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Abstract

Plasma confined in a magnetic dipole is stabilized by the expansion of the magnetic flux.

The stability of to low beta electrostatic modes in a magnetic dipole field is examined when

the distribution function is to lowest order Maxwellian. It is shown that for sufficiently

gentle density and temperature gradients the configuration would be expected to be stable

to magnetohydrodynamic interchange, as well as to dissipative trapped ion and collisionless

trapped particle modes. These results are applicable to any magnetic configuration for

which the curvature drift frequency exceeds the diamagnetic drift frequency.
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I. Introduction

The dipole magnetic field is the simplest and most common magnetic field configu-

ration in the universe. It is the magnetic far-field of a single, circular current loop, and

it represents the dominant structure of the middle magnetospheres of magnetized planets

and neutron stars. The use of a dipole magnetic field generated by a levitated ring to

confine a hot plasma for fusion power generation was first considered by Hasegawa'. As a

confinement configuration for magnetic fusion a dipole possesses uniquely good properties.

The coil set is simple and axisymmetric. Operation is inherently steady state and the large

flux expansion is expected to simplify the divertor design. Vis-a-vis a tokamak there is no

need for current drive and no disruptions. It is expected to have good magnetohydrody-

namic (MHD) properties, including plasma pressures that can locally exceed the magnetic

pressure, i.e. # > 1, and excellent confinement properties. By levitating the dipole magnet

in order to prevent end losses, conceptual reactor have studies supported the possibility

of a dipole based fusion reactor 2- 4 . In this paper we will focus on the stability of drift

modes that are thought to degrade confinement in fusion grade plasmas.

For a plasma confined in a levitated dipole the pressure falls off (moving away from

the internal coil) in a region of "bad" curvature. In this situation it is well known that

stability can be obtained due to the so-called compressibility and there is a critical value

of the pressure gradient that can be confined stably. The dipole reactor concept is based

on the idea of generating pressure profiles near marginal stability for low-frequency MHD

fluctuations. From ideal MHD, the marginal stability of interchange modes results when

the pressure profile satisfies the adiabaticity condition, 6(pV' ) = 0, with p the plasma

pressure, V is the flux tube volume and -y = 5/3. We derive the equivalent condition

from the drift kinetic equation. In the derivation of the dispersion relation for low fre-

quency interchange modes from the drift kinetic equation the stabilizing term derives from

the square of the curvature drift frequency (Eq. [8]) and there is no need to make the

assumption of an equation of state. This derivation therefore derives from first principles

and clarifies the origin of compressibility in MHD.
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The ability to confine plasma at high beta makes the dipole configuration particularly

well suited as an advanced fuel reactor. Ignition in advanced fuel plasmas such as D3He,

requires particularly good confinement properties. Since the magnetic field is entirely in

the poloidal plane there are no particle drifts off the flux tubes (which in a tokanak result in

a "neo-classical" degradation of confinement). In this paper we show that plasma confined

in a levitated dipole may be expected to be free of drift wave turbulence and therefore a

dipole based reactor may be expected to attain classical confinement.

Hasegawa has pointed out', that when the plasma is sufficiently collisionless, the

equilibrium distribution function may be by Fo = Fo(p, J, 4), with p the first invariant,

P = v'/2B, J the second invariant, J = f ds v11, and 0 the flux invariant. For fluctuations

in the range of the curvature drift frequency, flux is not conserved and a collisionless

plasma can approach the state &F/(9 -- 0. Furthermore when 8F/&4' = 0 the plasma

can be shown to be stable to drift frequency fluctuations. This condition leads to dipole

pressure profiles that scale with radius as r- 2 0/3, similar to energetic particle pressure

profiles observed in the planetary magnetospheres- 6 .

In a conceptual reactor confinement must be maintained on a collisional time scale.

Therefore we would expect the distribution function to be, to lowest order, Maxwellian, i.e.

Fo(p, J) -+ Fo(E, 4) and therefore OF/o4 5 0. In this article we assume to lowest order a

Maxwellian distribution function for both ions and electrons and we derive the condition

for marginal stability to MHD interchange modes as well as collisionless and dissipative

trapped ion modes. We find that each of these collective modes becomes stable when the

density and temperature gradients are sufficiently gentle. Therefore a plasma confined in

a levitated dipole field may be expected to be particularly stable to collective modes and

for sufficiently gentle gradients may exhibit classical confinement.

