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Frequency shifting in free-electron laser (FEL) oscillators and amplifiers

is investigated theoretically and numerically. The analysis includes frequency

shifts from the resonant FEL interaction and the nonresonant beam dielec-

tric. Expressions for the frequency shift in a microwave amplifier with time-

dependent beam energy and current are derived and found to be in good

agreement with experiments. The theory shows that temporal changes in the
detuning are the dominant factor in determining the frequency shift. Electron

energy fluctuations produce frequency shifts in the Compton regime, while

both current and energy variations are significant in the Raman regime. The

effect is particularly important for high power microwave, drivers proposed

for high gradient accelerators, where the phase of the RF is subject to sig-

nificant constraints. FEL oscillator response to variations in beam energy

is examined. It is shown that in a low gain oscillator which experiences a

sudden jump in beam energy the FEL creates spikes at the head and tail of

the beam which are at the shifted frequency. The shifting is generated by
time-dependence in dielectric function which arises from slippage and finite

lengths of the electron or optical pulse. The propagation diffusion equation

is shown to describe the propagation of the spikes into the main body of the

pulse.
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I. INTRODUCTION

The spectral properties of the free-electron laser (FEL) are of critical im-
portance to many applications and have been the subject of intensive inves-
tigation. Free-electron laser sources have been proposed1 with an extremely
tight requirement on the bandwidth of the radiation and, for accelerator 2

applications, on its phase and its shot-to-shot repeatability. The FEL spec-
trum is governed by the nonlinear time-dependent wave- particle coupling
between the beam and electromagnetic wave. Time-dependent phenomena
such as sidebands 3 and superradiance have been investigated theoretically
and analytically. Numerical simulations have been developed to study the
spectrum of the FEL over a wide range of system parameters, and well-known
nonlinear phenomena such as bifurcation and chaos have also been observed.
In this paper, we present a theoretical model of frequency shifting in the
FEL.

The frequency shifting of light by a moving dielectric front has been in-
vestigated at length theoretically4 and experimentally.5'" These studies have
been restricted to passive dielectric systems-those which induce phase shifts
but have negligible gain. An unmagnetized plasma, where the dielectric for

an electromagnetic wave is e = 1 - 1, is a typical example of such a system.
There is also a large body of work regarding the FEL as a dielectric medium,
but until now it has been confined mainly to linear theory and optical guiding.
Here we show that the dielectric picture can be fruitfully applied to time-
dependent problems, leading to a deeper understanding of FEL physics. Two
distinct regimes, a high-power high gain microwave amplifier and a low gain
infrared oscillator, are studied in detail.

The amplifier theory is based on a linear FEL analysis. Under the small
slippage approximation, the temporal variation of the output frequency can
be calculated explicitly from the (changing) input parameters. Variations
in current and energy produce shifts in the detuning from FEL resonance
and in the beam-wave coupling. We show that it is primarily the detuning
variation that determines the frequency evolution and, thus, in the Raman
regime, the frequency is sensitive to both current and energy, while in the
Compton regime the frequency depends mostly on the energy. The analysis
predicts shifts close to those observed in recent experiments 7 on a microwave
FEL.
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The FEL power in an oscillator will grow from either beam noise or spon-
taneous emission. The radiation pulse length and amplitude are governed
by the slippage parameter, the cavity detuning, and the net gain. Here we
investigate the response to either a jump or a slow modulation of the input
electron energy after the radiation has first grown, typically with a spectrum
centered around the maximum gain frequency. After the energy jumps sud-
denly, the optical pulse is detuned and its gain cannot compensate for its
losses. Clearly, the FEL will respond by changing the center frequency of the
optical pulse. A few physical mechanisms may be responsible for this: ran-
dom noise may be present at the new operating frequency and be amplified
while the original signal decays, or a synchrotron sideband might be present
near the new frequency and be amplified.

Our numerical studies and analytic work show that frequency shifting
causes the change in the spectrum, which requires neither beam noise nor
an initial low power signal near the new operating frequency. For the first
time, the process by which the "proper" frequency spreads into the bulk of
the pulse is identified as a diffusion process, and its rate is estimated. The
diffusion model shows that in the low gain regime the system responds to a
sudden change in detuning by establishing the new peak gain frequency at
the wings of the pulse where slippage is significant, and gives a good estimate
for the rate at which the correct frequency propagates inwards to the center
of the pulse. This result agrees with numerical simulation. The spikes that
occur at the edges of the pulse are analogous to the superradiant' spikes in
high-gain amplifiers.

