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ABSTRACT

A class of exact large-amplitude traveling-wave solutions to the nonlinear Vlasov-

Maxwell equations describing a one-dimensional collisionless magnetized plasma is ob-

tained. These waves are complementary to the electrostatic Bernstein-Greene-Kruskal

(BGK) modes and can be classified as nonlinear fast electromagnetic waves and (slow)

electromagnetic whistler waves. The wave characteristics are discussed for the case of a

trapped-particle distribution function.
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The formation and evolution of large-amplitude coherent structures play an im-

portant role in describing the nonlinear dynamics of plasmas [1],[2]. Since 1957, it has

been well-known that collisionless plasmas can support nonlinear traveling electrostatic

waves, i.e., the Bernstein-Greene-Kruskal (BGK) modes [3]. Bell [4] and independently

Lutomirski and Sudan [5] have shown that collisionless magnetoplasmas described by the

Vlasov-Maxwell equations can also support nonlinear traveling electromagnetic whistler

waves, i.e., large-amplitude slow electromagnetic waves propagating parallel to the mag-

netic field. The formalism of the previous authors [4]-[7] utilizes the Lorentz wave frame

so that only the slow (whistler) wave solutions with phase velocity less than the speed of

light are obtained.

In this Letter, we present a class of exact large-amplitude traveling-wave solutions

to the fully nonlinear Vlasov-Maxwell equations describing a one-dimensional collisionless

plasma in an externally applied magnetic field, Boe (with Bo = const). By applying a

canonical transformation rather than a Lorentz transformation, we develop a formalism

that can be used to analyze in a unified framework both fast electromagnetic waves and

(slow) electromagnetic whistler waves propagating parallel to the magnetic field. We

show that these waves are (transverse) electromagnetic and are complementary to the

(longitudinal) electrostatic BGK modes. The results of this paper provide a basis for

studies of the (nonlinear) interaction of an intense coherent electromagnetic wave with a

magnetoplasma or a relativistic electron beam gyrating in a guide magnetic field. With

regard to the interaction of an electromagnetic wave with an electron beam, these stud-

ies include mode competition [8],[9] and the nonlinear evolution of absolutely unstable

modes [10] in coherent radiation sources powered by gyrating electron beams, such as the

cyclotron autoresonance maser [11], and the stability properties of a spatially and tem-

porally modulated, gyrating electron beam [12] generated from the cyclotron resonance

accelerator [13],[14].
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We seek exact transverse traveling-wave solutions to the fully nonlinear Vlasov-

Maxwell equations

off+-_. af1+ V
+ - - e + x(Bo + )#=. , (1)&L8Zc z i

and

a2 1 a2 4re 3 f t
5;1 c2 ji T2 , t) = - Idp ifz ) , (2)

with X(X,t) = (mc2/e)a[i, cos(kz - wt) - e'V sin(kz - wt)], E(z, t) = -(1/c)a/Ot, and

B(z, t) = V x A. In Eqs. (1) and (2), f(', 't) is the electron phase-space distribution

function, a = const is the normalized wave amplitude and can be arbitrarily large in

size, p = ymi and y = (1 - v2/c2)1/2 are the electron mechanical momentum and

relativistic mass factor, respectively, m and -e are the electron rest mass and charge,

'respectively, and c is the speed of light in vacuum. The assumptions in our present

formalism are: (1) the ions are at rest, (2) time-independent space-charge and current

effects are negligibly small, and (3) there is no electrostatic wave in the problem. The

first and second assumptions may be removed in a more general formalism, while the

third assumption is consistent with our choice of the distribution function [see Eq. (6)].

To solve the nonlinear Vlasov equation (1), we first find the constants of the motion

of an individual electron in the self-consistent electric and magnetic fields E and Bo,+A.

The motion of an individual electron can be determined from the Hamiltonian

H(X, P, t)= {[cP + e(X+ Ao)]2 + m2c4}1/2 , (3)

where Ao = Box4y, Boe = V x AO, and the canonical momentum P is related to the

mechanical momentum ' by P= y- (e/c)(A + Zo). It is convenient to perform a time-
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dependent canonical transformation from the Cartesian canonical variables, (X, P), to the

generalized guiding-center variables (including the wave), (0, Y, z', PO, Py, P.,) [13],[15].

