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ABSTRACT

An investigation is made of the effects of nongyrotropic equilibrium distributions in

the phase angle of pj on the stability properties of a relativistic electron beam propagating

along and gyrating about an applied uniform magnetic field. Perturbations are assumed

to vary spatially only in the direction of the applied magnetic field, so that generated

electromagnetic and longitudinal electric fields propagate parallel to the applied field. The

two equilibrium distributions considered are the time-dependent distribution fo(p_, p, )

with = q - ct/-y and the axial-dependent distribution fo (pi, pz, () with C = -

mQcz/pz. A Vlasov-Maxwell analysis leads to integral equations relating the field Fourier

components. These equations reduce to algebraic equations when no spread in -y is present

in the time-dependent equilibrium distribution and when no spread in pz is present in the

axial-dependent distribution. Numerical computations for these special cases show that a

rich variety of stability properties are obtained by changing the distributions in and c.

a) Permanent Address: Department of Physics, Clark University, Worcester, Mas-

sachusetts 01610
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I. Introduction

During the past two decades, extensive studies have been made of the stability prop-

erties of a relativistic electron beam propagating along an applied uniform magnetic field

B0o .'1- If the beam possesses a population inversion associated with the component

of momentum perpendicular to the field (p1), then this system may be subject to the

whistler and cyclotron-resonance maser instabilities, which initiate the process of convert-

ing electron-beam kinetic energy into coherent electromagnetic radiation. The cyclotron-

resonance maser instability provides the basis for existing and proposed electronic am-

plifiers and oscillators such as the gyrotron and the cyclotron autoresonance maser. 12- 19

With the inclusion of thermal background electrons in addition to the beam, this insta-

bility is of interest in such problems in space- and astrophysics 20- 28 as the generation of

auroral kilometric and Jovian decametric radiation.

In this paper, we carry out a stability analysis of this system (exclusive of an ambient

thermal background) using Vlasov-Maxwell theory. We make the assumption that the

spatial variation of all quantities is in the z-direction only; however, the electron beam is not

assumed to be gyrotropic in the phase angle 4 of the component of the particle momentum

normal to the z-axis. Most previous analyses of this system assume that the equilibrium

distribution is of the form fo(pi,pz), i.e. that the beam is gyrotropic. Analyses of the

nongyrotropic case are limited in number. Using the eikonal approximation, Fruchtman

and Friedland7' 8 have considered the case of a stationary amplifier with a nongyrotropic

equilibrium distribution of the form fo(p±,pz,,() = p'6(pl - p±O)6 (Pz - Pzo)g((), where

= - mQz/p. and Q, is the nonrelativistic cyclotron frequency. Kho, et al.,9 using

the same equilibrium distribution, have dropped the assumption of a stationary amplifier

but assume that the left-hand polarized perturbed radiation field can be ignored. Chen, et

al.18 consider TE modes for the case of a helical relativistic electron beam in a cylindrical

waveguide. In an application to space plasmas, Freund, et al.22 consider the case of a

diffuse electron beam propagating in a cold magnetized ambient plasma. The beam is

coherent in phase, and has a thermal spread in p- but no spread in pz.

Two equilibrium distributions are introduced in Sec. II. These are the time-dependent
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distribution fo(p±,pz, ) where = # - Qjt/y and the spatial-dependent distribution

fo (p±, pz, () where C= # - mRcz/pz. By manipulating Fourier transforms of the Vlasov-

Maxwell equations, we obtain sets of equations relating components of the perturbed

right- and left-hand polarized electromagnetic and the electrostatic fields. For the time-

dependent equilibrium, these relations are given in Eqs. (26)-(28). The relations for the

spatial-dependent equilibrium distribution appear in Eqs. (41)-(43). In either case, these

relations are integral equations, not algebraic equations. Eqs. (26)-(28) reduce algebraic

equations only if there is no spread in p (i.e., in y) in the time-dependent equilibrium

distribution. Moreover, Eqs. (41)-(43) reduce to algebraic equations only if there is no

spread in pz in the spatial-dependent equilibrium distribution.

The analysis of these integral equations is the subject of current research and is not

dealt with further in this paper. Instead, in the remainder of the paper, we deal with cases

in which the integral equations reduce to algebraic equations.

Stability properties for the case of the time-dependent equilibrium distribution with

no spread in p are considered in Sec. III. Most generally, spreads in the pitch angle

a = tan- 1 (p/Pz) and the phase angle # may be present. In this case, the integral equa-

tions (26)-(28) reduce to just three algebraic relations presented in Eq. (58) of Sec. III.A.

The corresponding exact dispersion relation, relating complex frequencies and complex

wave numbers, is the three by three determinant relation in Eq. (64). In Sec. III.B, we

consider the more restrictive case of no spread in the pitch angle a in the equilibrium

distribution. (Then, both p± and pz have definite equilibrium values.) In this case, the

dispersion relation in Eq. (64) reduces to the tenth-degree polynomial relation in Eq. (69).

Numerical computations of growth-rate curves (Imc vs. k, real) and properties of eigen-

modes of Eq. (58) are presented in Sec. III.C for the case of definite equilibrium p1 and

p, and various equilibrium distributions in .

An analogous treatment is given in Sec. IV for the case of the axial-dependent equi-

librium distribution with no spread in pz. Spreads in p' and 4 are still permitted. For

this case, it is shown in Sec. IV.A that the integral equations (41)-(43) reduce to the three

algebraic relations in Eq. (89). The exact dispersion relation for the system is given by

the three by three determinant equation (95). In Sec. IV.B, the additional condition that
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there be no equilibrium spread in pj is imposed. Then, (as in the time-dependent case) the

dispersion relation reduces to the tenth-degree polynomial equation (100) relating the com-

plex frequency and complex wave number. Numerical computations of growth-rate curves

and properties of the eigenmodes of Eq. (89) for this case are presented in Sec. IV.C.

A summary of our results and conclusions is presented in Sec. V.
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II. Formulation of the Problem

A beam consists of relativistic electrons, which propagate along and gyrate about a

uniform magnetic field Bo = B06,. Initially the beam is in an equilibrium state in which

temporally and spatially varying electromagnetic fields are absent. The initial growth rates

of these fields are obtained by regarding them as small perturbations on the equilibrium.

The system is treated as one-dimensional in the sense that the spatial variation of all

variables is in the z-direction only. Consequently, only electromagnetic waves propagating

parallel or anti-parallel to the uniform field B0 are included in this analysis. Furthermore,

equilibrium self fields are assumed to be negligibly small, so that results discussed below

are limited to the case of a small ratio of the plasma frequency to the cyclotron frequency.6

A. Equilibrium Distributions

A single-particle momentum p can be described by the components p1, pz, and 4,
where 4 is the phase angle (as shown in Fig. 1). This paper deals with two systems in

which the phase angle 4 is not necessarily random in the equilibrium distribution. One

simple constant of the single-particle motion involving # is C = 4 - It, where Q, =

eBo/mc is the nonrelativistic electron cyclotron frequency, -e and m are the electron

charge and rest mass, respectively, c is the speed of light in vacuo, t is the time, and

y= (1+ p 2 /m 2c 2 ) 1/2 = (1+p2 /m 2c 2 + p2/m 2c 2 ) 1/2 is the relativistic mass factor of the

electron. An equilibrium distribution of the form

Ao (P, t) =Af (Pi-, P., 0), 1

where

Q=- "t, (2)

corresponds to an equilibrium electron beam that is homogenous in the configuration space

at any given time. Since the equilibrium distribution (1) is nonstationary in the momentum

space, we refer to it as the time-dependent equilibrium distribution.
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Another simple constant of the single-particle motion involving 4 is

- = M - z, (3)
7 Vz Pz

where v is the electron velocity. Use of C gives rise to an alternative equilibrium distribution

fo (z,p) = fo (Pi, P, () . (4)

In this case, the equilibrium distribution is constant in time at any given z. It is analo-

gous to a typical laboratory situation where the beam is introduced into the interaction

region at some initial z = 0 with a given distribution in 4. Then, if interactions with the

electromagnetic field are excluded, the electrons move along the field lines with constant

v, and gyrate around them with the constant relativistic cyclotron frequency R4/. Con-

sequently, the phase at any value of z is the phase at z = 0 plus Q4z/y7v. We refer to this

distribution as the axial-dependent equilibrium distribution.