Recently, Darrow, et al.9 have examined the backscattered light from the
strong electromagnetic wave launched into plasma using a time dependent
frequency shifting approach.

The theoretical model is presented in Sec. II, amplifier analysis is given
in Sec. III, oscillators are examined in Sec. IV and our conclusions are
presented in Sec. V.

II. THEORETICAL MODEL

This section contains the basic theoretical model used to describe the
pulse evolution in an FEL. The system is assumed to be one-dimensional,
with a helical wiggler and circularly polarized electromagnetic (EM) wave.
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The fundamental equations used herein to describe the FEL interaction are
the well-known' eikonal equations. The wave equation for the vector poten-
tial is

( -- + k) = (,. + f),(1)_C 9i-aZ 2  c ()

where the source term has two distinct contributions: 4.,, from the (non-
resonant) cold beam response to the electromagnetic wave, which is present
in the absence of the wiggler, and a second term from the resonant FEL in-
teraction. The resonant current Jfl is produced by the ponderomotive force
of the electromagnetic wave beating with the magnetic field of the wiggler. 10

The beam is bunched in this ponderomotive wave, and the wiggling bunches
produce the current which drives the wave synchronously. This results in
an exponentially growing instability when the response is linear. Since the
parameters of the electron beam can be time-dependent, frequency-changing
phenomena may result.

It is worthwhile to briefly summarize frequency shifting in passive media,
such as occurs when radiation propagates through a moving inhomogeneous
medium 3 1 2 with no FEL interaction. The wave equation, when used to-
gether with canonical momentum conservation, becomes:

a2 92 a(Z, t)

C2 2 Oz2 C2

where we have introduced the normalized vector potential of the radiation
field a = eA/mc2, e is the electron charge, m is the electron mass and c is
the speed of light in vacuum.

It is convenient to transform to variables (s, z) defined by

s = t - -_
V9

z = z, (3)

where s is the distance from the head of the wave packet, which propagates
with group velocity vg. Using the eikonal approximation, which in our nota-
tion requires that variations in z be much slower than in s, results in:

z= - a(s, z). (4)az 2WxC2
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While it is straightforward to integrate Eq. (4) by quadratures, further
insight can be obtained by assuming that the density gradient is moving with
constant velocity, Vb. In this case, for a prescribed density profile W,(t -Z/Vb),

a(s, z) = a(s,0) exp (-i4(s, z)), (5)

and the frequency change, 8w = 8/8s, is now given by

_ 3/3 w#, ~w z(1 - #/,
6w(s, z) = 1W (S) _ W,-2/I ( - Vb (6)2w(l - flb/#,) PVb

It is instructive to analyze this equation in two limits. First, expanding
the term w2(s - z(1 - #1/#g)/Vb) in Eq. (6) results in an expression for the
frequency change of a pulse that has propagated a distance z with the moving
plasma:

1 9w2

sw(s,) = #,9 z . (7)
W a(cs)(

This expression is well behaved for v. = Vb, and our subsequent analysis of
the FEL amplifier in Sec. III will be carried out under this " zero slippage"
assumption. Secondly, the opposite limit, that of a step profile electron beam,
where finite slippage generates the frequency shift, can also be recovered from
Eq. (6). Radiation which starts inside the electron beam and eventually slips
out of the beam because v. > Vb, is frequency upshifted by

6W = -. (8)
1 - Ob/o, 2w'

In Section IV this equation will be used to estimate the effect of nonresonant
beam dielectric terms on the FEL oscillator spectrum.

Unfortunately, when the FEL interaction is included, the differential
equation for the vector-potential is no longer first-order, and a simple integra-
tion, similar to the one above, is no longer possible. The above two cases give
us, nevertheless, a good physical understanding of how the frequency changes
are brought about when different longitudinal slices of radiation evolve differ-
ently. For example, in the zero slippage limit, longitudinal slices of radiation
can interact with different electron densities, and thus acquire differing phase
changes on a single pass. In the large-slippage case, slices of radiation that
are different distances away from the head of the electron bunch, in the ab-
sence of the FEL interaction, receive phase-shifts which increase towards the
head of the pulse (since plasma has a negative refraction index).
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III. FEL AMPLIFIER

