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ABSTRACT

A two-dimensional, self-consistent, nonlinear model is used to determine the growth

rate and saturation level of the cyclotron two-stream instability for two weakly relativistic

electron beams co-propagating along a uniform magnetic field with an inverted population

in the perpendicular momentum. This instability has been proposed recently as the basis

for a double-stream cyclotron maser. Good agreement is found between the dispersion

analysis and computer simulations in the linear regime. The effect of axial momentum

spread on the instability is investigated. It is shown that the cyclotron two-stream

instability is primarily electrostatic, which calls for further exploration of an effective

input and output coupling scheme for the maser.

PACS numbers: 41.60.Cr, 41.75.Ht, 52.75.Ms, 52.25.Wz
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I. INTRODUCTION

The exploration of novel mechanisms of generating millimeter waves with relativistic

electron beams has been pursued vigorously in recent years. The sought-after operating

regime of millimeter wave sources of particular interest would require a mildly relativistic

( 100 kV) electron beam and moderate magnetic field ( 1 kG). The double-stream

cyclotron maser [1], which utilizes two mildly relativistic electrop beams co-propagating

along an applied uniform magnetic field with an inverted population in the perpendicular

momentum, is one of the proposed mechanisms that satisfies this requirement.

The operating principle of the double-stream cyclotron maser [1] is based on the un-

stable interaction of the fast cyclotron space-charge wave on one electron beam and the

slow cyclotron space-charge wave on the other electron beam. Such an unstable inter-

action, which we refer to as the cyclotron two-stream instability, leads to the stimulated

bunching of the gyrophases of the electrons relative to the wave phase. The cyclotron

two-stream instability belongs to the class of multiple species, quasi-electrostatic stream-

ing instabilities well known in plasma physics. Figure 1 shows a schematic dispersion

diagram for such a two-stream system, where there are an infinite number of unstable

regions appearing in the vicinities of the intersections of the cyclotron modes of one beam

with those of the other beam. Because the resonant frequency of the cyclotron two-stream

interaction is proportional to the cyclotron frequency and is inversely proportional to the

difference in the axial velocities of the beams, the double-stream cyclotron maser can op-

erate at high frequencies without the need of either high beam voltage or high magnetic

field.

In this paper, we present a two-dimensional, self-consistent, fully nonlinear wave-

particle model for studies of the feasibility of the double-stream cyclotron maser in par-

ticular and the cyclotron two-stream instability in general. The linear and nonlinear cou-

pling of axisymmetric cyclotron space-charge waves on two weakly relativistic electron
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beams co-propagating in a uniform magnetic field is investigated in cylindrical geome-

try. When the Doppler shift in frequency is much greater than the cyclotron frequency,

the coupling is shown to be primarily electrostatic, which differs qualitatively from an

electromagnetic type of coupling considered previously [2]. The linearized equations of

motion in the present wave-particle model are used to derive a dispersion relation for

the electrostatic coupling, which is in agreement with what was derived previously [3]

using kinetic theory. The linear stability properties are analyzed. It is found that, like

the conventional cyclotron autoresonance maser (CARM) [4],[5], the instability growth

rate decreases rapidly with increasing axial velocity spread (i.e., axial beam tempera-

ture) within each electron beam. Good agreement is found between the stability analysis

and computer simulations in the linear regime. The saturation level of the instability is

obtained from simulations for parameter regimes of experimental interest.

The cyclotron two-stream instability is also expected to occur in space plasmas where

electrons and ions may stream along a magnetic field with an inverted population in

the perpendicular momentum. The model presented in this paper can be generalized

to describe the dynamical processes involving such electrons and ions. However, this is

beyond the scope of the present paper.

II. THE MATHEMATICAL FORMULATION

We consider two concentric annular beams of electrons gyrating, and co-propagating

axially, in an applied uniform magnetic field Boe (Fig. 2). The axes of the beam annuli

coincide with that of a perfectly conducting, cylindrical waveguide through which the

electron beams propagate. Assuming the equilibrium self-electric and self-magnetic fields

of the beams to be negligibly small, we describe the unperturbed beams by the following

equilibrium distribution function

fo(X,p")= z foa(X,p~)= E G.(r,)F.(pipz), (1)
a=1,2 a=1,2 ela
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with 27rf G,(r,)rgdr, = 1 and 2r f F,(p, p2 )pdpdp, = 1. In Eq. (1), -e is the electron

charge, p. and p± = (p2 + p2)1/ 2 are the electron axial and perpendicular momentum

components, respectively, r. is the electron guiding-center radius, and I, and V, =

f v2Fad~p are the current and average axial velocity of beam a, respectively. Note that

the variables r,, p., and pi are the constants of the unperturbed single electron motion

in the uniform magnetic field Boe, and therefore, the equilibrium distribution function

fo solves for the zeroth-order Vlasov equation.

