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ABSTRACT

A series expansion method in three dimensional tomography is presented. While the function

to be reconstructed is expanded in terms of spherical harmonics and orthogonal polynomials,

the projection of the function is expanded in terms of Euler angles in the angular part and

orthogonal polynomials in the radial part. The computer simulation of the reconstruction

demonstrates the applicability of the method.
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1. Introduction

In two dimensional tomography since the pioneering work of Cormack [1], the method of

series expansion in terms of Fourier harmonics is well known to have great advantages when

the number of views is limited. Deans has given an extensive review of the method and its

applications in many branches of science and engineering [2]. It is especial useful in some

physical problems, plasma fusion for example, where identifying dominant low order harmonic

components is essential [3]. It is conceivable that this method will play an even more important

role in three dimensions not only because stacking of two dimensional slices becomes difficult if

not impossible due to the constraints on viewing geometry but also because series expansion by

spherical harmonics is a useful tool in many physical problems. There have been some important

developments in the series expansion method in three dimensions. As in two dimensions, the

analytical expressions in both real and projection spaces have been found for certain classes

of radial orthogonal polynomial basis functions [4, 5, 6] and the formulas for forward and

inverse transforms of general radial functions have also been derived [7]. The choice of Euler

angles not only directly represents viewing geometry but also makes the angular basis functions

explicitly analytical [7]. However, the above achievements have been mostly focused on the

theoretical side and their numerical application has just started [8, 9]. Many practical and

important aspects have yet to be explored and this is the motivation of the present paper. The

major difference between the proposed method of this work and that of references [8] and [9]

is that while choosing the same basis functions in the radial part, we use in the projection

space the Euler angle representation in the angular part. This choice enables us to perform the

least squares fit directly in the projection space and therefore no additional repeated Fourier

transforms are required. This is especially useful not only in terms of saving computing time
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but even more importantly, it is suitable to the cases where one has only a limited number of

views, for which discrete Fourier transforms are not appropriate. We will demonstrate for the

first time the applicability of this method by numerical reconstruction of a test function. The

detailed algorithms and procedures are given in Section 2, the reconstruction is performed in

Section 3 and Section 4 draws the conclusion.

2 Euler angle representation and series expansion

Three dimensional tomography starts from the X-ray transform of a function f(f) defined

by [10]

g = f(ff + s)ds (1)

where i is a unit vector along the integration path and fl= F- (F i)i. Hence fT L i, where F is

an arbitrary point on the integration path. In tomographic applications, g(, i) is a measured

projection and f(F) is the three dimensional image of interest to be reconstructed.

As shown in Figure 1, for a given integration path along a unit vector i, we can always

rotate the coordinate system in such a way that the new coordinate axis can be aligned as

i' 11 i, V' 11 P. (2)

It is well known that this rotation can be parameterized by the Euler angles, (a,#, ) as shown

in Figure 1. We adopt in this paper the "y convention" of Reference [11]. Using the Euler

angles, a vector E in XYZ system is related to the same vector S' in X'Y'Z' system by

V '= Azf, :F= A-iz' = A TE' (3)
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where the matrix A is given by

Cos a cos # cos - - sin a sin y sin a cos 0 cos y + cos a sin - - sin 0 cos y

A = - cos ssiny - sin a cos y - sin a cos # sin y + cos a cos y sin 0 sin 7 (4)

cos a sin sin a sin3 cos )
and

0 < a<27, 0 S/ r, 0 y <27r. (5)

We can therefore always represent i and #in terms of Euler angles (a, 0, y) and p Ip1. Using

Equation (3) their Euler angles are found to be

cos 0 = iz (6)

cos a - (7)
sin 3

sin a = (8)sin

sin y = . (9)sin,#

cos- -psin/# + psin a cos3 (10)

when / # 0 and p $ 0. For / = 0 we can set y = 0 and a is determined by

cos a = p, sin a = py. (11)

while for p = 0, -y is not needed and (a, 0) are from Equations (6) to (8).