In this section we restrict our analysis to amplifiers. The theory will be ap-
plied to a microwave FEL experiment operating in a single waveguide mode,
with time dependent system parameters. A key simplification will be the
zero slippage S = Lip/Lbea, ; 0 approximation, where Li;, = - 1)L
and Lbe.m is the length of the electron beam. This is reasonable for a many
microwave FELs, which have long pulse lengths, moderately relativistic ener-
gies and a reduction of the group velocity in the waveguide. For instance, in
a recent spectral studies of a microwave FEL,7 the slippage parameter is less
than 5%. The FEL equations, which have temporal and spatial derivatives
in the field equation, then become ordinary differential equations.8

The amplifier analysis is based on previous work," and includes the effects
of waveguide modes, space-charge, and axial guide magnetic fields in a helical
wiggler geometry. Following previous work,' the nonlinear FEL equations
are,

By~-s # 1(~
=iC-a(z, s) exp (iM)

49Z 2 #11

(i + k,) exp (iO)(exp (-iO)) + c.c. (9)

O(z, s)_
= k,+k,-w/vjj (10)iBz

- + L- a = 2iC (- exp (-i)) (11)
z + 2-YWob W - k~Vb - f1O/ Y IA #1

beam-loading fel

where vil = #1c is the longitudinal electron velocity, 0 = (k, + k,)z -wt is the
slow varying ponderomotive phase, Vb is the unperturbed beam velocity, y is
the beam relativistic factor, flo = eBo/mc is the cyclotron frequency due to
the axial field BO, F is a dimensionless filling factor, C, a geometric factor 14

which depends on the waveguide and mode, is

C= kop/ 2 1 J 1/2
C = kp'2 - 1 (12)

27rk.rg~p 1J12(Pl p)

and p', the first zero of Jj(z). The factor C roughly equals the inverse
of the waveguide radius. A nonresonant beam-loading term, which is not
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present in earlier work," has been included in Eq. (11). Equations ( 9)-( 11)
can be easily linearized in the approximation that force bunching and wave
perturbation of the equilibrium orbits is negligible. The dispersion relation
thereby obtained (including the beam-loading term) is

2(s) w - k,vb 1 8 1 P2
(r+Fw) ( + AK) 1 0 2

2-Yvj, w - k.Vb - 1/01-Y)
rC2/ /

/3 _OCI 8 (13)

Here,
AK = k, + k, - w/vjo (14)

is the unperturbed energy detuning.
When the electron beam density and energy change slowly and remain

close to their peak-gain values,

Y = yO+&. (15)

Solving for the real part of the gain, which determines the phase change of
the radiation and thus the frequency change, we obtain:

r, - r, - b(AK)
Re(F) = " " 2 . (16)

Here, F, results from the nonresonant time-dependent beam-loading (with
the J,. in Eq. (1) as a source), F,, describes the time-dependent coupling to
the slow space-charge wave, and b(AK) is the time-dependent change in the
detuning. Explicitly,

Aw2 (s) w _ k~vb
rn,. = F - (17)

2-fwob w - k_ Vb - 00/11

r, = ( t p1Aw,(s)/c, (18)

an d w a 9 &(

-(K =6. (19)
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The particle dynamics along the unperturbed trajectory are characterized14

by:

8#(1 1 _

- - -+ + (20)

where
= c2klalfo( =_ . (21)
(c#11ikw- - 110)3

The frequency change after an interaction length z is

8wram I Z a(-F,, + F,, - 6AK) (22)

This equation shows that the frequency shift occurs because of two distinct
mechanisms: the usual cold beam nonresonant shift (from the beam density)
and the shift from resonant coupling to the slow space-charge wave, which
is due to the FEL interaction. The beam dielectric shift is physically equiv-
alent to that of a cold plasma, and has been extensively described in the
literature 15; the FEL induced shift has not been analyzed previously.

It is interesting to compare the physical origin of the frequency shift from
the nonresonant beam loading with that of the purely Raman FEL shift. In
Fig.1, an electron beam is shown moving to the right with a density increasing
towards its tail. At the head of the pulse, the peaks of the EM wave have a
phase velocity slower than those further back. This results in peaks at the tail
catching up with peaks at the head, and, therefore, in a frequency upshift.
In contrast, the Raman FEL interaction produces a downshift with the same
moving density gradient. The radiation couples to the slow space-charge
wave, whose phase velocity becomes slower as the beam density increases.
Adjacent radiation peaks now move farther apart with increasing interaction
distance, and the frequency downshifts. This can also be seen from signs of
the different terms that generate frequency shifts in Eq. (22).

