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The collective mode structure of a strongly correlated (strongly coupled) plasma has

characteristic features [1], distinguishing it from the mode structure of a weakly correlated

system, which is well described by the Vlasov or random phase approximation. Most

importantly the dispersion (aco/ak) of the plasmon mode is diminished and becomes

nepative at a critical value of the coupling parameter. This latter represents the ratio of the

potential to thermal energy and is conveniently given either as F = e2/kBTa (a being the

Wigner-Seitz radius) or as the plasma parameter y = 1/41c ND defined through the number

of electrons in the Debye cube ND = n/ KD, where 1(D = 471 ne 2 is the Debye wave

number. The critical value of the plasma parameter y has been determined by computer

simulations [2], by theoretical calculations [3,4] and by experiments on alkali metals [5],

converging to the value y = 30 - 50. When an electron beam penetrates a plasma, a beam-

plasma instability develops. In this Rapid Communication we point out that due to the

change of the dispersion the space-time evolution of the beam-plasma instability changes

character as the correlations become sufficiently strong.

The space-time evolution of the instability in an observer frame moving with

velocity V, in the non-relativistic limit, is described [6] by the Green function

G(x',t)= do' dk eitkx'.-t> I
2n 2i Er(k,o

L

(1)

dO f dk ei(kx-wt) 1

)21rJ 27t (k,o+kV)

Here x' = x + Vt.; E(k,O) is the dielectric function for the system under consideration.

L and F are the Laplace and Fourier contours in the o and k planes, respectively. The

behavior of the Green function G(x',t) is totally determined by the analytic nature of the
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dielectric function E(kco). The time asymptotic form of the Green function gives the pulse

shape in the laboratory frame. It is known [6] that the pulse shape in the laboratory frame

can be deduced from the analysis of the pinch point (ko, o) condition:

E(ko,oo + kOV) = 0; - E(ko,oo + kOV) = 0 . (2)
ak

We consider the interaction of an electron beam penetrating a strongly correlated

plasma. We model the present beam-plasma system by two plasmas in relative motion vo

with different temperatures 1/Pb and 1/P, and different densities nb and n. Hence, these

two plasmas have two different plasma parameters yb and y. The dielectric function for the

present beam-plasma system is given by

E(k,co) = 1 - Y(k)Xo(k,o)

1 +Cx(k,o)p(k)XO(k,0o)

P(k)Xob(k,o)-kvo) (3)
1 + Cxb(k,co-kvO)(p(k)Xob(k,co-kvo)

with Xo(k,0o) and U(k,0o) denoting the non-interacting Vlasov density response function

and the dynamical local field, respectively; p(k) = 47re 2/k 2 is the Coulomb potential. The

dynamical local field describes the correlational contribution to the dielectric function, as

formulated in Refs. [1,4,7]. In the present paper, we will only consider a special case

where the electron beam is weakly correlated yb << 1 and its temperature is much less than

that of the strongly correlated plasma P/Pb << 1. Then the dielectric function reduces to

E(k,0o) = 1 - b - p(k)XO(k,)(4)
(0) - ky) 2 1 +((k,co)p(k)xo(k,0o)
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Here b = nb/n, and k, v, and co are normalized to ICD, the electron thermal velocity

VT = 1/m@ , and the plasma frequency cop = I47nne2/m , respectively. The zeros of this

dielectric function are given by

(o - kvo)2 [k2 - Z(o/k) + U(k,o)Z(co/k) =2 bk+ a(k,co)Z(o/k) (5)

with Z denoting the plasma dispersion function [9]. In the long wavelength limit, i.e.,

k/D << 1, the above equation becomes

(o - kvo)2[c2- 1 - 2xk2 + 2iiok2 =b[02 - (2c - 3) k2 + 2icok2], (6)

where (x and Tj essentially determine the plasmon group velocity and damping. (X and rj as

a function of the plasma parameter y have been calculated [3,4]; the results presented here

(Fig. 1) are based on the calculation of Ref. [4]. The warm Vlasov plasma is obtained in

the limit y -+O where (x = 1.5 and 11 = 0. As y increases, the plasmon group velocity

decreases. Above the critical value - > 50, the plasmon group velocity becomes negative.

The plasmon damping increases as y increases.