To derive a complete set of ordinary differential equations describing the self-consistent,

slowly varying, axial evolution of cyclotron space-charge waves in a single-frequency,

stationary-state, double-stream cyclotron maser amplifier, we express the axisymmetric

wave fields in terms of a vector potential of the form

A(r, z, t) = A-(r, z, t) 2 , (2)

where the axial component of the vector potential is defined by

A,(r, z, t) = - E A,(z)C±. Jo(kL,,r) exp{i[0 k,,(z')dz' - wt]} + c.c (3)

and the transverse components A,.(r, z, t) and AO(r, z, t) are ignored. The electric and

magnetic field perturbations are then uniquely determined from Eq. (3) using the Lorentz

gauge condition. In the regime considered in the present analysis, the neglect of the

transverse components of the vector potential is justified because the coupling is primarily

through electrostatic forces due to a large Doppler upshift of the cyclotron frequency.

In Eq. (3), the index n designates a TMOn type of transverse-magnetic mode, and

Jo(x) is the zeroth-order Bessel function of the first kind. The transverse field profile

Jo(k±,nr) corresponds to that of the vacuum TMOn mode, provided that the boundary

condition Jo(kL,,b) = 0 is satisfied. Here, b is the waveguide radius, k1 ,, = p,/b, p, is

the n-th zero of Jo(x), and

CjLn = 70/ 2p,,J_(,, (4)
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is a normalization constant. In the present model, the coupling between the wave fields

and the beam density and current perturbations is described by the slowly varying wave

amplitudes A,(z) and the slowly varying axial wave numbers k2,(z). It should be noted

that the axisymmetric vector potential in Eq. (3) is expressed as a superposition of a

complete set of the vacuum TMOn modes and thereby allows us to treat both electro-

static waves and electromagnetic waves on the same footing. Detailed discussions of this

expansion technique can be found in references [6] and [7].

From the Lorentz and Maxwell equations, it can be shown that a complete set of

normalized ordinary differential equations governing the double-stream cyclotron maser

amplifier is given approximately by

dpni y In= 2() - + - (5)di P ,:p

d~ 00 X.1rr 2  
2 an] 1 dkzn dan\

(1 - Zk )an + _ CsS nO + an + 2k 2 n sin On, (6)

_L const , (7)

and

C12a, 2 2 da 00
j2+(i-k-k2.)an+i 2k n +a = i E E gn.(Xnl exp (-il)) . (8)

d=-oo a=1,2

The procedure of deriving Eqs. (5)-(8) can be found in [6].

Equations (5)-(7) describe the dynamics of an individual beam electron. In our sim-

ulations, we solve numerically 6N of such equations of motion for N macroparticles

representing the electrons of each beam, where N = 1024 is typical. The phase O, is

defined by

Oni(z, 0, 9, t) = j k2n(z')dz' - wt + l tan-'(py/p.) - l9g + 17r/2 (9)

and represents the l-th harmonic gyrophase of the electron relative to the phase of the

n-th mode, where Og const is the polar angle of the guiding center of the electron.
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X,,(r,,rL) = J,(kfL.r,)J(kflrL) is a geometric factor and rL is the Larmor radius of the

electron. The normalization is such that i = wz/c, k2, = ck,,/w, P-j = pj/mc, P, =

pZ/mc, ne = fl/w = eBo/mcw, etc., (which is equivalent to setting m = e = c = w = 1,

where m is the electron rest mass, and c, the speed of light in vacuum).

Equation (8) describes the self-consistent evolution of both the normalized wave am-

plitude a,(i) and axial wave number k,,(i). The dimensionless coupling constant in

Eq. (8) is defined by

gna = 87r ( kL CL)(o(10)
W kJin IA

where IA = mc3/e = 17 kA is proportional to the Alfv6n current. The notation (X), =

N- 1 J=j X1 denotes the ensemble average over the particle distribution of beam a.