The derivation of an expression for frequency shifting in the Compton
FEL can be carried out by following the steps leading to Eq. (22). The result
is

6WCOMP z (r,. + 2(AK )) (23)
3 cs

From Eq. (23), it is clear that, for a Compton FEL, the only resonant contri-
bution to phase shift comes from the energy variation. On the other hand,
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from Eq. (22) we see that resonant contributions to the phase shift come
from both current and energy variations. We also notice that if the slope of
the current and the energy variation both have the same sign, the resulting
frequency shifts will have opposite signs. These observations will become im-
portant in the next section, where we analyze an FEL experiment,7 and infer
that the difference in the magnitude of frequency shifts in different operating
regimes is related to a change from the strongly Raman regime to a nearly
Compton regime FEL. In general, the nonresonant shift is smaller than the
resonant shifts.

Our theory can be complemented by the results of a single-frequency
numerical simulation (provided the zero slippage approximation is valid).
A numerical code can be used to obtain the phase of the RF radiation, at
a given spatial location in the FEL amplifier, as a function of the initial
electron energy and current. Then, assuming a known dependence of the
input parameters on time, we can deduce the resulting frequency changes.
This procedure yields shifts that include such important effects as nonlinear
saturation, finite beam emittance, energy spread, particle loss and three-
dimensional particle motion and waveguide modes. It is employed in the
analysis of experimental results in the next section.

A. Frequency shifting in an amplifier experiment

Frequency shifts of the order of 6f = 80MHz have been reported in
recent experiments.7 In these measurements, a magnetron provided a ;
30ps monochromatic RF signal at a frequency fo = 33.39GHz input to the
FEL amplifier. In the Group I parameter regime, the amplified power was
measured to be at the frequency fo + bf = 33.47GHz. The upshifting was
much smaller in the reversed field regime.' 6 Recent measurements 17 show
that the frequency upshift in this regime does not exceed ; 10MHz. It was
also shown experimentally that the spectrum of the output radiation shifted
towards higher frequencies monotonically with increasing interaction length,
and measurements were carried out in the linear regime before saturation
and particle trapping. This precludes sidebands as an explanation of the
shift. The frequency shift was also seen to track the input frequency, which
rules out a growth of beam noise at a particular frequency as an explanation.

The slippage in these experiments is about 5% and, therefore, the am-
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plifier analysis described above is applicable. The experimental data can
be compared to theory by using the results of a three-dimensional simula-
tion18 code to find the dependence of the RF phase on the beam current
and energy. The concomitant frequency shifts can then be obtained from
the phase calculations, if the time dependence of the current and energy
are known, through simple differentiation. Experimental evidence19 exists to
show that the frequency upshift of the RF occurs primarily when both the
anode-cathode voltage (and thus the electron energy) and the electron cur-
rent are still increasing. In order to estimate the magnitude of the shifts, we
assume that the voltage and current sweep across a gain bandwidth over a
time ~ 20ns, which is consistent with the measured pulse-length. The sweep
involves choosing the upper and lower boundaries for current and electron
energy such that the output power is reduced in 2.7 times. The results are
shown on Fig. 2. We note from Figs. 2a,b that changes in the phase, 0, from
current and energy variations in the reversed field regime almost cancel each
other out, resulting in a very small ( Av = Aq/20ns < 10MHz) frequency
shift. In Fig. 2c, for Group 1 parameters, the phase is plotted as a func-
tion of input beam energy. From the phase shift, we estimate an 80MHz
frequency shift, which agrees well with the predictions of the linear theory
from the Eq. (23). Both the reversed field and Group 1 estimates are close
to the experimentally observed7 upshifts.

The difference between the two measurements can be easily understood.
When the FEL is operated in the Group 1 regime,7 it is primarily in the
Compton regime, where the only resonant contribution to frequency shift
comes from the energy variation. On the other hand, when operated in the
reversed field regime, the FEL is strongly Raman, so that resonant contri-
butions come from both the current and the energy variations, which can
cancel each other out, since they have opposite signs.

IV. OSCILLATORS

Free-electron oscillators at infrared and shorter wavelengths generally op-
erate with finite slippage and very small space-charge forces and, often, a
single pass gain less than unity. Time dependence of the beam parameters
can produce frequency changes from both J., and JL. Furthermore, even
if the beam parameters are completely time-independent, slippage will gen-
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erate frequency shifts from only the FEL interaction whenever the optical
pulse is nonuniform. In the analysis below these effects will be isolated and
analyzed independently.

