

(i).= -(B,*)1'[V.- (Bl*klf 1 ) + j;(Bisi! 1f)] ,(60)
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where the angular brackets denote a coarse-graining in space at the scale of the RF wave-

length, as well as a time average over the fast oscillation at the RF frequency. In deriving

(60), we have used the identity

a
V -(Blic) + ;(Bji) = 0 ,(61)

which follows directly from (54) and (55).

With the wave fields expressed in eikonal form, as given by (5), the linear solution is

obtained by writing fi in a similar fashion,

fA = 1Ef,(x,u,M)expi ( cx -k,(x') - wt) + c.c. . (62)

Ignoring the slow variations in (58) one obtains the solution

f, = -(k, -, - W)-ILf , (63)

where L, is the operator

L, = (B*)-1[-e-B* -ka +bxk,-V] (64)

Using (63), one obtains

(BXilfj) =- b xkI',|6(k,-k- w)Lfo (65)

(Bj-jifi) = -B - -k,1,.1 2 6(k, -c - w)Laf. , (66)
2 ,am

as needed for the right side of (60).

The next step in the derivation of the quasilinear operator used in the text, is to recognize

that (60) contains several time scales. We will ignore all terms involving the equilibrium

perpendicular guiding center drifts, since these are only needed to obtain the neoclassical

transport effects. Thus we take B* = B and *, = ub, everywhere in (60). The operator on

the left side of (60), is (d/dt)_ = (a + ub - V), where we have ignored the small oscillations

in u caused by the parallel magnetic gradient acting on well circulating electrons. Using the

identity

dV-1f dI z V -A = (--)~-[- dV 4 J d (A - Vp)] , (67)1" ~dp pp
we multiply (60) by B and flux surface average. This annihilates the term ub - Vf., as well

as several terms on the right side of (60). We write f. = 1. + 6f., where f0 is the flux surface
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average of f. and 6f, is small because the parallel streaming smooths out any variations in

the flux surface. Finally, we obtain

8 - 18 -
0t o[p a + VJP Dp. 0f

f, ~F = [D11D f

8 8 8-
+ [D. L + Dp ,9 ]1. (68)

where J = BdV/dp and the quasilinear diffusion coefficients are defined in (3). Note, the

volume element in the reduced phase space is 27rjdudMdp. In the text we have dropped

the bar and subscript on the average distribution function.

B The Dispersion Relation

The local dispersion relation for lower-hybrid waves includes electromagnetic and warm

plasma effects [13]. The ions are taken to be unmagnetized and the electrons are treated as
strongly magnetized, in the limit (khp.)2 < 1. The local dispersion relation is

D,(x, k, w) = P4n's + P4n4 + PanI + P0  (69)

where

P. = ell[(n -L)2 _
P2 =2P2 = (e-1+eil)(nl -_L) + C.

P 4 = CL

( 2  3w;2 w2 V2

A = - 3 + . (70)
W2 C2 4 w.2.w,2.c2)(0

We are using the notation n1 = ckh/w, nii = ckhi/w, k1 = 1k - kijB/B, and ki = k- B/B.

Also ej, ell, and e% are the elements of the cold plasma dielectric tensor, where B = Be.

They are given by

e.L = 1+ ( ")2 _ ("Pi)

ell = 1 - (Pi)2 _ ("'P)2
w w

W2

- = (71)

All plasma parameters are slowly varying functions of x. The normalized effective permitivity

function is

K(x,k,w) = D.(x,k,w)/(nI +n2) 2 (72)
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C The Profiles

In the Bonoli-Englade code [131, the plasma profiles are assumed to be of the following form:

xp()- exp(4ap2 /a2 )
n,(p) = (n, - n,.) - 1 + nea

exp((n) - 1

T. a)exp(-eP2/a) - exp(-)+ TeT,( p) = (T.0 - 1- )x+(T.)
1 - exp(- ,)

T;(p) = (Ti. - Tia)exp( tip/a) - exp(- i) + Ti. (73)
1 - exp(- i)

where a is the radius of the limiter, and p is the radius of any given flux surface inside the

plasma. Beyond the limiter, an ideally conducting chamber surrounds the plasma at p = b.

The profiles are assumed to fall off linearly for a < p < b, where T,(b) and T1(b) are taken

to be about 15 percent of their respective values at p = a. The q profile is assumed to be

q(p) = 1 + 6(p/a) , (74)

where 6 is determined by requiring q(a) = 2ira2B,/(RpI,), since the current density

vanishes for p > a. Here B. is the magnetic field on axis, R, is the major radius, and I,

is the total plasma current. The Shafranov inverse aspect ratio expansion is used to obtain

B(r,9) and p(r,O) [16]; explicit forms are given by Bonoli and Englade [13].