These results are applicable to any magnetic configuration for which the curvature

drift frequency is comparable to the diamagnetic drift frequency such as a low aspect ratio

tokamak.
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II. Electrostatic, Trapped Particle Modes

To derive the stability criterion for electrostatic modes we consider a fluctuating elec-

trostatic potential, # and ignore any equilibrium electrostatic potential. From Faraday's

law it is possible for a perturbation to leave the magnetic field undisturbed if E = -VO,

which is consistent with # < 1. If q varies along a field line, there will be a finite Ell (a

situation not possible in ideal MHD theory).

We analyze the stability of such a perturbation under the assumptions that the wave

frequency w is less than the cyclotron frequency Q, and that the ion Larmor radius pi is

shorter than the perpendicular wavelength A = 27r/k± which is, in turn, short compared

to a parallel wavelength, 27r/klj. The appropriate equation for the distribution function f

is 7,8

1= qOFo, + Jo(k- p)h (1)

and h satisfies

(w - Wd + ivjlb - V') h = -(w - w.)qFoJo(kip) + iC(h). (2)

Fo(e, ) is the equilibrium distribution function and V' is the gradient at constant e and

pI.

Foe = -- ,o (3a)

b x k± -V'F (3b)
w.~~ =ob-m~c Fo6

(mV 2b -Vb + PVB)
Wd = k -b x (3c)

B = V x VO, (3d)

b = B/IBI. (3e)

Jo(kip) is the Bessel function of the first kind and 0 is the azimuthal angle.
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We consider a perturbation whose growth time is long compared to a particle bounce

time and obtain the result that h is a constant along a field line h = ho(e, p, 0). We can

then determine the constant by taking the time average of Eq. (3),

- (w - w*) qFoJo
ho (W d+iq) (4)

The overbar indicates a time average and V' is the gradient at constant e and p.

1 dl 
(5a)

TB |vil|I

TB = . (5b)

For simplicity the collision operator has been replaced by a Krook model in Eq. (4), i.e.

C(h) -- -vh with v3 the appropriate collision frequency.

III. Fast Growing Modes

To explore modes that grow on the MHD timescale we assume that w > Od > v3

and expand the denominator of Eq. (4) to obtain for the perturbed particle distribution

function

[b x k. -V'Fo Wd b x kL -V'Fo d 1d
f=qOFo, - qF& J0+ I +WW 2'Fo,- - qOJO2. (6)f=q4o-qb~e~+[ m~w w m~cw w w0J

We determine the eigen frequency w by requiring that the mode be quasi neutral. We

expand JO as J2 oc 1 - (kLpi) 2 in the first term, but neglect the k2p? correction in the

second term. With these assumptions the quasi neutrality condition becomes

= q ) k + (W*&d - . (7)

The terms proportional to 1/w have cancelled in the sum over species. Consider first the

case when the eigenmode is flute-like, i.e. l, lv = 0. In this limit we can solve for w 2

to obtain:
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22 d3v Fo,3d (aid -(w)

q2 fd 3 v Fork v /2 . (8)

In out convention w > 0 and for a dipole there is "bad" curvature, i.e. Wd > 0. Flute-like

(interchange) modes are nevertheless stable when f d3v Fo(Od 2 - Iw.Owl) > 0. Defining

S= f Fow,. d3v , C0 = f FoaiV d3v and approximating f Fow.Od d3v ; (1 + )QCOd with

7= Vln(T)/VIn(n), we see that stability requires:

Od > (1 + 77)CO, (9)

i.e. r > Rc with r,. p/Vp and Rc is the radius of curvature.