Frequency shifting from J,, is present in the absence of the wiggler.
Light bouncing between two mirrors will interact with a fresh electron pulse
once each round trip, and can thus undergo successive frequency shifts as
it slips over an electron pulse during each pass. This is shown in Fig.3,
which presents an interesting example of a cumulative frequency upshift.
The spacing between the mirrors (cavity detuning) is such that an optical
pulse overlaps a flat-top electron pulse at the front mirror and completely
slips over it by the end of the cavity. The light pulse will be frequency up-
shifted by an amount Sw given by Eq. (8). If the cavity is tuned in such
a way that the temporal spacing between the successive electron bunches is
equal to the round-trip of light through the cavity, then on the next pass the
pulse will overlap the next bunch again, and the upshifting will repeat itself.
Thus, such upshifting is cumulative and, over many passes, can significantly
alter the frequency of the radiation. If the slippage parameter is, say, one-
half, then only the front portion of the wave is upshifted, whereas the tail
will not change its frequency. This mechanism may conceivably be used for
fine-tuning of the optical frequency and for chirping pulses. The practical
use of the nonresonant beam to frequency shift an optical pulse will require,
of course, that the shifts be obtained before the pulse decays from cavity
losses.

It appears, at first glance, that frequency shifting might be very delete-
rious to the operation of an FEL oscillator. It might detune the light far
off resonance, thereby terminating the interaction; this is a surprising re-
sult in view of the successful operation of many FEL oscillators. In fact,
the frequency shifts are limited by a number of various effects, such as laser
lethargy, 20 where the FEL interaction modifies the group velocity of the ra-
diation, and the smallness of the nonresonant beam phase shift compared
with the FEL phase shift. Lethargy results in the pulse slipping back on the
electron bunch, and it is usually compensated for by shortening the cavity
so that it is less than half of the interbunch separation (cavity detuning).
Then radiation at a given position s will eventually stop overlapping elec-
tron bunches by moving ahead of or behind them, depending on the relative
sizes of cavity detuning and laser lethargy. As a rough estimate, a radiation

11



slice which overlaps the bunch must have originated within

S

I (A#92-y - 2Al/Lj,) (24)

previous passes. The slippage parameter S is defined by S = L81ip/Lbeam,
AP, is the group velocity reduction due to lethargy, and Al is the cavity
detuning.

The maximum frequency shift that can develop is then, roughly,

O l f S 6 W, (25)

where 6w is given by Eq. (8), and S > 1 is assumed. The shift of the mean
frequency of a radiation pulse interacting with successive flat-top electron
bunches only through the beam loading (no FEL) is plotted as a function of
the pass number in Fig. 4 for various cavity detunings. The results in Fig. 4
are obtained from a one-dimensional time-dependent FEL simulation code 21

which was modified to include the nonresonant beam interaction. This plot
clearly shows "saturation" of the frequency shift when n,,,, > Aref. There
will be a similar frequency shift, with 6w given by Eq. (7), even for S < 1,
whenever the beam has a density gradient.

We now examine frequency changes which do not require any temporal
dependence of the beam parameters. These slippage driven frequency chang-
ing phenomena develop from the nonlocal character of the FEL interaction.
The physics is easy to understand: each radiation slice leaves behind it a
wake which influences trailing radiation up to a distance AL = N.A, behind
it.

It is convenient to normalize the coordinates (z, s) ( from Eq. (3)), to the
wiggler length and the slippage length, respectively. Thus,

i = z/(N.,A.)
= 2-yijs/(N.A.). (26)

Coarse graining on the scale of a round-trip, gives a very general equation
for the time-dependent FEL (see the Appendix, Eq. (45)):

.OadG 1 8 2 a d2
- -6a + & - - - (27)

n a.§ dyo 2 19.2 d y0
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where yo = (k, - k,/27"4)L, is the detuning from resonance, defined as
the change in ponderomotive phase seen by an electron moving through the
wiggler of length L., 6 is the intracavity loss per pass, and n is the pass
number. For maximum gain, yo z 2.6. The function G is a complex gain
function,

G(yo) = j. j di exp (-iyoi) j d' j di" exp (iyoi"), (28)

where j, is a coupling parameter,

I 1 A' a'
j,: = 27rN W

IA rg 13 '

and rb, A,, IandIA are the beam radius, wiggler wavelength, current and
Alfven current, respectively. An equation similar to Eq. (27) was analyzed in
the context of the supermode theory, 22 but only for a specific electron beam
current profile, and not to study frequency shifting phenomena.