We may now rewrite Equation (1), the x-ray transform of f(r, 0, #), as

g(, t) = g(p, a, /, 7) = f(r, 0, 4)ds (12)

where L(p, a,3, 7) represents the integration path as shown in Figure 1.
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For any given function f(r, 0, 4) we can always make the following expansion in terms of

spherical harmonics:

f(r, ,4) = > (fl.(r) Sfm(, 0)+ flm(r) ( (13)
1=0 m=0

where ff,(r) are the radial expansion components and the real spherical harmonics are simply

SIm(0, 4) Re(Yim(0, )) = NimP m (cos 0) cos m4 (14)

Sf.(0, Im(Ym(O,4)) = NimPm (cos 0) sin m (15)

where Yim (9, 0) are the well known spherical harmonics defined by

Yim(0,q$) NmPim(cos 0)e im (16)

where

(21 + 1)(l - m)!
Nim3 (1)" 47r(l + m)!

and

P(x) = (1 - X2)M/2 d 2I+ _ 1)' (18)

is the associated Legendre function which can be rewritten in a more useful form for numerical

evaluation as [12])

PIM"(cos 0) = (l + m)! sin 0 M P(Mm)(Cos ) (19)

where P('") (x) is the Jacobi polynomial of degree n and type (v, p) [13].

The radial components ff;"(r) also have to be expanded in terms of a complete set of basis

functions {h3 (r)}'o0 (to be specified later):

ff;s(r) = ZA"'h (r), (20)
j=0
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where Ajf are the expansion coefficients to be determined. Equation (13) then becomes

f(r,,4) = E (Aj.Sf.(0, #) + AjimSIm(9, #))hj3 (r)
j=0 1=0 m=0

We define Wj', (a,3, y, p) as follows and it has been proven that [7]

Wi',(a, 3, p) ] dsS,"(O, #)h 3 (r) = V,', (a, 0, -y)gjim,(p)
J(PA#OP,-) MI=O

(21)

(22)

where

Vinmm,(a, 0, -) = m, [cos(ma + m'(y +

+(-1)m'(cos(ma - m'(y + 7r/2))dd,_m,(#)]

VImm,(a,,y) = bm' sin(ma + m'(-y + 7r/2))d(')(3)

+(-1)m'(sin(ma - m'(y + 7r/2))d$,- ,(/)]

(23)

(24)

where

1/2
6M =

m = 0

m 540

(25)

and

M I-M M I+M
It -MM'+M)Cos M, (cos,3)

2)
(26)

(for m' > m)

and

(for m > m'), (27)

and gjIm(p) are the radial basis functions in the projection space (a, 3, y, p), obtained from

hjl(r) by [7]

gjIm(p) = Nim(1 + (-1)1+m)J rdh i " (F I ( 1 (28)

6

d~(l ) 0)= I!sin )

dmm,(#3) = (-1)"-'~"d,()



Taking the x-ray transform of f(r, 0, 4) in Equation (21) and employing Equation (22) we can

therefore expand the projection g(a,#3, y,p) defined in Equation (12) as

o0 00

g(a,3, -y, p) = (A imW-m(Q,/,y, p)+ A-imWim(a, ,y,p)). (29)
j=O 1=0 m=O

So far we have not specified h3 (r) yet. In principle once it is given, by a certain physical model

for example, one can always use Equation (28) to get gjim(p) at least by numerical integration.

In this paper, we choose the orthogonal polynomials

hji(r) = rl(1 - r2)p,(+1/2,1)(1 - 2r 2), (30)

because its gjl,(p) can be carried out analytically [4, 6], namely{ Gjimp m (1 _ P2)3/2p('' 3 /2 ) (1 - 2p 2) I + m = even
gl (p) =1m/+ (31)

0 l + m = odd,

where

Gjlm (-1)'(j + 1)((l2- + j)! V(21 + 1)(1 - m)!(I + m)! (32)
21+'F('- + j+ 2 + ) -mf)!('+-)!

It should be noted that although the above formulas look complicated, the only special function

which appears in Equations (19), (30), (31) and (26) is the Jacobi polynomial PV'M"')(x). Its

evaluation can be performed by using the stable recursion formula suggested by Abramowitz

and Stegun (Eq. 22.7.1 of [13]) that

2(n + 1)(n + v + it + 1)(2n + v + p)P("')(x)

= [(2n + v + p + 1)(v 2 _ 12) + (2n + v + p)(2n + v + p + 1)(2n+ nup +2)]P )()

-2(n + v)(n + p)(2n + v + y + 2)P,(')(x) (33)

with

0')(x) = 1, and P( ')(x) = [v - p + (v + p + 2)x]/2. (34)
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3 Reconstruction

We take the following function with an ellipsoidal iso-valued surface as our test function

f'(x, y, z) = exp - + + . ) (35)

where a = 0.2 b = 0.3 c = 0.4

and its projection gt(a, /, y, p) is from the numerical integration, Equation (12).

