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Abstract

A capillary injection system has been installed on Alcator C-Mod which allows the

localized introduction of gaseous species at a variety of poloidal locations. An

experimental programme has been undertaken to observe impurity puffs with a CCD
camera through appropriate optical filters. The comet-like shape of an ion line emission

plume formed in the region of an injection graphically displays the direction of background

Deuterium flow as well as that of the poloidal impurity ion drift. Parallel and cross-field

one-dimensional fluid models are used to characterize the plume shapes and extract the

background plasma temperature and parallel flow velocity and the impurity ion poloidal

drift. Model results are benchmarked against simulations of DIVIMP, a Monte Carlo

code, and fast scanning probe measurements. In addition to elucidating local edge impurity

transport, the experiments present a novel diagnostic technique.

1. Introduction

Observing the line emission patterns formed in the region of the scrape-off layer of

an impurity puff provides unique opportunities for investigation of impurity transport as

well as diagnosis of the background plasma. The experiments on Alcator C-Mod [1] have

involved imaging plumes at a range of poloidal locations in a variety of plasma discharges,

with both lower and upper x-points, in normal and reversed field configurations. This

paper discusses general observations, focusing on analysis of the first charge state plumes

formed at the inner-wall midplane viewed from the outboard.

Such plumes have been observed and modeled on other machines. Two methods

of modeling these emission patterns have been employed: the use of a complex fluid or

Monte Carlo code, as was done by Matthews [2], McCracken [3], and Pitcher [4], and the

use of simple analytic coulomb collision and ionization relations, as was done by Pitcher
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[5]. An intermediate approach has been taken in this work, namely using fluid models

which are more complete than the simple analytic relations, but simple and straightforward

enough for ease in implementation and interpretation. A benefit of this method is the

potential to analyze a large number of images in relatively short order, allowing the

technique to be used as a regular diagnostic. The efficacy of this fluid paradigm is

evaluated by comparison with calculations of DIVIMP [6,7], a Monte Carlo code, and with

measurements of the C-Mod fast scanning probe [8,9]. It should be noted that while the

proposed methodology was different, plasma parameter extraction from impurity plume

shapes has been previously discussed by Stangeby and Elder [10].

2. Experiments

The primary tools for the experiments are shown in figure 1. The Neutral gas

INJection Array (NINJA) is a capillary puffing system which can deliver gaseous species

at 20 poloidal and 5 toroidal locations [11]. Puff locations discussed below are labeled A,

B, and C for reference. Line emission patterns produced in the vicinity of the puffs are

imaged with CCD cameras through selectable optical filters with the two views marked on

the figure. The cameras are located outside the vessel, with coherent fiber bundles leading

to a standard C-mount lens at the view. The cameras are controlled with Multiple

Automatic Camera Exposure Control and Display (MACECAD) units [12]. Profile

measurements of density, electron temperature, floating potential, and parallel flow in the

SOL are provided by the fast scanning probe at the poloidal location shown in the figure.

All of the discussed experiments were performed in 800 kAmp, 5.3 Tesla on axis, single-

null diverted discharges.

The shape of the ion plumes observed is typically comet-like, with a tail extending

along the field line towards the nearest strike-point. An example of this is shown in figure

2. For this lower x-point shot, Nitrogen was puffed simultaneously at the inner and outer

divertors (locations B and C) while viewed with the top camera through an N-Il filter. The

tail of each plume is directed towards the appropriate strike-point, CCW viewed from the

top at the outer divertor and CW at the inner. This behaviour is observed through both -II

and -III filters, regardless of BxVB drift direction, x-point location, or other discharge

parameters. Figure 3 shows contour plots of C-II plumes during methane puffs at the

inner midplane (location A) observed with the side camera in upper and lower x-point

shots. In both cases, the parallel flow is directed towards the appropriate strike point.

Work has focused on the inner-wall midplane because of the excellent view

accorded by the side camera, and because the geometry and transport can be easily

unfolded. Neutral emission (observed for He-I during Helium injection) is seen to be
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circular in shape, approximately Gaussian in profile with a FWHM of 3.5 cm about the

injection site. The ion profiles, as mentioned above, are asymmetric. This asymmetry is

attributed to coulomb collisions with flowing background Deuterium. One might posit

other explanations, such as a local radiative cooling effect, but such hypotheses are

disproved by the observation that a plume shape does not alter with a change in gas

injection rate. While the emission profile shapes are obviously dominated by parallel

transport of the ions (competing with ionization to the next charge state), evidence of

perpendicular transport is seen as well. In shots with a downward BxVB ion drift

direction, the plumes are seen to have upward deviations from the field line, indicating

poloidally upward impurity ion drift.