We are now in a position to examine the importance of the nonresonant
phase shift from beam-loading compared to the FEL-induced phase shift. It
is easy to show from Eq. (28) that the total phase shift at resonance (where
it is the largest) is given approximately by Aofi = G,,,/1.65, where Ga,
is the peak gain at yo - 2.6. The nonresonant phase shift can be estimated
as

Aonr = NI(1 + a,) A" 2  (29)
7 3 1 A rb

For the typical parameters that were used in our numerical investigations,
I = 60A, A. = 5.0cm, N = 40, rb = 1mm, y = 59, A, = 1pzm, and the
ratio AO,./Akf - 3 - 10-. Thus, the effect of the nonresonant correction
is negligible. We note that this may not always be the case, since at fixed
low gain the ratio

6(1 + a)
rN 2a2 (30)

which will increase with the use of microwigglers. The net result of including
the nonresonant phase shift is to slightly change the operating frequency of
the FEL. For the above parameters this correction is within a 10' band-
width.
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A. Examples of Frequency Shifting in Oscillators

Equation 27 describes the response of the FEL to changes in system
parameters. Consider, for example, an idealized system in which a beam
consisting of flat-top electron bunches is injected at an energy detuned from
the peak gain energy of the radiation pulse already present in the laser. It
is clear that the evolution of radiation slices within a slippage distance of
the head or tail of the pulse can differ from that of the bulk. Both the
numerical simulation and the diffusion Eq. (31) (below) show that the front
and back of the signal will experience frequency shifts which bring them
closer to the maximum gain condition. As a consequence, two spikes, at the
front and at the end will appear and grow at a faster rate than the bulk of the
pulse. Eventually, the spikes spread over the entire pulse, thus establishing
the "right" (peak gain) frequency everywhere. This scenario is based solely
on the wake-like nature of the FEL interaction. If the electron bunch is
not substantially longer than the radiation pulse, additional frequency shifts
from temporal variations of beam parameters must be included.

A simple analytical expression which describes the evolution of the pulse
can be obtained in the limit of a long electron bunch. A few assumptions will
further simplify the analysis. The frequency is assumed to be near its peak
gain value (where the real part of the complex gain G has a maximum), so
that the complex gain (from Eq. (28)) and its derivatives can be estimated
at yo ; 2.6. Also, even though the inflection point of the imaginary part of
G is at yo a ir, the second derivative of the gain function is approximately
a real number. The first two terms in the RHS of Eq. (27) are eliminated
when intracavity loss exactly matches the maximum growth rate. Neither of
these assumptions affect the profile itself, but would multiply the result by
a constant after every pass.

The solution to Eq. (27) is particularly straightforward in a frame prop-
agating in the positive s-direction with a speed I dG/dyo 1. Equation 27
becomes

8& 1 02&
-n = -2--(31)

where q = d23/dy2, evaluated at yo z 2.6. The solution to Eq. (31) is given
by the convolution of the Green's function for the diffusion equation and
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initial condition at n = 0:

+00 exp - I
C(n, s) = ds'ao(s') 2 n (32)

-oo (2rqn)i/2

The pulse initially extends from s = 0 to s = T and has the form of

&(s) = exp (iAs),

where A ; 2.6 - yo is a detuning from the maximum gain. Then the ampli-
tude and the phase of the pulse after n passes is given by

a(s) I = ([[. ds' cos (As') e 2 2 (33)
a-T (2rqn)1/2

+ ds' s2 a ' 4
12

a-T ( 27rqn)1/2]
exp -2

L-T ds' sin(As')| ~
O(s) As - tan s (2qn (34)

exp -s-,8 2
f-T ds'cos(As') M2w 2

These integrals are error-functions of a complex argument, and are numeri-
cally evaluated as shown in Fig.[5]. We see that the formation of the spikes
at the edges of the injected pulse is concomitant to the frequency changing,
and that the interior of the pulse, which is not subject to a frequency shift,
decays much faster than the edges. Simulation results for a similar set of
parameters, where an EM pulse has been positioned deep inside an electron
bunch, so that end effects are negligible, are shown in Fig.[6]. Comparing
Fig.[5] and Fig.[6], we see that the diffusion-like equation captures the main
features of the full-scale numerical simulation. The analytical results cannot
be applied for long evolution times because of the neglected higher-order s-
derivatives, which make the evolution equation causal (see the Appendix).
We note that a diffusion equation for a complex quantity can produce spikes
of its absolute value, while this is not the case for the diffusion of a real
quantity.