The time- and axial- dependent distributions are illustrated with examples in Fig. 2.

It is shown in the Appendix that the two distributions in Eqs. (1) and (4) are physi-

cally different in the sense that neither can be transformed into the other by a Lorentz

transformation.

In the remainder of this section, we derive linearized equations relating components

of the perturbed electromagnetic fields for each of the distributions in Eqs. (1) and (4).

B. Perturbation Analysis for the Time-Dependent Equilibrium Distribution.

The equilibrium distribution is of the form in Eq. (1), i.e., fo (p, t) = fo (pi, pz, ) =

fo (p±,Pz, q - ct/-y). The distribution is assumed to be periodic in and (for fixed t) in 4
with period 27r. Consequently, the normalization of fo (p±,pz, 4 - Qct/Y) over momentum

space is time-independent and is defined by

/ 00 00 27r

dpzj dpij dqp-f o (PIPZ,4- ) = 1. (5)
-'0 fo 1 7

As time progresses, the distribution evolves under perturbations into

f (z, p, t) = fo (p, t) + fi (z, p, t), (6)
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where f, (z, p, t) is considered to be a small perturbation. To first order in the perturbation,

the time evolution of this quantity is governed by the linearized Vlasov equation,

df 1 0 e
=fi (z,p,t)+- fi (z, p,t) - -v x BO -Vpf, (z, p, t)

dto c = 0 E c
= e (E3i x Bi) .Vpfo (pX, PY, PZ,01 (7)

where the total time derivative is along a characteristic of the unperturbed motion (i.e.,

z (t+T) = z+vzT, pz (t+-r) = p, pI (t +r) = p., 40(t+r) = 0 +Qcr/gamma, and the

variable of integration r is in the range from -oo to 0). The fields E1 (z, t) and B1 (z, t)

are regarded as small perturbations governed by Maxwell's equations, which in the present

treatment reduce to

,2Ej=+ (z, t) -2 1 j2 EI+ (z, t) = 4-7 -t J0 zt (8)052 12 t225t 'L( )I

0 i 0
-Ea (z, t) = ± -- BIa (z, t), (9)0Z c at

0Ez1 (z, t) = 47rp1 (z, t) , (10)

BI, (z, t) = 0. (11)

In the above equations:

E1 1, (z, t) = Ei (z, t) ± iEIY (z, t), (12)

Bj, (z, t) = B1 , (z, t) ± iBi, (z, t), (13)

J1± (z, t) = -eno] d3 p fi (z, p,t) , (14)

P, (z, t) = -eno d3 pfi (z,p, t), (15)

p = ymv+ = p± exp (±i4) , (16)

where no is the mean electron number density. The fields (El-, BI-) and (E,+, Bi+)

represent right- and left-hand circularly polarized transverse electromagnetic waves, re-

spectively, whereas the field (Elz, BI_ = 0) describes longitudinal (electrostatic) waves.

Because most of the integration of Eq. (7) along characteristics is standard, not all of

the details will be given here. We remark that before integrating, it is convenient to express
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the x- and y-components of the vectors that appear in Eq. (7) in terms of vi, Ei, and

B+. Moreover, Ofo (p,, pv, p,, t) /Opx, Ofo (p,, pv, p,, t) /OpY, and Ofo (p., p,, p., t) /pz

must be expressed in terms of Ofo (p1, pz, ) /8 p±, 8fo (pI, pz, ) /p9 P, Ofo (P2., p-, ) /8d,
because the latter partial derivatives are constant on a characteristic. Once these constant

derivatives are removed from the integral sign, the subsequent calculation of the Fourier

transform of fi (z, p, t) is facilitated by rewriting them in terms of 9fo (p1, pz, 4, t) /Opj,
,fo (pi, p., q, t) /Qpz, Ofo (pi, p., #, t) /4, and Ofo (pIpz, z, t) /t. The expression ob-

tained for fi (z, p, t) is

U (PI, Ol,,t) f00dr exp (iRT) Ei- (z + vzT, t + r)

+ exp (z) +22fo(_+ r, t + r)

+ V (Pi, Pz, #, t) dr exp Bi B_ (z+ v-r, t + r)

+ U* (P, Pz, #, t) d-rexp -i--T E 1+ (z + vzr, t + r)

+ -exp (-i#) 3 2C2 o (Pi, P., 4, t) dT r exp -i 7 Ej+(z+vTt +

+V*(PIPz,#,t) j drexp (-ii 7 ) Bj+ (z + VzT,t + T)

-r)

,(z + vzr, t + -r)+ e afo (p-L, PZ,#,t) drE,

e9pzc f 0

+ ep_, Q c9 (PI,Pz, 4, t) 0
7 J-oco 0

dTTEiz (z+vzr,t+r).

In the above equation,

U (p±, pz,4, t) = - exp (i#) ( + f) (Pi, Pz, 0, ),

V(P±,Pz, 0,t)= eexp ipz +ip + fo(pp,,t).
2 -ymc (- p-L i8pz P 80)f 4-P7Ot

In order to relate components of the perturbed electromagnetic fields, it is necessary

to obtain Fourier (or Laplace) transforms of f, (z, p, t) (Eq. (17)) and of Maxwell's equa-

tions (8)-(11). The simple assumption that all variables vary as exp [i (kz - wt)] leads to

8
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inconsistent results. In general, one cannot assume an infinite series of terms of the form

exp {i [kz - (w - nf2,/-y) t] } (where n is an integer), because -y is not defined if fo (P±, Pz, )

contains an energy spread. In the present analysis, we define the spatial and temporal

Fourier transforms by

F(k,w) = dz dtF (z, t) exp [i (wt - kz)],

F(z,t) =Lj dkj dwF (k, w) exp [i (kz - wt)]. (18)

The calculation of the Fourier transform of fi (z, p, t), denoted by fi (k, p, w), requires use

of the convolution theorem

(FiF2 ) (k, w) = dk' d'F (k', w') F2 (k - k',w-w'). (19)

Then, using Eqs. (17)-(19), together with the Fourier transform of the Maxwell equation

(9), and assuming that orders of multiple integrals can be interchanged, we obtain (after

a lengthy calculation) the following expression for the Fourier transform:

fi (k, p, w) =

1e +00d't[ - W1- v - -r-- exp (io) do' -'-kvz-

X w'kz (. i p ck 0
-pi pi-q$) +tr]cO - w' 9p.