The Hamiltonian in the new variables is a constant of motion defined by

1 wP%
--2H'(0, PO, P., = const) = - -

mc m

2IP+ 2P4 1/2 s + , , kP\ 2  11/2 WPO= m + 2a(ns+ -+ +a 2 +1 , +ca (4)MC2 MC2 Mc Mc C_2

where fl = eBo/mc is the nonrelativistic cyclotron frequency associated with the applied

guide magnetic field Boe,.

It follows from Eq. (4) that the single-particle constants of motion are: Y, Py, P,,

and H'. It has been shown [13] that change in P4 is proportional to (negative) change in

the number of wave photons, and that the constancy of H' (or P,,) corresponds to the

conservation of the total energy (or the axial momentum) of the electron plus photon

system. Moreover, from the definition of the canonical transformation [15], it follows that

the canonical conjugate pair (Y, Py) describe the generalized transverse guiding-center

position of the electron.

From Liouville's theorem, an arbitrary function of the form f(s, ', t) = f(Y, Py, P.,,

H') solves the nonlinear Vlasov equation (1). However, a class of distribution functions

that are consistent with our one-dimensional model must be independent of the transverse

guiding-center position (-Py /mfl, Y). Therefore, solutions to Eq. (1) are

f(', t) = f(P,,, H') .(5)

Because d3p = dpdpydp, = m11ddPdP.,, the electron and current densities can be

expressed as

4



n(i,t ) = J(ml)d~dIjdP.,f(P,,, H'(0, PO, P.,)) = const , (6)

and

AX, t) = -e J(m)d4dPedP,,3r(O, P.0, P,, z - Vpht)f(P.,, H'(4, PO, P.,)) , (7)

respectively. Here, Vp = w/k is the wave phase velocity and v, = (P., + kPO)/my(o, P,

P.,) is independent of z and t. From Eqs. (6) and (7), we conclude that the transverse

electron current density Ji exhibits the traveling-wave dependence z - Vpht, while the

electron charge density n and the electron axial current density J, are constant and

uniform. The constant charge density assures the validity of the earlier assumption that

there is no electrostatic wave in the problem. Substituting Eq. (7) into the wave equation

,(2) yields

2 2k2 = 4ire2f (2P) 1/2 fW d4_dP.dP,, a+ i 2  cos 4 - , (8)

which determines formally the self-consistent relationship among the wave quantities k,

w, and a for an arbitrary distribution function of the form f(P,,, H'). Note that the

Hamiltonian H' in Eq. (4) is itself a function of w, k and a. In principle, the integral

equation (8) is readily solved with numerical methods.

The remainder of this paper examines the wave characteristics and the structure of

the single-particle phase space for a trapped-particle distribution function that is ana-

lytically tractable. In this case, all of the electrons assume the same stable steady-state

orbit, denoted by 4 = Oo and PO = Po. Solving the steady-state Hamilton equations of

motion, d4/dt = 0 = dP4/dt, for given P,, = P,,o, we find that
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w - ckpo - - = a (9)-to 7y(70ogo - a)

where cos Oo = ±1, -yo = 7(0, Po, P.'o) is the electron relativistic mass factor, p.o =

yom#,.oc = P.'o + kPeo is the electron axial (mechanical) momentum, and A - A/1A =

-yomfl.oc = amc + (2mfnP0o) 1/2 cos 0o is the electron transverse (mechanical) momentum

projected onto the vector potential A= -B/k. Factoring [a+ (2flPoo/mc2)1/2 cos 40]/-t

out of the integral in Eq. (8) and then making use of Eq. (6), we can express the wave

equation (8) as

W2 _ c2 k2 = p a (10)

where w, = (41re2n/m)1/2 = const is the nonrelativistic electron plasma frequency. Elim-

.inating the wave amplitude a from Eqs. (9) and (10), we obtain the equilibrium condition

between w and k,

)Ck2 . (11)
70 7 (Wt _0

It should be emphasized that Eq. (11) is valid for arbitrary phase velocities, includ-

ing the large-amplitude (slow) electromagnetic whistler wave (with Iw/cki < 1) studied

by previous authors [4]-[7] as well as large-amplitude fast electromagnetic waves (with