A more complicated picture is obtained when finite bunch lengths are
included. In such a case, depending on the relative size of the laser lethargy

15



and cavity detuning, one of the spikes (either a front spike, or superradi-
ant tail spike) dominates. This is clearly shown in Figs.7 and 8, for which
detunings are chosen to be 5p*m and 25pm. A detailed analysis of the rela-
tive contributions of finite EM pulse length and temporal variation of beam
parameters requires further research.

There are a number of ways in which the radiation frequency follows the
electron energy. The spectrum can adjust by amplifying noise and sponta-
neous emission at the resonant frequency . Or, adjustment can be achieved
through generation of sidebands in a strongly nonlinear regime. Since the
numerical studies described in this paper were carried out without beam
noise and in a regime, where the synchrotron length significantly exceeded
the wiggler length (ruling out a sideband explanation), the upshifting model
appears to be the only satisfactory description of frequency adjustment.

Slippage, which gives the FEL interaction a wake-like nature, generates
frequency shifts by producing a time-dependent dielectric coefficient at the
edges of the pulse. Physically, this mechanism is the analog of superradi-
ances for a low-gain oscillator. Superradiance in a high-gain FEL is usually
associated with a spike which emerges within one slippage length of the trail-
ing edge of the pulse. High-gain creates an asymmetry in the evolution of
the leading and trailing edges. In a low-gain oscillator, spikes created at the
edges can propagate into the body of the pulse only one slippage length in
one pass (the slippage per pass is small for all the runs). The propagation
of the correct frequency into the body of the pulse is through the diffusion
mechanism described above. Also, retaining only two s-derivatives in the evo-
lution equation and assuming low gain forces the leading and trailing edges
to evolve similarly.

The response of the FEL to energy modulation (or any other slow pa-
rameter change) can also be achieved through frequency shifting. Numerical
simulations show that, when the electron beam energy -y is varied sinusoidally
with pass number, the number of passes required to respond to a step vari-
ation in beam energy, N,.,,, is an important quantity. Then, depending on
whether the period of energy modulation is smaller or larger than N,,,P,.
the amplitude of the output frequency variation will be small or large, re-
spectively. Simulations were performed with a cavity detuning which corre-
sponded to N,,, ; 200. We note that, for our parameters, N,.,,, is much
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larger than the cavity Q. The energy was modulated according to

y(N) = yo + 8- sin (2rN/Nmod), (35)

where Nmod is the periodicity of modulation, N is the pass number. The
results for different values of Nmod are presented in Fig.[9].

V. CONCLUSIONS

The amplifier theory presented here explains recent experimental obser-
vations16 of frequency upshifting in a microwave FEL. The theory predicts
both the large shifts observed when the FEL is operated in Group I orbits,
and the small shifts observed in reversed field operation. These phenomena
will need to be incorporated into designs of FEL power sources for accelera-
tors, where the phase of the RF is tightly constrained. This is especially true
for the high energy linear collider designs with multiple bunchlets. In such
case, some compensation scheme in the amplifier input may be required.

Frequency shifting can arise from time-dependence in the beam current
and energy, as well as from the time-dependence introduced in the dielec-
tric coefficient through slippage and finite length of the electron or radiation
pulses. Frequency adjustment of an FEL oscillator to a jump in beam en-
ergy was studied analytically, with a diffusion equation, and numerically.
The predictions of the diffusion model for the rate at which the new FEL
frequency establishes itself in the pulse is consistent with the simulation. For
present designs, the nonresonant plasma contribution to the dielectric does
not seriously limit the FEL bandwidth. With the use of electromagnetic and
microwigglers, the plasma dielectric will become more significant.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION
In this appendix a diffusion-like master equation for the pulse evolution

in an FEL oscillator is derived under the assumption of small gain per pass
and a power expansion in the slippage parameter. This is equivalent to
the assumption that the complex amplitude a does not change significantly
over a slippage length. Furthermore, we neglect beam-loading, since it is
independent of the FEL interaction and can be added a posteriori.