Under some circumstances non-flute-like "trapped particle" modes can grow on the

MHD timescale'. These fast growing modes can be investigated by constructing a quadratic

form. We multiply Eq. (7) by */B and perform a flux tube (f dl/B) integration. Writing

jdv=27rB dedy
fd~v=m2Iv

interchanging the order of integration, and solving for w2 gives:

2 Eq q 2 $ f ded-rB&2Fo( - w*) (10)
-L0 ==_ (10)E, q22 , dedpIB (-F 6) ( 2 - ) +42 k p}

The quadratic form, Eq. (10) is variational with respect to 0 and since the denomi-

nator is positive definite, if we can find a trial function for 0 such that w2 < 0 the true

eigenfunction will give an even larger growth rate. The numerator of Eq. (10) can be pos-

itive for regions where the magnetic field curvature is concave with respect to the plasma

if w, > Od. When the drive is localized the eigenfunction tends to concentrate in these

regions. The denominator, however, is small for trial functions which are spread out. The

actual eigenfunction is determined by the balance between concentrating in regions of high

curvature to make the numerator larger and spreading as much as possible to make the

denominator smaller. For a mode that localizes on the outer midplane of the torus the

6



deeply trapped particles feel the full strength of the mode while the passing particles feel

a reduced "average" fluctuation.

For a dipole we have seen from Eq. (9) that interchange stability requires that Cod > w.

Since for a dipole, wd is largest at the outer midplane, we see that when a levitated dipole

is stable to interchange modes it will also be stable to fast growing trapped particle modes.

IV. Drift Frequency Modes

Lower frequency modes can be destabilized by the resonance at w = Od (Eq. 4).

To evaluate the stability of the resonant modes we begin with Eq. (4) and apply quasi-

neutrality:

q2  d3 v Fo00 = q2 J d3 v J2Fo w - b x k V'Fo/(mQFo,)
q qI

Multiplying Eq. (11) by 0* and taking a flux tube average yields:

+ J V JF 2 w - b x k .V'Fo(meFo 2
(1 + Te/Tijfd v Fo k2  d qo W~ OOc +.~ o (12)

The bounce-averaged quantities, T and 2 are in general functions of the pitch angle. For

a flute-like mode F= ;2 and we will show below that such modes are not unstable. A

trapped particle driven mode is localized to the outer midplane so that trapped particles

experience the mode more strongly than passing particles and 4 > 2. To obtain an

approximate dispersion relation for the collisionless trapped particle modes we extract an

average value of the bounce average quantities, q and 2 and rewrite Eq (12) as

(1 + Te/T) = J d3 v J0FOe o - b x k_ -V'Fo/(mQeFo,)] (13)
ft q W - O + ZVI
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For constant q (# = = 4 ), ft = 1. For a mode that is localized near the outer

midplane or which changes sign from the outside to the inside the trapped particles feel

the mode more strongly (ktapped ' c,.na) than the passing particles ('kas, ~ 0) and it can

be seen that ft is an estimate of the trapped particle fraction.

For a dipole the curvature is fairly uniform along the field line and we can approximate

ad -+ (e/T) * Wd in Eq. (13) to obtain:

W - W*n[1+ 77e (E/Te - +j)] + ±_[- r(e/T= ( + r)/ft (14)
\ O w- (e/T,) +iv,,-/ \ + +((d/r)(E/T) + iVi = +)/ (4

where (A) = (2/ir1/2T3/ 2) f I dee'/ 2 exp(-e/T)A, 'r Te/Ti, W*n -*nir = -kepivi-r/2rn,

= (2Ti/mi)/ 2 , pi = v/i, = eB/mic, ko = m/r, rn = -(din n/dr)-', Wd (wd), =

-(Wd)ir = kOpivi7r/2RC > 0, dln T/dln nj, and w~n 0 for dn/dr>0.

For Te = T Eq. (14) simplifies:

1O - w.n[1+ (e/T - )]\ /w + w.[1+ 7(e/T - )] 2ft (15)
w - O2d(e/T) + ive W + Od(E/T) + ivi /

V. Collisionless Resonant Mode

Equation (14) was analysed by Tagger et al. 10 and by Tang et al. 11 for the tokamak

case, i.e. when c% > d. We have seen that for a dipole MHD stability requires C. < Cd.