3. Model

Two-dimensional plumes are integrated across and along the field line to obtain

parallel and perpendicular profiles respectively. These profiles are modeled with the fluid

equations discussed below. While the impurity ions lack self-collisionality, the high

collisionality these ions have with the background Deuterium lends validity to the

application of local fluid parameters [111. Analysis is restricted to the first charge state of

the impurities.

The parallel transport of the ions is characterized with a set of continuity,

momentum, and energy equations (where x is the parallel spatial variable):
d

-(nv)= Sn - nne < ov >i (1)
dx

d(nv2 +nT nvD v-nvne <'v >i (2)
dx m Iv
d (1 3  5nT TD-T-(-y+--v)=n +

dx 2 2 m TT

nvVD -(-nv 2+ 3- )ne <Gv>i (3)
TV 2 2 m

for which unscripted variables represent impurity ion parameters, ne the background

electron density, TD and vD the background Deuterium temperature and parallel velocity,

and the rate coefficients the ionization to the next charge state. The appropriate coefficients

given by Bell [13] are used. The particle source term, Sn, constitutes ionization from the

neutral state. Its shape is taken as that of the observed neutral emission profiles (Gaussian,

FWHM of 3.5 cm). The characteristic momentum (Tv) and energy (TT) equilibration times

given by Spitzer [14] are employed to account for coulomb collisions with the background

plasma. The background plasma values are taken as constant. Three inputs are needed (ne,

TD, and vD) to solve the equations for the three outputs (profiles of impurity ion n, T, and
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v). To match an experimentally observed profile with a modeled density profile, n, the

electron density, ne, is taken as given (provided by scanning probe measurements), and the

background plasma temperature and Deuterium ion velocity are found which provide the

best fit.

The perpendicular behaviour of the ions is characterized with a continuity equation

(where z is the spatial variable):

-D +v+ne < v>i n= S e- (4)
dz2  dz

where D and v are the poloidal diffusion coefficient and drift velocity respectively. The

Gaussian form of the particle source has been inserted (with X = 2 cm). Assuming D and

v are constant, this equation can be solved analytically in terms of error functions. Because

the characteristic diffusion lengths are much smaller than the width of the source, the

solutions are insensitive to the value of D employed. To match a given perpendicular

profile, the density (provided by the scanning probe or other means), temperature (found

with the parallel solution), and diffusion coefficient are taken as given, and the value of

poloidal drift velocity which provides the best fit is found. In summary, for a given two-

dimensional plume and specified background electron density, equations 1-4 are used in

tandem to find the background temperature, the background Deuterium parallel velocity,

and the impurity ion poloidal drift.

DIVIMP (DIVertor IMPurities), a three dimensional edge impurity transport

Monte Carlo code, is used to benchmark the model. DIVIMP accounts for phenomena not

covered by the fluid equations, namely partial collisionality and three-dimensional aspects

of impurity transport. Further, the comparison provides a check against a code with a

proven track record. The results of one such comparison are shown in figure 4. For this

case, typical edge density and temperature radial profiles, a parallel Deuterium velocity of

13000 m/sec, and a poloidal impurity ion drift of 1500 m/sec are modeled to produce a

plume which is integrated to obtain the parallel and perpendicular profiles. Using the

plasma density at the radial location where DIVIMP gives the C-Il density as peaked (ne of

2.3x10 19 m-3), the best fluid model fits are shown in the figure. The resultant temperature,

16.2 eV, compares with 17 eV at the radial location where C-Il is peaked. The fluid model

found velocity values of 12400 and 1800 m/sec are within 5 and 15% of the DIVIMP

modeled values respectively.

4. Results

An example of the fluid analysis for an experimental plume is shown in figure 5.

This plume was observed in a lower x-point discharge with a core volume averaged
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electron density (ife) of 2. 1x10 20m- 3. The electron density measured by the scanning
probe at the appropriate flux surface is employed (5.6x10 19m- 3). While the scanning probe

and plume are at different poloidal locations (see figure 1), one expects plasma pressure

outside of the divertor region to be conserved along a field line, meaning that if the plume

derived temperature matches that measured by the scanning probe, the accuracy of the

density used by the model for the inner-wall puff location is verified. The temperature

found with the parallel solution, 10.2 eV, does show agreement with that of the scanning

probe (9.5 eV). A parallel Deuterium Mach number of .4 (towards the lower divertor) and

a poloidal impurity ion drift of 365 m/sec (upward) are found. If this drift is due to ExB, it
would correspond to a radially outward electric field of 2920 V/m.

Error analysis shows the uncertainty of resultant temperature and poloidal drift to

be relatively small. Uncertainty in the temperature, primarily due to possible error in the

employed density, is 10% or less, and uncertainty in the drift velocity, primarily due to

uncertainty in the ionization rate coefficients used by the model, is on the order of 20%.

For Mach number, the accuracy of the assumed density is critical. Roughly speaking, the

Mach number will be known only as well as is the electron density at the plume location.