+ 1w-w' - kvz - 2 7 (p, C, T, A') E1_ (k,w - w')

1 e + 0 w W - ' kv + -1+ exp (-i4) d % I - k +

w-w'-kv( . ' 1 a p.p ck 81

+ [w-W'-kvzv+j P fcO (q1W)}El(kIw)

x W - kvz i f (P Pz, fW')+ W -W' -kvz +2 c2" fo (P , Pz' , 4,W') E + (k, w - ') (0

+ W1 koz 2 (p, p, qw') Eiz (k,w - w'). (20)
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The Fourier transforms of the Maxwell equations (8) and (10) are

OO oo 2r 2

(w2 - c2 k2 ) Eid. (k, w) = 47rienow dp 1 ] dpz d4

x exp (±i4) f, (k, pi, p, 4, w), (21)

kEz (k, w) = 47rienoj dpj j dpz j dgpjf, (k, p_,p, 4,w). (22)

By referring to Eq. (20), it is seen that Eqs. (21) and (22) are a set of integral equations

(with variable of integration w') relating the Fourier transforms of the fields EIa and Elz.

Partial derivatives of fo (pi, pz, 4, w') appear in the expression for fi (k, p, w) in

Eq. (20). These derivatives are removed from the integrands in Eqs. (21) and (22) by inte-

grating by parts with respect to pi, pz, and 4, employing the periodicity of fo (P1, Pz, 4, w')

in 4. The procedure is straight forward but requires much algebra.

The periodicity of fo (p±, Pz, ) in (or 4) has not yet been fully employed in this

analysis. Expansion of fo (pJ,pz, ) in a Fourier series gives

o (P, z, ) = gn(p 1 , pz) exp (in ) , (23)
n=-oo

where

gn (P1, Pz) -7j dfo (p±, pz, C) exp (-inC) . (24)

Because fo (ppz,p,) is real, g* (pi,pz) = g-n (p1,Pz). From Eq. (23), we see that the

temporal Fourier transform of fo (p±, Pz, ) = fo (p±, pz, 4, t) is given by

+00/

fo (P1,P., , w) = gn (p1, pz) exp (in4) 6 w - na-. (25)

With the aid of Eq. (25), the integrations over w' can be carried out in Eqs. (21) and

(22). Moreover, with the aid of the relation f2 d4 exp (in4) = 27rbnO, the integrals over

4 can also be completed. In fact, only the n = 0, 1, and -1 terms of the infinite series in

Eq. (25) contribute to the right-hand sides of Eqs. (21) and (22). In the nonrelativistic

limit of y = 1, the integral equations in (21) and (22) reduce to algebraic equations relating
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the Fourier transforms of the fields E1 + and E_ because of the Dirac delta function in

Eq. (25). However, in the general case, -y = (p2 /m 2c 2 + 1)1/2 (2 + p2) /M 2c 2 + 1] 1/2

Consequently, Eqs. (21) and (22) remain integral equations in the two variables p_ and pz,

relating such unknown functions as El- (k, w + 2Qc/7 (p±, Pz)), El- (k, w + c/y (p±, pz)),

and E1+ (k, w).

Eqs. (21) and (22) can be reduced to a set of integral equations in the single vari-

able p by replacing the variables pi and pz with the new variables p and a, where

a = tan~' (p±/pz) is the pitch angle shown in Fig. 1. Setting dp1 dpz = pdpda in the

equations obtained from Eqs. (21) and (22), we obtain the following set of simultaneous

integral equations relating the Fourier transforms of the perturbed fields E1L+ and E;:

D_ (k, w, Qc) Ei_ (k, w) = dpp 2 X-+ (k, w, , p) Ei+ k, w -

+ j dpp 2 X- (k,w, c, p) Ez k, -_2Oc), (26)

D++ (k, w, r) E+ (k, w) = 0j dpp 2 X+- (k, w, ), p) E_ k, w +

.+ dpp2X+z (k, w,Q., p) El. ki W+ (27)

Dz. (k, w) Eiz (k, w) = dpp 2 X.+ (k, w, o p) E k, w - QC
fo , ) Ei+(ki -(p)

+ j dpp 2 X,_ (k, w, , p) Ei k, w + (28)

In the above integral equations:

D__ (k, w, c) = w2 - c2k2 V 7  0 dp da pgo (p, a)
2 P f o

x [2psina( kpcosa) kpcos a Q,
7 \ - \ ( - y(

- in 3a 2 - C2 k2 W-kp cos a Qe- (29)
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D++ (k, w, Q,) = D__ (k, w, -oc),

Dzz (k,w) =1 - VFf f dp da p2go (pa) sin a
Jo Jo -y )

2 cos2 a
( kp cos a -2,

(31)

ir 3X_+ (k, wj, p) = '27r 2 ,,I dap 2 92 (A a) sin a, (wV2 P Jo 'y M2C2

x ( 2 - 2w,," - c2k2)
\ 7 )

kp cos a

IYm
1 (32)

(33)

X-z (k, w, f2, p) /2 1= -Vdw2 r

(wPcos 
a

\ Ymc

da pgl (p, a) sin a

7 2mc

ck) (W
kpcos a

ym (34)

(35)X+z (k, w, Q., p) = X*_z (k*,w ', - C, ,

Xz- (k, w, Qc, p)

1 (+

[pcosa
.7mc

X* k*,W*

I sin2 a
da pg-i (p, a) 2

Jo 72mc

-ck W-kpcosa -2

1 ( -M )

+ C,7CP 1

/y

Xz+ (k, w, Qc, p) = X*_ (k*,W*, -, )

Here, Qp = (47rnoe2/m) 1 / 2 is the nonrelativistic plasma frequency.

(36)

(37)

Notice that the structure of Eqs. (26)-(28) is a coupling of

E_ (k, ' - Q-), and Ei+ (k, w' - 2() over the range of p for which the

Ei_ (k, w'),

equilibrium

distribution is nonvanishing.

C. Perturbation Analysis for the Axial-Dependent Equilibrium Distribution.

The analysis for the case of the equilibrium distribution in Eq. (4), i.e., fo (z, p) =

fo (p±, pz, () = fo (pI, pz, 0 - mRcz/p,) is similar to the analysis of the previous section.

12

X+- (k, w, Q,p) = X*+ (k*, w*, -Q.,p),

(30)

x (I
211c

C -2

7)_

= ---- r .2 + -
2 P( 7

(W+ QC



The distribution is assumed periodic in ( and (for fixed z) in q5 with period 27r. Conse-

quently, the normalization of fo (PiPz, #0 - mcz) over momentum space is independent

of z. It is defined to be

/ 0 00 2 7rQdpz dpif dqpjfo pir z, #- m "z) = 1. (38).

The linearized Vlasov equation for the system is the same as Eq. (7) except that

the factor fo (p,,pv,p_,t) on the right-hand side is to be replaced with fo (z,p.,P,,z).

Maxwell's equations (8)-(16) are applicable without modification. The derivation of in-

tegral equations relating the Fourier transforms of the perturbed fields involves a great

deal of algebra but closely parallels that given in Sec. II.B for the spatially-homogenous

equilibrium distribution. Consequently, we omit the details of the derivation. We remark

that in the present derivation z plays much the same role as t in the previous derivation

and k much the same role as w. Periodicity of fo (pi,pz, () in C gives rise to the Fourier

series expansion

1 +00 h (p±, p) exp (in(),
n=-oo

(39)

where

hn (Pw, P.) = 27j d(fo (p±,Pz, () exp (-inC). (40)

For the z-dependent equilibrium distribution fo (pi, Pz, - mQcz/pz), the integral

equations are

(k, w, Q,) Ei- (k, w) = dp 77-+ (k, w, Q., p) E1+ k + 2rQ2

-oo PZ
+ fj0 dp. 7_z (k, WQc,) Ejz (k + Q' (41)

(k, w, Q,) Ej+ (k, w) = j dpi+- (k,w,jc,p) Ei (_ k- 2 Mrc)

+ 00dp +z (k, w, cc, p.) El) k - a , , (42)