In our simulation, 21 x 21 element array detectors are used. We have two detection setups.

There are four arrays in the first setup. They are located symmetrically at the four corners of

an equal-sided tetrahedron which is centered at the origin of a coordinate system. The straight

line through the center and each corner of the tetrahedron passes through the center of each

array and is normal to it as well. Each array receives signals through a pin hole aperture. The

maximum chord distance, p, is about one. In the second case, the setup is the same except four

more arrays are added. The eight arrays are now located symmetrically at the eight corners of

a cube.

The number of series expansion terms in Equations (21) and (29) is infinite, however in

practical applications the number of measured projections is finite, and therefore the series has

to be truncated. After a proper truncation we have

J L I

f(r, 0, 4) = (A. Si.(0, 0) + AjimS8.(0, 4))h 1(r) (36)
j=O 1=0 m=O

and

J L I

g(ak, Ok,,p) = Z (A ImWjim(ak, 3 , Yk, pk) + AjlmW mk, (ak, ,k, Pk)) (37)
j=0 1=0 m=0

k = 1, 2, -,N.

where N is the total number of measurements. Equations (37) are just linear equations for the

unknowns Ajf and this system can be solved by the method of least squares. If the samples are
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equally or approximately equally spaced then the Nyquist principle can be used to estimate the

maximum number of expansion harmonics which may be resolved [3]. However, this is not the

case in our sample space, at least in the angular subspace (a,,3, -y). How to directly determine

the truncation in this case is still an open question and therefore numerical reconstruction tests

were conducted in lieu of this. We have found by trial and error that

L = 3 J = 9 (for 4 arrays) and L = 6 J = 9 (for 8 arrays) (38)

gives optimal reconstruction results. We'd like to point out that the maximum radial number,

J = 9, from numerical tests does agree with what the Nyquist principle requires; namely that

the number of samples should be at least twice the frequency of the highest spatial harmonics

in the radial direction. In our detector geometry (21 samples in roughly radial direction), the

chord radial spacing is uniform enough to apply the Nyquist theorem. (This points out another

one of the reasons for deriving this analytical expansion technique - the radial and angular

parts of the transform problem are separable.)

After solving Equation (37) for the expansion coefficients, A', the reconstructed function

is then given by Equation (36). In Figure 2 (4 array case) and Figure 3 (8 array case) we show

a few three dimensional iso-valued surfaces of the reconstructed function in comparison with

that of the test function. As one can see while the reconstruction is reasonably good for the

case with four arrays it is greatly improved when eight arrays are used. The slight deformation

of the surfaces in Figure 2 is due to the fact that, although the test function Equation (35)

looks simple, it does contain an infinite number of spherical harmonics. This can be seen by

rewriting ft(x, y, z) in spherical coordinates as

r 2 (cos #sin0) 2  (sin 4 sin 0)2 (cos 0)2 (39)
ft(rq) ,= exp -r a2 + + (39)
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and making the expansion e- = 1- z+z 2/2+.... It is immediately clear that higher harmonics

are there, especially at large radii. The slight deformation is an "aliasing" effect, which shows

up as expected as a result of not having a sufficient number of samples.

4 Conclusion

We have presented a series expansion method in which the Euler angles and orthogonal

polynomials were employed. We have also show the detail algorithms and procedures of the

method. The applicability is demonstrated through a successful reconstruction of a test func-

tion. We hope to see the use of this method to a real problem in the field of plasma physics,

for example laser fusion [14, 15], in the near future.
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Reconstructed function Test function

A. f(r,6, 4) = 0.4

B. f(r, 6, #) = 0.2

surface

surface

FIG. 2. 3-D iso-valued surfaces of the reconstructed function

(left) and test function (right) when 4 arrays are used.
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Reconstructed function

A. f(r, 0, 4) = 0.4

B. f(r, 0, 4) = 0.2

surface

surface

FIG. 3. 3-D iso-valued surfaces of the reconstructed function

(left) and test function (right) when 8 arrays are used.
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