If the uncertainty of that density is 20%, the error bar on the Mach number will be about

20% as well.

Parameters derived from plume analysis for one C-Mod run are compared with

scanning probe measurements in table 1. All of the shots had lower x-points. The values

of e, along with the measurements of temperature, Mach number, and electric field are

listed. Fast scanning probe Mach numbers are derived from the ratio of upstream to

downstream ion saturation current with the Hutchinson formulation, which sets

momentum and particle diffusivities equal in its derivation of the appropriate fluid

equations [15]. Radial electric fields at the scanning probe are calculated by taking the

derivative of the plasma potential found with standard Langmuir probe theory.

While the temperature comparison in the table is a quantitative one, the Mach

number and electric field comparisons should be viewed qualitatively. Excellent

temperature agreement is shown in the third and fourth columns, validating the model use

of the scanning probe measured electron density. The scanning probe measurements of

Mach number indicate the order of magnitude of flow velocity one would expect in the C-

Mod SOL outside the divertor region. Mach numbers obtained from both the plumes and

the probe range between .1 and .5. The negative values for the scanning probe

measurements indicate flow towards the outer strike point (as opposed to the flow towards

the inner strike-point indicated at the inner-wall). Electric field values on the order of 103

are seen by both measures. The observation that plume and scanning probe measured
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electric field are often much different is not surprising, both because different values are
expected at the two locations, and because the uncertainty of the calculated electric field at
the scanning probe is about 50%.

5. Conclusions

These experiments have demonstrated that plumes can play a unique role in
diagnosing the C-Mod edge layer. The direction of flow of the background Deuterium
ions and the direction of the impurity ion drift are clearly seen in the raw experimental data.
This on its own is of value because of the great flexibility and ease of use of the technique.
Plumes can be observed wherever a capillary puff location with a view available of it is
located. A relatively simple fluid model can be used to determine the background
temperature, parallel flow velocity, and impurity ion poloidal drift. The model paradigm
has been shown valid through quantitative comparison with DIVIMP and scanning probe
measured temperature, and qualitative comparison with scanning probe measures of Mach
number and electric field. With a more complete system, density and other parameters
could in principle be extracted with this technique. However, as the plumes are now
viewed and modeled on C-Mod, a reliable independent measure of density is required for

analysis.
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Fig. 1 - Layout of plume experiments on the Alcator C-Mod tokamak: the capillary puff
locations utilized in the experiments discussed are marked with arrows and labeled for
reference; eyes indicate the CCD camera views; the fast scanning probe poloidal location
and trajectory are shown.

Fig. 2 - Top camera view through N-Ifilter of simultaneous Nitrogen puffs at inner and
outer divertor (locations B and C). The tail of each plume extends along the field line
towards the appropriate strike-point.

Fig. 3 - Contour plots of images of methane puffs at inner-wall midplane (location A)
viewed by side camera through a C-II filter in lower and upper x-point discharges;
background Deuterium ion flow is indicated towards the appropriate strike-point in both
shots.

Fig. 4 - Best fluid model fits to integrated parallel and perpendicular profiles of C-II
plume produced by DIVIMP. DIVIMP utilizes typical C-Mod edge profiles of density and
temperature. Using the electron density at the radial location where DIVIMP has C-II
ions peaked, the fluid model fits a temperature of 16.2 eV (compared with 17 eV at the flux
surface of the employed density), a parallel Deuterium flow velocity of 12,400 m/sec
(13,000 input to DIVIMP), and an impurity ion drift of 1800 m/sec (1500 input to
DIVIMP).

Fig. 5 - Best fluid model fits to integrated profiles of an inner-wall midplane (location A)
N-II plume viewed by the side camera. Using the electron density measured by the
scanning probe at the appropriate flux surface, the model fits to a temperature of 10.2 eV
(compared with 9.5 eV measured by the scanning probe), a Mach number of .4, and a
poloidal impurity ion drift of 365 m/sec.

Table 1 - Plume and fast scanning probe measurement comparison for shots of one run.
While temperature comparison should be viewed quantitatively, comparisons of Mach
number and radial electric field are meant to be qualitative (since measurements are made
at different poloidal locations).

Core ne Temperature (eV) Mach Number Er-Field (V/m)
x1020m-3  Species Plume FSP Plume FSP Plume FSP

1.5 N-II 7.5 8.0 .20 -.44 1360 1100

2.1 N-II 10.0 9.5 .35 -.32 2190 1900

2.1 N-II 10.0 9.5 .40 -.36 2920 1500

2.3 He-II 17.0 15.5 .15 -.20 1080 3700

1.7 He-II 20.0 20.5 .25 -. 14 420 5000

1.2 N-II 8.0 8.0 .25 -.36 520 1500
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