D' z (k, w) E, (k, w) = dpz 77z (k, w, Q, pz) El- k - _ , W

+ dp. ?7z+ (k, w, Qc, pz) Ej+ k + Mc , W. (43)
1-000 P

13
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In the above integral equations:

D'-- (k, w, Sl) =w2 - A 2  r2 Q2J dp

x [2 (w - ( kp-

~ymJ '\ ym

!2 2 c2 (W2 - c2k2) _

D'+ (k, w, Oc) = D' (k, w, -QR),

D (k, w) = 1 - vr27 j dpz dpp

x1~2 2c2 - M
x l ) U) ,2

oo
dp ho (pi, pz)

-y

QC >1

Yz_ f )
-2

1 )

ho (p, pz) 7

-2

oo 3
7-+ (k, w, O pz) = -2 dph 2 (pjp) 32

2 P 0 -Lh -LP)^ m 2 2

kpz
S - ---

q+- (k, w, Q., pz) = q*+ (k*, w*, -Qpz),

fOO 2
77-z (k, wo, c,pz) = 0 W dpjh, (p±, pz) 3 22

x (-Wpz + kymc2) W -2,
ym y

77+z (k, w, nc, pz) = 77*-z (k*, w*, -Qe, pz) ,

7 z- (k, w, Q, pz) = dph_1 (pipz)

k
+c \k

2
p1

y2MC2

c-)I(W - kPz ) 2
-y

7z+ (k, w, Q, pz) = q*_- (k*, w*, -Qc, pz).

The structure of Eqs. (41)-(43) is the coupling of E1-(k', w) to Eiz(k' + mQc/p,, w)

and Ei+(k' + 2m~c/pz, w) over the range of pz for which the equilibrium distribution is

nonvanishing.

14

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

as 
2

X -_,2 + c2k (k + 2"
Pz

x P_-
HYM



D. Some Special Cases.

In general Eqs. (26)-(28) [Eqs. (41)-43)] couple the right- and left-hand circularly po-

larized radiation fields Ea and the longitudinal, relativistic, plasma wave field E,. How-

ever, if g 1(pi,pz) = g:i(p,a) = 0 [h 1(p±,pz) = 0], then Eq. (28) decouples from

Eqs. (26) and (27) [Eq. (43) decouples from Eqs. (41) and (42)] to yield the dispersion re-

lation for longitudinal plasma oscillations. The radiation fields remain coupled, as is seen

in Eqs. (36) and (37) [Eqs. (51) and (52)]. From Eq. (24) [Eq. (40)], it is seen that this sit-

uation occurs whenever the Fourier series for fo (p1'Pz, 4 - Dt) [fo (p1,Pz, g - z)]

contains neither cos 0- nor sin 4-components.
If 9a2 (PI, Pz) = 9±2 (p, a) = 0 [h1 2 (PI, Pz) = 01 then all three fields (E± and E.) re-

main coupled, however the radiation fields couple only through the electrostatic oscillations

and not directly with each other. From Eq. (24) [Eq. (40)], it is seen that this situation oc-

curs whenever the Fourier series for fo I PZ - t) [fo (PI, Pz, - rnQ z)] contains

neither cos24- nor sin2o-components.

Finally, if gij(p ,pz) = 9+2 (P±,Pz) = 0 [ha 1(p±,pz) = h+2 (P±,Pz) = 0], then

Eqs. (26)-(28) [Eqs. (41)-43)] decouple completely and reduce to the dispersion relations

D__ (k, w, Oc) = 0, (53)

D._ (k, w, Ge) = 0, (54)

Dzz (k, w) = 0. (55)

These dispersion relations are identical to those for the case in which the distribution

in 0 is uniformly random. Referring to Eqs. (24) and (40), we see that go (p1,pz) =

fo d~fo (p±,pz, ) and ho (p±,pz) = 72f7 d _fo(p±,p,7q). For the case of a uni-

formly random distribution in 0 (i. e., fo (p1,pz)), both of these expressions reduce to

go (p±, pz) = ho (p1, pz) = v2fo (p, Pz). For this case either Eqs. (26) and (27) or

Eqs. (41) and (42) reduce to the dispersion relations for the cyclotron resonance maser

with random phase obtained by Chu and Hirshfield.1

The analysis of Eqs. (26)-(28) [(41)-43)] as integral equations is the subject of present

research and results of the analysis will be presented in a subsequent paper. However,
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many important special cases exist in which the equations reduce to algebraic equations

from which dispersion relations can be derived. Some of these cases will be analyzed in

the remainder of this paper.
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III. Dispersion Characteristics for the Time-Dependent Equilibrium Distribu-

tion without Energy Spread.

In the previous section, it was noted that, for a uniformly random equilibrium distri-

bution in 0, equations (26)-(28) decouple and reduce to the well known dispersion relations

in Eqs. (53)-(55). In this section it is shown that as long as there is no energy spread in

the equilibrium distribution in Eq. (1), the integral equations (26)-(28) reduce to algebraic

relations between the Fourier components of the fields even when the distributions are not

uniform in 4. The dispersion characteristics are illustrated with numerical examples for

the time-dependent equilibrium distribution with no spread in p_ or pz.

A. Analysis

For a beam with a definite energy -y (po) mC2 =yomC2 = (pIc2 + m2c4) 1 / 2 the most

general distribution in Eq. (1) is of the form

1
fo (p, a, ) =-6 (p - po) fo (po,7 C,), (56)

where Q = )- yt/-. From Eq. (24), the coeficients in the Fourier series expansion of this

distribution are

g (p, c) = -p-po) §n(po, a),

(57)
1 j27

(po,a) = dfo (po, a, ) exp (-in).

Substitute Eq. (57) into Eqs. (29)-(37) and then substitute the results into the integral

equations (26)-(28). After replacing w with w - 2 c/yo in Eq. (27) and with w - fc/yo

in Eq. (28), we obtain three homogeneous algebraic equations relating just three field

components. Expressed in matrix notation, these equations are

DE = 0, (58)
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D__ (k, w, £epo)

D = + k - ,pO)

- kz- Wk, - 1, Oc, PO

-- j-+ (k, w, nc, po)D~kw- 2Qe

D++ (k, W - ,z 7, Po)
-i+k, W - ,n QC) 

-_ (k, w, nc, po)

i+z (kw - , O

DZZ k, W - , (PO)
(59)

and
E_ -(k,w)

E = E1+ (k, 'Y- (60)
Ei (k(6

The quantities ij appearing in the matrix in Eq. (59) are obtained from the corresponding

quantities in Eqs. (32)-(37) simply by replacing each gn (p, a) with §, (po, a) and setting

p = po and -y = yo. Moreover, from Eqs. (29)-(31), the diagonal matrix elements can be

expressed as

D_ _ (k, w, ,po) =w2 - k 2 2- Q da §o (po, a)
2 P1

X[2sina kpo cos a) kpo cosa _ \1
7y \ Yom \ om Yo}

2 3 2
PO sin a 22k2) kpocosa Pc

3 WI (W7YOm22 y -Yom 7Y

D++ (k,w,, po) = b_ (k,w,-Qc, po),

D.. (k, w, po) =1- V 2IA F dayo (po, a)

S - p cos2 kpo cos a 2
\ Y8~2 om

Recall that, Qp = (47re 2 no/m) 1/2 is the nonrelativistic plasma frequency.

The dispersion relation for this system is

det D (k, w) = 0.

(61)

(62)

(63)

(64)

From Eq. (60), it is seen that, for a given value of the wavenumber k, the frequency

w is that of the right-hand polarized wave Ej_. The corresponding frequencies of the

18
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left-hand polarized wave Ei+ and of the electrostatic wave Ei, are w - 2 Qc/yo and w -

Qc/7y0, respectively. We point out that, once the assumption of one-dimensional spatial

dependence is made and equilibrium self fields are neglected, the dispersion relation is

exact for equilibrium distributions of definite energy.