The average electromagnetic power flow (i.e., Poynting flux) through the waveguide

cross section at the axial distance z is given by

00

P(z) = ZPn(z) , (11)
n=1

where

P.(z) = ckn(Z) '( )'a2(z) (12)
87r w ck i C 1

is the power contributed by the n-th mode and Po = m 2c5/e 2 = 8.7 GW. Moreover, the

average rf e-beam power flow is given by

P6 = a Po ( )) (13)
a=1,2 IA

From Eqs. (6), (8), and (10)-(13), it follows that the total rf power is conserved, i.e.,

P(z) + Pb(z) = const.

The mathematical formulation presented above is readily used to examine the stabil-

ity properties and saturation levels of cyclotron space-charge waves on two relativistic

electron beams co-propagating in a finite magnetic field. In principle, the present for-

mulation is also applicable in regimes where the gyromotion of the beam electrons is
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negligible, (i.e., B0 -+ oo), as in the two-stream relativistic klystron amplifier [8],[9] con-

figuration. The latter case is obtained by setting the cyclotron harmonic number l equal

to zero for each beam. In the remainder of this paper, we present results of a single-mode

analysis in which we let n be a single integer but allow the cyclotron harmonic number

I to assume integers 0, ±1, i2,.. ..

III. ELECTROSTATIC DISPERSION RELATION

In the small-signal regime, we can linearize Eqs. (5)-(8) and derive a dispersion re-

lation. Making an electrostatic approximation (k2 + k2 > w2 /c 2 ), and choosing the

equilibrium distribution function in Eq. (1) with

1
G.(r,) = 6(r, - r,,) (14)

and
1

F.(p±,p 2 ) = 8(p± - P±1 )6 (p. - P.') , (15)
27rpL,

it is readily shown that the dispersion relation for the n-th mode can be expressed as

DL(w,k)=l- Z Z Eac2 k 2  = 0. (16)
1=oa,=1,2 (w - k~v2,, - 1~/a

In Eq. (16), we have neglected terms of order (w - k2 v2 , -l~/,)- 1 . Neglect of this term

is well justified whenever k±/k, < 1, as is the case of present interest. The normalized

coupling constant is defined by

4 (Ic ' J (klnrc)Jl(klnrrt) 2

T, " 7 #_ '\I l ka bJ6(k.n b) '

which is related to gn,, defined in Eq. (10). Here, y = (1 + pi2 + pI") 1/2_

1, = $±./-., - = (1 - Il.2)-1/2, rTL = paL/mlc is the electron Larmor radius of

beam ce, and JI(x) is the first-kind Bessel function of order 1. The electrostatic dispersion

relation (16) has been derived previously [3] in cylindrical geometry using kinetic theory
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in the context of a coherently gyrophased electron beam [3],[10], and it is a generalization

of a previously obtained dispersion relation [11] for an unbounded system.

IV. NUMERICAL ANALYSIS

We have developed a computer simulation code to integrate Eqs. (5)-(8) numerically.

The code has been benchmarked against the linear theory in Sec. III in the small-signal

regime. The results of the benchmark simulations are summarized in Figs. 3-5 for the

choice of system parameters listed in Table I, where the TM0 2 mode is chosen to maximize

the coupling strength.

The (linear) intensity growth rate is plotted in Fig. 3 as a function of frequency.

The solid curve is obtained from the electrostatic dispersion relation (16), and the open

circles are results from the simulations using Eqs. (5)-(8) which are based on the full

Maxwell equation rather than the Poisson equation alone. There are two unstable regions

separated at the resonant frequency f = 34.4 GHz at which the system is stable. The

maximum growth rate is 40 dB/m, which occurs at f = 26 and 40 GHz. The fact that

there is good agreement between the simulations and the dispersion analysis, as shown

in Fig. 3, illustrates that the coupling is indeed primarily electrostatic.

The axial evolution of the normalized wave amplitude is plotted in Fig. 4 for f = 40

GHz. At saturation the ac electromagnetic power flow P 2(z) is rather low (< 1 kW)

compared with the dc beam power because the wave is primarily electrostatic. Therefore,

in order to assure an efficient operation of the maser, an effective input and output

coupling scheme is to be sought

The phase space of the electrons, (b 26,y), is shown in Fig. 5 at the initial position

z = 0 and the final position z = 200 cm. In Fig. 5, the open circles represent the

macroparticles in beam 1 and the open squares represent the macroparticles in beam

2. At z = 0, the gyrophases of the macroparticles in both beams are slightly bunched
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relative to the wave phase so that a small wave amplitude can be assigned initially in

the simulation. At z = 200 cm, the gyrophases of the macroparticles in beam 1 (the

circles) are well bunched at the phase 0 = 02 ~ 37r/2, whereas the gyrophases of the

macroparticles in beam 2 (the squares) are well bunched at the phase ;b = 02-1 e 7r/2.