The profile factors for Alcator C were taken after Bonoli to be , = 3.99, 4; = 3.29, n =

-0.92, Ta = Tia = 0.03 keV, and na = 1.1 x 1013 cm- 3 . For JT60, we chose , = i = 3.0,

= 1.2, Ta = Tia = 0.06 keV, and nea = 5.0 x 1012 cm- 3. In both cases, (b - a)/a was

taken to be 8 percent.
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Figure Captions

Figure 1: Model results for Alcator C; (a) normalized diffusion coefficient and (b) electron

tail distribution function on a given flux surface, p/a = .16.

Figure 2: Model results for Alcator C; radial profiles of (a) absorbed power density, S,.1
(W/cm3 ) and (b) RF driven current density, Jq (kA/cm2 ).

Figure 3: Model results for Alcator C; radial convection velocity V,(m/sec) as a function

of u/v. at two flux surfaces in the plasma (a) p/a = .16 and (b) p/a = .32. The dotted

curve shows the prediction of (47) with (nil,) = 2.0.

Figure 4: Model results for Alcator C; (a) radial diffusion coefficient, D, (m2/sec) and (b)

diagonal Fokker-Planck element, D,, (m2/sec), as functions of u/ve at a given flux

surface, p/a = .16.

Figure 5: Model results for Alcator C; radial profiles of (a) average radial convection ve-

locity, , (m/sec) and (b) average radial diffusion coefficient, D,, (m2/sec).

Figure 6: Model results for JT60; (a) normalized diffusion coefficient and (b) electron tail

distribution function on a given flux surface, p/a = .16.

Figure 7: Model results for JT60; radial profiles of (a) absorbed power density, S,.f (W/cm)

and (b) RF driven current density, Jq (kA/cm2).

Figure 8: Model results for JT60; radial convection velocity V, (m/sec) as a function of

u/v. at two flux surfaces in the plasma (a) p/a = .16 and (b) p/a = .32. The dotted

curve shows the prediction of (47) with (nil0 ) = 1.75.

Figure 9: Model results for JT60; (a) radial diffusion coefficient, D, (m2/sec) and (b)

diagonal Fokker-Planck element, D, (m2/sec), as functions of u/v. at a given flux

surface, p/a = .16.

Figure 10: Model results for JT60; radial profiles of (a) average radial convection velocity,

V, (m/sec) and (b) average radial diffusion coefficient, D, (m0/sec).

Figure 11: (a) Approximation to D, (m2/sec) determined from (52) with a = .15 and D.

from the JT60 model results. (b) D, (m2 /sec) obtained directly from the model results,

same as Figure 9(a).
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Figure 12: Model results for JT60; (a) normalized diffusion coefficient and (b) electron tail

distribution function at a flux surface further from the center, p/a = .49.
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Figure 1: Model results for Alcator C; (a) normalized diffusion coefficient and (b) electron
tail distribution function on a given flux surface, p/a = .16.
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Figure 2: Model results for Alcator C; radial profiles of (a) absorbed power density, S,.
(W/cmO) and (b) RF driven current density, J,.f (kA/cm2 ).
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Figure 3: Model results for Alcator C; radial convection velocity V, (m/sec) as a function of
u/v. at two flux surfaces in the plasma (a) p/a = .16 and (b) p/a = .32. The dotted curve
shows the prediction of (47) with (n110) = 2.0.
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Figure 4: Model results for Alcator C; (a) radial diffusion coefficient, D, (m2 /sec) and (b)
diagonal Fokker-Planck element, D, (m2/sec), as functions of u/v. at a given flux surface,
p/a = .16.
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Figure 5: Model results for Alcator C; radial profiles of (a) average radial convection velocity,
R, (m/sec) and (b) average radial diffusion coefficient, D, (m2/sec).
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Figure 6: Model results for JT60; (a) normalized diffusion coefficient and (b) electron tail
distribution function on a given flux surface, p/a = .16.
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Figure 7: Model results for JT60; radial profiles of (a) absorbed power density, S,. (W/cm3 )
and (b) RF driven current density, J,.f (kA/cm2 ).
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Figure 9: Model results for JT60; (a) radial diffusion coefficient, D, (m2/sec) and (b) diagonal
Fokker-Planck element, D,, (m2 /sec), as functions of u/v at a given flux surface, p/a = .16.
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Figure 10: Model results for JT60; radial profiles of (a) average radial convection velocity,
V, (m/sec) and (b) average radial diffusion coefficient, D, (m2/sec).
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Figure 11: (a) Approximation to D, (m 2 /sec) determined from (52) with a = .15 and Duu
from the JT60 model results. (b) D, (m 2/sec) obtained directly from the model results,
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Figure 12: Model results for JT60; (a) normalized diffusion coefficient and (b) electron tail
distribution function at a flux surface further from the center, p/a = .49.
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