Again notice why, in the general case, the field components are related by

integral equations (26)-(28) instead of algebraic equations. If the distribution

fo (p, a, 4 - Qct/y(p)) is nonvanishing over a continuous range of energies -y(p)mc2 , then

the mode Ei- (k, w) will be coupled to a continuum of modes Ei+ (k, w - 2'c,,/-y(p)) and

Eiz (k, w - Qc/7(p)).

B. Case of Definite p± and pz.

As numerical examples, we consider equilibria of definite pj = po sin ao and pz =

po cos ao. Consequently, the factor jo (po, a, ) in Eq. (56) is

o (po, a,C) = . 4(C) , (65)
sin a

where (D (C) is a function of period 27. From Eq. (5), the normalization condition on 4 (()
is

dOD ( - Et = J d< () = 1. (66)
Jo 0o

Moreover, from Eq. (57),

(po, a) = 6(a-ao)sn, (67)
(/~27r sin a

where
21r

sd = d<4 (C) exp (-inC). (68)

From Eq. (66), so = 1. Also notice that s-n = s*.

Substituting Eq. (67) into Eqs. (61)-(63) and into Eqs. (29)-(31) with gn (p, a) replaced

by §n (po, a), we can express the dispersion relation in Eq. (64) as the following tenth degree

polynomial equation (in either o or k) with real coefficients:

M_ k, O) + M_, (k,C) =
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W2 |1|,2 [' - k)2 M+ (k,) + {#lG - 2, - 2 M__ (C)

+ 2 s212 2 _ 2D k22 M .. (k,&D) (69)

- W _ (s22_1 + S-2S1) (G2 - 2C - I2) (pz - 2 k, - C) k)oG -

In Eq. (69), w2 = f /yo is the relativistic plasma frequency squared, and w, = Qc/yo is the

relativistic cyclotron frequency. Dimensionless frequencies and wavenumbers are C = w/wc

and k = ck/w,. Dimensionless velocities are given by #_ = vo/c and /3 = vo/c, where

vio = po sin ao/-y(po)m and vo = po cos ao/y(po)m. Finally,

M_ _ (fk, CV = (C02 _ k2 2a ) ,_ k3'_1
C

+ '1 2w) _ k2 (70)

C
M++ (k, 4D = ((o - 2) 2 cx-1 - Q-f~ )( cx-1

+ M # (-2)2 _ k,2)7

M.. (I' ,)) = (D - I' - 1) - (;c2- #) .(72)

The dispersion relation in Eq. (69), which is valid for both complex CD and complex k,

is invariant under the transformation

k - -

Co -o-* + 2. (73)

For the case of the distribution in Eq. (65), the behavior of the eigenmode E in Eq. (58)

under this transformation is easily determined by applying the transformation to the ele-

ments of D and E in Eq. (58). If either si # 0 or S2 = 0, then

Ej+ (kC, cZ - 2) E1+ (-fk*, -*) E.*_ (k, CO)
El_ (k,) El- (-*, -C* + 2) E*+ (k,L - 2)
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and, if s1 # 0,

Ej+ (ke, 0 - 2) E,+ (-k**, -CD*) Er_ ICO)
E (, CO - 1) E1 (-kI*, -O* + i) E1z (fc -

(75)

Ej- (ke, cD) E,- P-f*, -C* + 2) E*+ Cfo- 2)

El. (I,1 4 - 1) E1 z (-I*, -C* + I) E z (&, - i)

Equation (69) gives the ten branches of the dispersion relation (C(k). The behavior of

cD/k for large Ikl is easily determined for each of these branches. As Ikl -+ oo, c(k)/k -+ +1

for two branches, Cv(k)/k -+ -1 for two branches, and c(k)/k -> iz for six branches.

Simple expressions are easily obtained for the large Ikl behaviors of (fe) for all ten

branches if either s, or S2 vanishes in Eq. (68). If sl = 0 and s2 # 0, then [from Eqs. (57)

and (67)] gi (p, a) = 0 and 92 (p, a) # 0. It follows from the discussion in Sec. II.D that

the electromagnetic components are coupled and the electrostatic component is uncoupled.

[Such a situation holds for (but is not exclusive to) the distribution 4(C) in Fig. 3(b),

provided that the parameter a = 7r. For this distribution, si = 0 and s2 = sin a/a.] Two

of the branches pertain to the uncoupled electrostatic waves and obey the exact dispersion

relations

=( 1/2 .(76)

for sufficiently large IfI, the remaining eight branches obey the approximate dispersion

relations

C ~ Io, +1 i #- (1+s21)1/2 (77)
v(2-

o k3 , + 1 t S W# /31 (1 - 1s21)1/2, (78)

2- (79)
/ 2 1/2

)1/
22 + 1(80)
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For real k, Eqs. (77) and (78) give two branches with positive ImcZ provided that 1821 < 1.

In this case, growth-rate curves (ImcD vs. real k) will show two unstable branches at large

k.

If si # 0 and s2 = 0, then [from Eqs. (57) and (67)] 92 (p, a) = 0 and g, (p, a) # 0. It

follows from the discussion in Sec. II.D that the transverse electromagnetic waves are cou-

pled through the longitudinal electrostatic wave. [A nonexclusive example of a distribution

<b( ) having this property (if K 5 0) is presented in Fig. 3(c). Using Eq. (68), we find that

si = -4iK and S2 = 0 for this example.] In this case, the large IkI approximations for four

of the ten branches of the dispersion relation are the same as those given in Eqs. (79) and

(80) for the distribution previous case. Approximations for the remaining six branches are

CD ~ + I i # W L, (81)

kg~ x + 1 i 1 +, W(82)

2~C k3'+ , ± W(83)

where

= {F L -(1 -2) + -(1 )2 +4II (1 - /)( - Is2)] (84)

[The maximum possible value of K in Fig. 3(c) is 1/27r, and the corresponding maximum

value of IsI is 2/7r = 0.6366.... It is evident from Eq. (84) that the na are real and positive

for all Isi I < 1/v = 0.7071.... Consequently, Eqs. (81) and (83) provide for two unstable

modes at large values of real k for the distribution in Fig 4(c).]

A nonexclusive example of a distribution for which neither s, nor 82 vanishes (unless

the parameter a = -r or 27r) is presented in Fig. 3(d). From Eq. (68), it follows that in this

example si = (2/a) exp (-ia/2) sin (a/2) and 82 = (1/a) exp (-ia) sin a. If both si and S2

are nonvanishing, determining the large IkI behavior of the dispersion relation in Eq. (69)

is more difficult than in the previous cases. Four of the large-Ifcl branches are given by

Eqs. (79) and (80). The behaviors of the remaining six branches (including all that may

show growth at large, real I) are determined by solving a cubic equation in ((D - koz - 1)2

Further details will not be given in this paper.
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Unless s, = 82 = 0, some of the eigenmodes E in Eq. (58) will involve two or more of

the components E_C,), E+(k,4-2), and E,(k,d-1). A quantity that will be employed

to measure the relative importance of E_ (Ic) and E+ (k, 67 -2) is the Poynting flux ratio

defined by

S+ (k, - 2) E+ (k,C -2) 2
(85)

S_ (k,Z) -2 E- (k,()

This quantity is the ratio of the time-averaged Poynting vectors that the field associated

with each component would produce in the absence of the other component. A time-

dependent interference term due to the different frequencies of the components is not

included.