We use i = z/L, as an independent variable, so that the beam enters
at i = 0 and exits at i = 1. The dimensionless coordinates, introduced in
Eq. (26), assure that

- = (36)

along the unperturbed trajectory. Assuming a plane wave, the ponderomo-
tive phase is

0 = kz - kc(t - z/c) = 27rN(2 - g) + yo§. (37)

In this notation, the Compton FEL equations 3 are:

8 a 2 r , (exp (- i03 )) (38)

dO,
di
dy- 4 _2____

- = i 2 a,,,, a .), . (39)
di 1 +

With 00 the initial particle phase, we can integrate the above equations, in
the linear approximation, to obtain :

.4i 2N 2 tiff'
0 = 00 + yoi + 2 N 2 zdi'f di"&(.§o + i",i") exp i(yoi" + 00). (40)

1 a2 101

Since electrons enter the wiggler unbunched, the density perturbation is

6n = -no ) (41)

Combining Eqs. 38, 40 and 41 results in

. . i 1' -
= jC exp (-iyoi) di' di"a( o + z", i") exp (iyo2").(42)

z 10 foz
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If the total single-pass gain is less than unity, the variation of a with i in its
second argument can be neglected, and, if the field is smooth over a slippage
distance, we need only retain up to second derivatives in the first argument
of a. With

p(so, Z) = j d' j di" exp (iyoi"), (43)

it can be easily shown that the RHS of Eq. (42) is

( .Oa(so) 0,p 1 02&(so) 02,
RHS = exp (-iyoz) a(so)p - o 2 I 8 9.2) (44),9s Oyo 2 19g2 9y2

Next, we express Eq. (44) in terms of (9, i) using Eq. (36), go = 9 - i,
and expand the fields in Eq. (44), keeping only the first two derivatives.
Integration over i from zero to unity yields the field increment per pass.
Treating the pass number n as a continuous variable, and taking into account
intracavity losses, we obtain the master equation:

oa .O5 dU 1 o2a d2= -a + ad -: .a d Iaa~ (45)On 09 dyo 2O. 2 dy2j(5

Equation 45 is not causal. Thus, if we start with a pulse extending from
s = 0 back into the region of positive s, Eq. (45) predicts that the pulse
will spread into a region of negative s as well, which clearly is not physical.
To remain causal, all the higher derivatives, (,"&/O."), of the field must be
kept.

In principle, all the higher order derivatives can be taken into account
and an extended master equation can be solved by Fourier transform. The
solution to the extended master equation is given by

/+00a(n, s) = ds'Qn(s - s')&(0, s'), (46)

where G is a Green's function of the FEL interaction, having the causal
property of Q(s) = 0 for s < 0.

The Green's function is given by

g = C dw exp (-iws + g(w)n), (47)
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where the integral is taken along a contour in the upper half of the complex
plane and

g(w) = G(yo - w), (48)

with d defined in Eq. (28). It is straightforward to show that g(w) is well
behaved in the upper half plane, so that the Green's function is causal.
Analyzing a low- Q cavity with our model should not lead to any spurious
results since radiation that moves ahead of the beam will decay in a few
passes.

As is easy to see from Eq. (45), the nonlocal character of the FEL in-
teraction introduces dispersion (a second-derivative term) into Eq. (45). We
note that the growth of the diffusion coefficient as the fourth power of the
total number of wiggler periods reflects our assumption of total gain less
than unity. When this condition is violated, the diffusion coefficient becomes
independent of the number of wiggler periods, since, for the high gain FEL,
the "communication distance" between different radiation slices is no longer

but rather the coherence length,' ; /F2-yl'.
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Figures

FIG. 1. A radiation pulse riding on a beam temporally increasing density
gradient is continuously frequency upshifted.

FIG. 2. Phase of the RF after an interaction length of 150cm as a function of
a) electron energy in the reversed field regime. b) current in the reversed
field regime, and c) electron energy in the Group 1 regime.

FIG. 3. Schematic for the continuous frequency shift of a flat-top radiation
pulse. The spacing between electron bunches is assumed to be equal to
the round-trip of the radiation pulse.

FIG. 4. Cumulative frequency upshift of a flat-top radiation pulse as function
of cavity detuning. The FEL interaction has been turned off.

FIG. 5. Spike formation, 20 passes after a jump in detuning, as predicted by
the diffusion equation.

FIG. 6. Spike formation and frequency change, 20 passes after a jump in
detuning, as predicted by the simulation code.

FIG. 7. Pulse evolution for 5p cavity detuning.

FIG. 8. Pulse evolution for 2 5 p cavity detuning.

FIG. 9. Output frequency for &y/7 = 8 - 10-2% for different modulation
periods.
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