Iw/ckl > 1) which have not been reported in the literature and will be described be-

low (see Figs. 1 and 2). Furthermore, equation (11) is a nonlinear "dispersion relation"

in the sense that it describes large-amplitude electromagnetic waves whose amplitudes

are determined uniquely by Eq. (9) or (10), whereas a linear dispersion relation derived

from perturbation theory describes waves with arbitrary (small) amplitudes. Finally, it

is easily shown that Eq. (11) has three real w roots for any real value of k.
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Figure 1 shows the frequency w as a function of the wave number k, as obtained

from Eq. (11). The choice of system parameters corresponds to -yo = 2.0, 0,0 = 0.8, and

s, = 2(1- #'o)7owf/02 = 0.36. In Fig. 1, there is a fast electromagnetic wave branch with

Iw/ckl > 1 and w > 0, a (slow) electromagnetic whistler wave branch with Iw/ckj < 1,

and a fast electromagnetic wave branch with Iw/ck > 1 and w < 0. Both (nonlinear) fast

wave branches are new results, while the (slow) whistler wave branch has been obtained

by previous authors [4]-[6].

The (normalized) self-consistent wave amplitude, a, is calculated from Eq. (10).

The results are plotted in Fig. 2 for all branches shown in Fig. 1. For this choice of

system parameters, the normalized wave amplitude for the fast wave branch with w > 0

is in the range from 0.2 to 0.7, while the amplitude for the fast wave branch with w < 0

exceeds unity for small Iki. The amplitude for the whistler branch becomes very large as

Iki approaches zero.

Finally, it is instructive to examine the structure of the single-particle phase space

described by the Hamiltonian H'(4, PO, P,). For given nonrelativistic cyclotron frequency

11 and self-consistent wave parameters w, k, and a, the phase space can be parameterized

by the two constants of motion, P,, and H'. The constant-H' phase plane (0, Pi) is

plotted in Fig. 3 for the fast wave branch with w > 0 shown in Fig. 1. The parameters

used in Fig. 3 are: ck/f = 3.0, w/ = 3.1, and a = 0.2. In Fig. 3, each curve corresponds

to a contour with a constant P, and a fixed value of H' = H'(0, PO, P,,o) = 1.62,

but the value of P,, varies from one contour to another. Here, the orbit o = 0 and

SlPoo/mcO = 0.11 is a stable steady-state orbit. The bounce frequency, wB, for orbits

oscillating about the steady-state orbit (4O, Po) is found to be

W2 = + -2 .o(7yoRao - a) . (12)
-t(oflo - a)2y
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The value of the bounce frequency for the steady-state orbit shown in Fig. 3 is WE =

0.25 fl. (For all parameter regimes investigated, the bounce frequency is real.)

Numerical studies of the large-amplitude traveling waves and their stability are

in progress using a time-averaged multiparticle model of the nonlinear interaction of a

gyrating electron beam with an electromagnetic wave [16]. The results will be reported

in a future publication.

To summarize, we have obtained a class of exact large-amplitude traveling-wave

solutions to the nonlinear Vlasov-Maxwell equations describing a one-dimensional colli-

sionless magnetized plasma. These solutions describe nonlinear (transverse) electromag-

netic waves which are complementary to the nonlinear (longitudinal) electrostatic BGK

modes. We believe that the formalism presented this paper can be applied to a variety of

important problems concerning the interaction of an intense electromagnetic wave with

a magnetized plasma or a relativistic electron beam propagating in a uniform magnetic

field.
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FIGURE CAPTIONS

Fig. 1 Frequency as a function of the wave number obtained from the equilibrium

condition (11) for -yo = 2.0, ,o = 0.8 and w,/gV = 0.45.

Fig. 2 Normalized self-consistent wave amplitude as a function of k for all branches

shown in Fig. 1.

Fig. 3 Constant-H' phase plane (i, PO) for the fast wave branch with w > 0 shown

in Fig. 1. The value ck/l = 3.0 is used.
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