C. Numerical Examples.

In the following numerical examples, k is restricted to be real. Then, Im& > 0 indicates

an unstable mode. If k is restricted to be real, then the transformation in Eq. (73) is

equivalent to inverting a plot of Re& vs. k (real) through the point (k, Ret ) = (0, 1) and

reflecting a plot of Imc vs. k (real) through the ImL-axis. It follows from the invariance of

the dispersion relation in Eq. (69) under this transformation and from Eqs. (74)-(75) that

there is no loss of generality if numerical examples are limited to the case of nonnegative

real k.

Parameter values in all of the numerical examples below in Figs. 4-7 are '2/Cg = 0.05,

yo = 2, and ao = 0.4. In order to ensure that values selected for s1 and S2 are realistic

(i.e., correspond to D( ) > 0 in Eq. (65)), we assume that 4(() has one of the functional

forms shown in Figs. 3(a)-3(d).

Example 1: If the distribution @( ) is uniform [see Fig. 3(a)], then si = S2 = 0.

[Such a distribution is also attained with a = 7r in Fig. 3(b), K = 0 in Fig. 3(c), or

a = 27r in Fig. 3(d).] In this case, the dispersion relation in Eq. (69) decouples into

the three independent relations M__ (fcD) = 0, M++ (k, ) = 0, and M 2 (I, ) =

0. These are respectively the dispersion relations for uncoupled right- and left-handed

circularly polarized electromagnetic waves and for the electrostatic wave. For a given Ic,
the frequencies of these waves are c, c27 - 2, and cD - 1, respectively. Growth-rate curves
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(Ime vs. k) for this limiting case are presented in Fig. 4(a) over the interval 0 < k < 10.

Corresponding plots of RetD vs. k over the interval 0 < k < 1.4 are presented in Fig. 4(b).

Letters on these plots designate corresponding points on the two diagrams. The points B

and C in Fig. 4(a) coincide. The growth-rate curve segments CDG and HI are obtained

from M__ (k, D) = 0, and a corresponding eigenmode E in Eq. (58) has only E_ (k, C) as

a nonvanishing component. The growth-rate curve segments AB and FEJ are obtained

from M++ (k, ) = 0. A corresponding eigenmode has only one nonvanishing component,

namely E+( ,cZ - 2).

The plot of RecD vs. k in Fig. 4(b) is needed for the proper interpretation of the

growth-rate curves in Fig. 4(a). If k > 0 and Ret > 0, then E1-(k, ) and Ej+(k, Cv) are

respectively components associated with RHP and LHP waves that travel in the forward

(positive-z) direction. If k > 0 (as before) but Rec2' < 0, then the handedness of these waves

is unchanged, however they now travel in the backward (negative-z) direction. Similarily,

the electrostatic wave associated with E(k, c) is backward traveling if k > 0 and ReD < 0.

As an illustration of the use of Fig. 4(b) in interpreting Fig. 4(a), consider the segmented

growth-rate curve A(BC)DG, which gives the growth rate of the cyclotron maser insta-

bility. Segment AB pertains to E+(k, o - 2). From Fig. 4(b), it is seen that Ret - 2 < 0

everywhere on AB. Consequently, the growth-rate curve AB in Fig. 4(a) pertains to grow-

ing, backward-traveling, LHP electromagnetic waves. Similarily, segment CDG in Fig. 4(a)

pertains to E_ (k, cD). Reference to Fig. 4(b) shows that Rea > 0 everywhere on CDG, so

that growth-rate curve segment CDG in Fig. 4(a) pertains to growing, forward-traveling,

RHP electromagnetic waves. Similar analysis shows that the growth-rate curve HI for the

whistler instability pertains to forward-traveling, RHP electromagnetic waves. Also, the

growth-rate curve segment FE pertains to backward-traveling LHP waves, and the seg-

ment EJ pertains to forward-traveling LHP waves. Because all of the roots of M,, (k, C)
are real, no corresponding growth-rate curves appear in Fig. 4(a).

Electromagnetic and beam waves are said to be in resonance for the cyclotron maser

instability when c = k and c2 = kA# + 1. These resonance values of c, and k are given by

7, = k, = 1/(1 - P,,). In this example, k, = 4.94. Fig. 4(a) conforms with the well-known

fact that no growth of RHP radiation occurs at k = k, in an uncoupled system.
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Finally, it is emphasized that no special relation exists between the LHP and RHP

waves considered above when s, = S2 = 0. However, the plots in Fig. 4 will be approached

by any system using our parameters in the limit in which both s1 and s2 approach zero.

Example 2: An explicit example of a nonuniform distribution in phase is obtained

by selecting a = 7r/4 in Fig. 3(b). Then the unperturbed electron beam consists of two

streams with respective distributions centered about = 0 and = ir. Each distribution

is a water bag of width 7r/4. The corresponding parameters defined in Eq. (68) are S, = 0

and s2 = 2V2/r. Because si = 0, the eigenmodes E in Eq. (58) are of two types. The first

type of eigenmode has only Ez(k, C) as a nonvanishing component. The corresponding

dispersion relation is M,,(k,Co) = 0, which does not allow for growth. [See Eq. (76).]

The second type of eigenmode has two nonvanishing components, namely El- (k, C) and

Ei+ (k, 4D - 2). Some of these eigenmodes are unstable.

Growth-rate curves for this system for 0 < k < 15 and corresponding plots of ReD

vs. k (for 0 < k < 1.5) are presented in Figs. 5(a) and 5(b). As a measure of the relative

importance of the RHS and LHS electromagnetic waves associated with unstable modes,

plots of the Poynting flux ratio in Eq. (85) as a function of k (for unstable modes only) are

presented in Fig. 5(c). Letters show corresponding points on Figs. 5(a)-5(c). By comparing

Figs. 5(a) and 5(b), we see that the growth-rate curve segments BA, CD, and FE pertain

to modes consisting of a forward-traveling RHP electromagnetic wave (because Ret2 > 0)

and a backward-traveling LHP electromagnetic wave (because Rec - 2 < 0). All other

segments of the growth-rate curves pertain to modes consisting of forward traveling RHP

and LHP electromagnetic waves.

In the case of a uniform distribution in (Example 1), no growth of RHP electro-

magnetic waves occurs at the resonance wavenumber k = kr = 4.94. [See Fig. 4(a).]

The growth-rate curve CDH in Fig. 5(a) shows a mode at k = kr = 4.94 which grows

significantly faster than any mode in Fig. 4(a). From Fig. 5(a), we see that the RHP

Poynting flux associated with the mode is almost twenty times the LHP Poynting flux.

Consequently, growth of RHP radiation is now possible at k = kr although it must be

accompanied by a smaller growing component of LHP radiation. We remark that among

computations so far carried out those for systems with two-stream distributions in (with
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a phase difference of 7r) show the most rapid growth rates at k = kr.

Referring to Fig. 5(a), we see that there are two unstable branches at large k in

conformity with Eqs. (77)-(78). From Fig. 5(c), it is seen that, for either branch at large

k, the RHP Poynting flux is approximately double that of the LHP Poynting flux. Finally,

note from Fig. 5(c) that for unstable eigenmodes at small k the ratio of the backward

traveling LHP Poynting flux to the forward traveling RHP Poynting flux depends very

strongly on the branch of the dispersion relation and varies rapidly with k for a given

branch.

Example 3: As a second example of a nonuniform phase distribution, select the form

of 4D( ) in Fig. 3(c) and choose the parameter value K = 1/27r. [Equivalently, we could let

a = 7r in Fig. 3(d).] Then the equilibrium particle phases are uniformly distributed between

= 0 and = 7r, and no particles have phases in the range 7r < < 27r. Fourier components

in Eq. (68) are si = -2i/7r and 82 = 0. Because s2 = 0, the field components Ei_(k,v),

and Ei+ (k, 6) -2) are indirectly coupled through the electrostatic component E1i (k, 6; -1).