One beam bunching out of phase relative to the other beam is a characteristic of the

unstable two-stream interaction.

Having found good agreement between theory and simulation for a special choice of

the distribution function defined in Eqs. (1), (14), and (15), we have used the code to

examine the sensitivity of the growth rate to axial velocity spread within each electron

beam. In particular, we have loaded the particles in each beam with a Gaussian axial

momentum distribution. The result is shown in Fig. 6, corresponding to the choice of

system parameters used in Fig. 3 at the upper maximum gain frequency f = 40 GHz. The

horizontal axis is a fractional momentum spread defined by ou,/p, = pz /Pzl = Opz2/Pz2,

where oa,2 is the standard width for beam a. It is seen in Fig. 6 that the growth rate

decreases rapidly with increasing spread due to the fact that there is a large Doppler

upshift in the frequency. This sensitivity to axial beam temperature is similar to that in

the cyclotron autoresonance maser (CARM) [4],[5).

V. CONCLUSION AND DISCUSSION

We presented the first self-consistent nonlinear model for studies of the recently pro-

posed double-stream cyclotron maser in particular and the cyclotron two-stream insta-

bility in general. The model was used to analyze the linear and nonlinear coupling of the

cyclotron space-charge waves on two weakly relativistic electron beams co-propagating

along a uniform magnetic field with an inverted population in the perpendicular momen-

tum. The growth rate and saturation level of the cyclotron two-stream instability were

determined from small-signal theory and computer simulations for parameter regimes of
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experimental interest. Good agreement was found between linear theory and simulations

in the small-signal regime. When the Doppler upshift in frequency is much greater than

the cyclotron frequency, the instability growth rate was shown to decrease rapidly with

increasing axial velocity spread within each electron beam.

It was shown that the cyclotron two-stream instability is primarily electrostatic. As

a result, the electromagnetic energy flux through the waveguide cross section was found

to be negligibly small. This calls for further exploration of an efficient input and output

coupling scheme for the double-stream cyclotron maser. Such a need for identifying

efficient coupling schemes is shared with other slow-wave systems as for example the

relativistic klystron.

The numerical calculations performed in this paper assumed for simplicity two over-

lapping annular relativistic electron beams. However, the theory presented in Sec. II is

also applicable to annular beams of different radii. When the radii differ, the gain is

reduced, as expected.
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Table I. Parameters used for the numerical analysis

Resonant frequency 33.4 GHz
Operating mode TM0 2 (n = 2)

Waveguide radius 2.54 cm
Axial magnetic field 503 G

Beam 1

Current 100 A
Voltage 137 kV

VnL/c 0.2
Guiding-center radius (r,)1  0.88 cm

Harmonic number 1 1
Coupling constant f121 1.0 x 10-1

Beam 2

Current 100 A
Voltage 163 kV
V12/C 0.2

Guiding-center radius (r,)2  0.88 cm
Harmonic number I -1

Coupling constant f-122 9.2 x 10-
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FIGURE CAPTIONS

Fig. I Schematic dispersion diagram for a two-stream system in a finite axial magnetic

field.

Fig. 2 Schematic of a double-stream cyclotron maser. (a) Cross section of the maser

showing the two annular beams and (b) overall view.

Fig. 3 Intensity growth rate as a function bf frequency for the choice of system

parameters listed in Table I. The solid curve from linear theory [Eq. (16)] and the

circles from simulations using Eqs. (5)-(8).

Fig. 4 Normalized wave amplitude as a function of the interaction length z at f = 40

GHz for the choice of system parameters listed in Table I.

Fig. 5 Phase space of the beam electrons at (a) z = 0 and (b) z = 200 cm, corresponding

to Fig. 4.

Fig. 6 (a) Intensity growth rate and (b) saturation wave amplitude as a function of the

fractional axial momentum spread o,,/p2 = Oup1/pz1 = -7pz2/Pz2.
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