Consider first the collisionless mode (ve - vi - 0). If we define Q = w/wd, Q* =

W*n/d and *T = r/Q Eq. (15) becomes:

Q + -.(3/2-1/r- e/T)\ /Q- *T( 3 /2 - 1/-e/T) \ 12K ( - E/T - + \ Kl+E/T / (1)

Noting that

K +A >=l+/A-e/T\
\ + E/T| \+ -/T|
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Eq. (16) can be written as

9*T(3/2 - 1 r7)/(1 - KT) + E *T(3/2 - 1/rl)/(1 - ,*T) + e/T 2/ft - 2

\ G- eT Q \ C elT Q -,T'
(17)

Equation (17) has complex solutions, Q =, + -y. Consider marginal stability, f2 = ,=

Qo, with Ro > 0. The singularity in Eq. (17) is removed when

-, __T(3/2 - 1/r7) (18)
1 - Q*T

Substituting into Eq. (17) we obtain an equation for Qo:

Ko - e/T 1 + (2/ft - 2) (19)
\go+ E/T/ (1 - n*)'

Since ((no - e/T)/(Qo + e/T)) < 1, Eq. (19) does not have a solution when ft = 1, which

indicates that a flute-like mode would not be unstable. For a marginally stable solution to

exist the right hand sideof Eq. (19) must be < 1 and therefore *T > 1. From Eq. (18) we

observe that when 2 *T > 1 marginal stability is obtained for r7 > 2/3. This is a necessary

condition for the existence of unstable solutions. Therefore when r7 > 2/3, the condition

n*T < 1 is a sufficient condition for stability. From the solutions that appear in Ref. 10

we observe that typically 0.5 < Qo < 2. Rewriting the stability condition we obtain:

Wd > (%T (20)

with wT = 7Z'*. Normally r7 > 1 and this condition is less restrictive than the interchange

condition: IdI > C% (1 + 7).
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VI. Dissipative Trapped Ion Mode

In the simplest approximation the dissipative trapped ion mode can be derived by

assuming collisional electrons and collisionless ions, i.e. by taking the limit ve -+ oo and

Vi -+ 0. In this limit Eq. (17) would be replaced by

E//T + Q.(3/2 - 1/7)/(1 - ) (21)
E/T - Q ,(1

with ( = (2/ft - 1)/( 2 *T - 1). The marginally stable solution to Eq. (21) is Q = o=

(3/2 - 1/7)/(Q*T - 1) and C = 1, i.e. Q*T = 2/ft (as pointed out in Ref. "). Notice that

this solution of Eq. (21) is possible when ft = 1 which corresponds to a flute-like mode.

This indicates that the dissipative mode is driven by the difference in the (collisional)

electron and the (collisionless) ion response and instability does not require a localization

of the mode in the trapped particle region.

If we take Q = no + 6 + i-y and= 1 + A with A > 0 the imaginary part yields a

constraint

= 0, (22)
Q2 + y2

while the real part gives:

Q02 +,y2

i.e. A < 0. This indicates that there is no unstable solution when ( > 1, i.e. when

f*T < 2/ft. Thus a sufficient condition for stability is C2 d > W*T/2. This condition is less

restrictive than the stability condition for either the collisionless mode or the interchange

mode.
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VII. Discussion

The results shown above are generally applicable to a magnetic confinement device

that that is stabilized by compressibility, i.e. one that satisfy's the inequality C~2d > w..

For a tokamak w*/Cd ~ A with A the aspect ratio, so that the compressibility is usually

considered to be a small correction. For a low aspect ratio tokamak, however, the stabilizing

compressibility term can become important.

The dipole reactor concept is a radical departure from the tokamak or from other

similar toroidal magnetic fusion reactor concepts. The magnetic field lines are closed, the

field is poloidal and the flux surfaces are defined by the toroidal drifts. There are no drifts

off the flux surfaces and the dipole is not subject to neoclassical effects. In addition the

high degree of axisymmetry inherent in the coil set insures the absence of non-axisymmetry

driven "ripple" losses.

Hasegawa 2 considered a collisionless plasma confined in a dipole that is characterized

by an equilibrium distribution function which is non-Maxwellian. He showed that when the

equilibrium distribution function can be characterized by FO = Fo(p, J), i.e. OFo/8& = 0,

drift frequency modes are not unstable.

We have shown that in the more fusion relevant case, when FO is Maxwellian and

therefore 9Fo/O49 < 0, the dipole may still not be subject to drift frequency fluctuations.

Therefore a magnetic dipole based fusion reactor may exhibit classical transport.
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