Consequently, the eigenmodes E in Eq. (58) will (in general) have three nonvanishing field

components. Growth-rate curves for this example are presented in Fig. 6(a) for 0 < k < 10,

and corresponding plots of Rec vs. k (for the interval 0 < k < 2) are given in Fig. 6(b).

Plots of the Poynting flux ratio in Eq. (85) are shown in Fig. 6(c). Finally, as a measure

of the relative importance of the electrostatic component of the unstable eigenmodes, we

present a plot of 2-1/2E 1 _(k,()/E1 (k,cD - 1)j vs. k in Fig. 6(d). (The factor of 2-1/2

appears in the field ratio because 2-1/ 2E± is the proper normalization of coefficients of

the complex unit vectors for LHP and RHP waves when comparison is to be made with

Cartesian field components.) Letters show corresponding points in Figs. 6(a)-6(d).

Reference to Figs. 6(a) and 6(b) shows that the wave associated with the compo-

nent Ei+ (k, C - 2) is left-hand polarized and backwards traveling for eigenmodes on the

growth-rate curve segments GH, ABC, and DEF. The electrostatic wave associated with

El_(k, c - 1) is forward traveling for all unstable modes except for those modes on the

growth-rate curve ABC for which k is very close to zero. All other components of unstable

eigenmodes represent forward-traveling waves.

Referring to Fig. 6(a), we see that two unstable branches of the dispersion relation
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are present at large values of k in conformity with Eq. (81) and (83). From Figs. 6(c)

and 6(d), it is seen that the RHP Poynting flux exceeds that of the LHP electromagnetic

wave by a factor of approximately three for both branches at large k. The electrostatic

contribution to eigenmodes on the upper branch is relatively very small. On the other

hand, the electrostatic field amplitude in eigenmodes on the lower branch is of the same

order of magnitude as the LHP electromagnetic field amplitude.

Two branches, MNO and CHI, show moderate growth rates at the resonance

k = k, = 4.94. Reference to Figs. 6(c) and 6(d) shows that the RHP Poynting flux is

significantly larger than the LHP Poynting flux for the eigenmodes associated with either

of these branches at k = kr. Moreover, IEi_(k,)/Eij(k,c2 - 1)1 > 10 for either branch

at kC = kr. Again, this behavior is in contrast with the case of a uniform distribution in (

where no growth of RHP electromagnetic radiation takes place at the resonance value of

k. However, the growth-rates at k = k, in Fig. 6(a) are not large, being slightly less than

the maximum growth-rates that appear in Fig. 4(a) for the case of a uniform distribution.

Although the growth-rate peak ABC is very narrow, eigenmodes at points near its

maximum are the fastest growing modes of this system. Moreover, reference to Fig. 6(c)

shows that these modes contain a relatively strong backward-traveling, LHP component.

Example 4: As our final numerical example, we treat the limit of a = 0 for the distri-

bution in Fig. 3(d). In the limit, the distribution becomes 4D () = 6 ( - 2n7r) with

S1 = S2 = 1. In this case, 4 = wet for all particles in the equilibrium beam. Growth-rate

curves for the interval 0 < < < 8 and plots of Re& vs. k for the interval 0 < k < 1.5 appear

in Figs. 7(a) and 7(b), respectively. For unstable eigenmodes, plots of the Poynting flux

ratio in Eq. (85) vs. k and 2-1/2E 1 _ (k, Q)/Ez(f, - 1)1 vs. k are presented in Figs. 7(c)

and 7(d), respectively. Letters on these graphs show corresponding points. Eigenmodes

belonging to growth-rate curve segments ABC and DE have backward-traveling LHP

components and forward-traveling RHP and electrostatic components. A tiny growth-rate

peak appears at G in Fig. 7(a). Reference to Fig. 7(b) shows that its LHP and electro-

static components are backward traveling. Eigenmodes on all other segments contain only

forward-traveling components.

A striking feature of the growth-rate curves in Fig. 7(a) is that no growth occurs
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for values of k greater than approximately 6.2. That is, no branches of the dispersion

relation show growth in the limit of large k. [Suppression of instability in the whistler by

the electrostatic wave is discussed in Ref. 9.] Also, notice the interval of no growth FH

(1.4 ~ k ~ 2).

Another striking feature is the great height of the growth peak ABC. From Fig. 7(c),

we see that the Poynting flux of the backward-traveling LHP electromagnetic wave ex-

ceeds that of the forward-traveling RHP electromagnetic wave over most of the interval

of this growth peak. The amplitude of the forward-traveling electrostatic wave is seen

[from Figs. 7(c) and 7(d)] to be of the same order of magnitude as the amplitudes of the

electromagnetic waves.

Again, we see growth of RHP electromagnetic waves at the resonance wavenumber

k = kr = 4.94. In fact, the maximum of the growth-rate curve HIJ in Fig. 7(a) is situated

very close to the resonance wavenumber, and the growth rate at this maximum exceeds

any growth rate for the gyrotropic case is Fig. 4(a). From Figs. 7(c) and 7(d), it is seen

that the largest component for eigenmodes near this maximum is that corresponding to

forward-traveling RHP electromagnetic radiation.

To summarize, it is evident that a richness of structure in the growth-rate curves can

be produced by introducing nonuniform distributions 4(). Using proper choices of ((),

temporal growth rates near k = kr can be significantly increased and growth rates at large k

can be on the one hand enhanced or on the other hand completely suppressed. Two-stream

equilibrium distributions such as that in Example 2 seem to be most effective in enhancing

growth rates at the resonance k = kr. Caps of no growth can be introduced at moderate

values of k. At small values of k where eigenmodes may contain backward-traveling compo-

nents, growth rates and the properties of eigenmodes can be greatly changed by changing

((). [This latter fact suggests, but does not prove, that absolute instability properties

may depend strongly on 4(6). However, no pinch-point analyses of these systems have

been carried out. 26- 28 I
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IV. Dispersion Characteristics for the Axial-Dependent Equilibrium Distribu-

tion without Axial Momentum Spread.

A. Analysis

Finally, we consider the axial-dependent equilibrium distribution fo (P±,Pz,C) =

fo (p±,pz,# 0 - mQez/p.) for which the perturbed field components are related by the in-

tegral equations (41)-(43). Even if the equilibrium distribution is not uniformly random

in 0, Eqs. (41)-(43) will reduce to algebraic equations if there is no spread in pz in the

equilibrium distribution. (A spread in energy is permitted if it is due only to a spread in

pL.) The most general equilibrium distribution having this property is

fo (p±, p,) 6 (pz - pzo) fo(ppo, P )- . (86)

It follows from Eq. (40) that

h. (pj,pz) 6 (pz - pzo)Yhn (pj,pzo) , (87)

where
127r

h (pI,po) = j d(o (p1, pzo, () exp (-in(). (88)

Three homogeneous equations relating just three field components are found using a pro-

cedure similar to that used in obtaining Eq. (58). In matrix form the equations are

D'E' = 0, (89)

where

i'__ (k, w, .,pzo) -- + (k, w, 0,,pzo) -. _ (k, w, Q.,pro)

'k= (-+- k 2 , W W c,pzO) b'++ (k + 2mQ, j, n, pzo -+ (k + 2m" , W, Pc ) NO

-(k± + , , 2cPZo) -+ (k + , W, c, PZO) bzz (k + mr9 , ,po)

(90)

and
El- (k, w)