The interaction between the beam waves and the plasma waves in the strongly

coupled plasma, as shown in Fig. 2, is described by Eq. (6). As can be seen, in the

strongly correlated plasma where y > Tcrit , the plasmon group velocity can become

opposite to that of the electron beam waves, thus giving rise to the possibility of an

absolute instability. The absolute instability results from the phase resonant interaction

between the forward beam waves and backward plasma waves. We now establish the

conditions for the beam-plasma instability to become absolute.

We begin with an analysis of the solutions to Eq. (6) for the real k. The results are

presented in the complex co plane in Fig. 3. The branch with oi > 0 indicates the beam-

plasma system exhibits an instability. The maximum growth of this instability occurs when
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condition lkvd - 1 is met. Note that Eq. (6) is an adequate representation to Eq. (5) only in

the long wavelength limit. Hence, in order for our above analysis and the following to be

valid, the velocity of the electron beam should be much greater than the thermal velocity of

the strongly correlated plasma.

We employ the pinch point analysis [6] to determine the nature of the space-time

evolution for the present beam-plasma system. The pinch point analysis consists of

mapping the complex o> plane into the complex k plane. Through this analysis, the

solutions to Eq. (2) can be easily determined. It is obvious from Eqs. (2), (5) and (6) that

the asymptotic form of the Green function is influenced by the plasmon group velocity

(x and damping rj. The damping in the strongly correlated situation is almost exclusively

collisional, moderated by the increased tendency of the particles to localize and to avoid

their neighbors; Landau damping is negligible. We have performed the pinch point

analysis for the present beam-plasma system: it is found that lowering a moves the trailing

edge of the pulse shape to the negative direction, while increasing TI moves the trailing edge

toward the opposite direction. Hence, under favorable conditions, the trailing edge of the

pulse shape lies in the negative side of the origin, and the beam-plasma instability becomes

absolute [6]. In Fig. 4, we present the condition for vo = 10 and b = 0.001. In the a-11

plane, these conditions form a boundary line separating convective instability from absolute

instability for the present beam-plasma system.

In the strongly correlated plasma, (x and rj are determined by the plasma parameter

7. Plotting a and 71 as a function of -y yields another curve in Fig. 4. We find that the

present curve intersects with the boundary curve which separates convective from absolute

instabilities at the point corresponding to y - 60. Calculations based on other analyses of

the plasmon dispersion [1,3] would give somewhat lower, but not substantially different

results. Therefore, for y> 60, the beam-plasma instability in strongly correlated plasmas is

absolute for the present choice of the parameters.
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As mentioned earlier, the pinch point analysis not only distinguishes convective

from absolute space-time evolution, but also yields the asymptotic form of the Green

function G(x',t) or the pulse shape. We present the pulse shape for the beam-plasma

system in the weakly and strongly correlated plasmas in Fig. 5. As can be seen , the

trailing edges of the pulse shape in the weakly correlated plasma such as y = 0 and in the

strongly correlated plasma such as y = 87 lie in the opposite sides of the origin, revealing

the nature of the space-time evolution for the corresponding beam-plasma system. The

leading edges, however, are in the same place despite the differences between these two

different plasmas. As demonstrated in a previous study [10], the leading edges always

reside in the same place as long as the beam plasma is cold. It has been shown that the

thermal motion in the electron beam would slow down the leading edge. Hence, this

would not interfere with the nature of the space-time evolution of the present beam-plasma

system.

To summarize, we find that electron correlations profoundly affect the manner the

beam-plasma system evolves with time. As the plasma parameter increases, the nature of

the beam-plasma instability is changed from convective to absolute, at a critical value of the

plasma parameter. This phenomenon may provide a useful experimental approach to probe

and identify strongly correlated plasmas.
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FIGURES

FIG. 1. The plasmon group velocity a and damping r7 as a function of the plasma

parameter 7.

FIG. 2. Rew vs. Rek, as given by Eq.(6). A and B denote Rew for the weakly (y = 0)

and strongly (y = 87) correlated plasmas; C gives the beam wave.

FIG. 3. Numerical solutions to Eq.(6) in the w plane for 0.0 < k < 0.2 for y = 87.

FIG. 4. Convective-absolute boundary in the a - rq plane, together with the results

for a and r1 as a function of y (dashed curve).

FIG. 5. The pulse shape for the beam-plasma system. Solid and dashed curves give

the pulse shape in the strongly (7 = 87) and weakly (y = 0) correlated plasmas.
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