E'=E1+ (k + 2mQEEl )k (91)

k+ mn,
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The quantities j in Eq. (90) are obtained from the corresponding quantities in Eqs. (47)-

(52) by replacing h, (p_, pz) with h. (P±, Pz)), pz with pzo, and 7 with -y (p, pzo). The

remaining quantities in Eq. (90) can be obtained from Eqs. (44)-(46). They are

b'_ (k, w, , pzo) = w2 - c2k 2 _ j dp/2r (, p P
2 _ p(ho(p±,p)o)

[2(ppzo)m) ( ,(p,pzo)m - (PP70)/

_2 2 (w2 - c2k2 ) (w _ poom_ pc))(92)
7 2 (px,pzo)m 2 \ (h-+ (kL PZ, -c, pzo) =ZO M' _Y (kL P,-Gpz) (

2 (k,w,po) = 1 - C dp2p k ( p,pzo)y (PI, zO)

x 2 { kpzo

7j _L (PiPzo Tf2C2  -Y (94)PO)M -Y( P0

++~ 72(j0,z) k p, n,pzo),~2 \(93)po~/

Once the assumption is made that equilibrium self fields can be neglected, the exact

dispersion relation for the case of definite Pz = PzO is

det D' (k, w) = 0. (95)

For a given frequency w, the wavenumber of the right-hand polarized wave E1 _ is k. The

wavenumbers of the fields E2+ and E1 z are k + 2 mn /pzo and k + m~c/pzo, respectively.

This result shows why integral equations relate the field components if a spread in pz

present in fo(pp , #-omnz/pz). Then, E_ (k,w) couples to E+ (k + 2mdi/pt, w) and

to E1 z (k + TDc/P(, w) over a continuum of values of m /p(.

Finally, we emphasize that the eigenmode E in Eq. (60) is of a different nature than

the eigenmode E' in Eq. (92). The eigenmode E is a composite of three components which

refer to waves of the same propagation vector but of different frequencies. These frequencies

differ by fixed real values. On the other hand, the eigenmode E' is a composite of three

modes which refer to waves of the same frequency but of different propagation vectors.

These propagation vectors differ by fixed real values. In either case, if k is restricted to

real values, then temporal growth or decay rates are given by Imd; for all components. If
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W is restricted to real values, then spatial growth or decay rates are given by Imk for all

components.

B. Case of Definite p and pz

As in Sec. III, we present numerical examples for cases in which both p, = pzO and

p_ = po have definite values in the equilibrium distribution. Consequently, the factor

fo (p±,Pzco, () in Eq. (86) is selected to be of the form

fopipz 6g 6(P -P-LO)~) (96)

where T (C) is a periodic function of C (or 0) of period 27r. From Eq. (5), the normalization

condition on 9I (C) is

d4T # - m-z =C d2li ()= 1. (97)

It follows from Eq. (88) that

I. (pzo) = V2 7 P - Wn, (98)

where

Wn = d(,J (C) exp (-in(). (99)

Notice that wo = 1 and that wn = w..

With the aid of Eqs. (92)-(94) and Eqs. (46)-(52), we obtain the dispersion relation

in Eq. (95) for the case of definite p- and pz. The dispersion relation is

M__ (f, C) M (& M (f& =

S(2)| {ZG -)2M4 k,' + [2- (3+2)2 M_( IC

+ | ()2 2#w2|2 [ -Ic [2 k + 2)] Y (,CD) (100)

- L (W2W2.1 + -2()) 2- +- ( + ) (+2zi -+ 2.
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Dimensionless frequencies, wavenumbers, and velocity components are defined as in

Sec. III.B, and

M/+C 2 -(k+ - 1# 2 _ - O- f - 2) (Z - -

+ # W 2 P -+.2 0 (101)

The quantities M _. (k, 42) and M_. (k, c) are defined in Eqs. (70) and (72), respectively.

Like Eq. (69), Eq. (100) is valid for complex iD and complex k. It is invariant under

the transformation

2
k -~ A.

C - -z *. (102)

In analogy with Eq. (74), it follows from the matrix equation (90) that, if either w, 5 0

or w2 5 0, then under the transformation in Eq. (102)

E1+ (k + 2/,6-, c2)

Ei- (kc, C)

Ei+ (-I*, -C*)

El- H-f* - 2/,3z, -O*)

E*_ (kCZ)

E*+ (k + 2/9,

Moreover, in analogy with Eq. (75), if wi = 0, then under the transformation in Eq. (102)

E1+ + 2/82, C)

Eizr + 1//%, &)

Ei_- (k, (D)

Ejz (kc + 1/,3-, CD)

Ei+ (- f *-

Eiz * - 1/3, -6c*)

Ei- - 2/3z, -* )

Ei. P-f* - /,3z, -C *

E*_ (k, O)

E 1 (k + 1/,

E*+ (kc + 2/,3, #

E1z (Ik + 1/,z

(104)

The ratio of the time-averaged Poynting vectors associated with the individual

E1 + (k + 2/#2,) and E,_ (k,&) fields is

S+ (k+2/#2,3) _+2/#z Ei+ (k+2/2,3)z

S_ (k,&C) k Ei_ (k, c)
(105)
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Like the dispersion relation in Eq. (69) of Sec. III.B, Eq. (100) is a tenth-degree

polynomial equation in either k or 6. The large JIk behavior of o(k)/k given by Eq. (100)

is the same as that given by Eq. (69), including two branches with C(/fk n~ 1, two

branches with c(k)/k ~ -1, and six branches with Cv(k)/fk ~ kI2.

If either w, or w2 vanishes, approximations for c2(I) valid for large values of k are

readily determined and are found to be very similar to those found in the previous section

for the case of the time-dependent equilibrium. If wi = 0 and w2 # 0, then the transverse

electromagnetic components are coupled to each other and the electrostatic component

is uncoupled. The large Iki behaviors of the ten branches of the dispersion relation in

Eq. (100) are similar to those given in Eqs. (76)-(80) for the corresponding case (si =

0, s2 # 0) of the dispersion relation in Eq. (69). Four of the branches now obey Eqs. (76)

and (79). Four branches obey Eqs. (77) and (78) with s2 replaced by w2 , that is

6:~ k3 + 1 ± ,1 (1 + lw2 )/ 2 , (106)

6 ~ k/3, + 1 0 #1 (1 - |W2)/. (107)

Finally, Eq. (82) is no longer valid and is replaced by

2- 1/2
C2~) ( + 2#32)2 + t , (108)

W2

for the two remaining branches. Growth-rate curves for Iw2 1 < 1 will show two unstable

branches of the dispersion relation in Eq. (100) for large values of real k.

If w, # 0 and w2 = 0, then the transverse electromagnetic components of an eigen-

mode are coupled through the longitudinal electrostatic component. The large 1kf behavior

of the dispersion relation in Eq. (100) is similar to that of the dispersion relation in Eq. (69)

for the analogous case of si # 0 and S2 = 0. Four of the branches obey Eqs. (79) and

(81). Four additional branches obey Eqs. (82) and (83) with the quantity s, in Eq. (84)

replaced with wi, that is

O ~vI +1 1 WP+, (109)

S +:' $ +i z ' WP K(110)
V2 WC
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where

' T (L-L(1 -0,)) + [(-L -32)) 2, (1 - 2) ((1)

The remaining two branches obey Eq. (106). At large real k, growth-rate curves will show

two unstable branches of the dispersion relation in Eq. (100) if Iwil < 1/V2.

Finally, if neither wi nor w2 vanish, then the large Ikibehaviors of four of the branches

of the dispersion relation in Eq. (100) are given by Eqs. (79) and (106). The behaviors of

the remaining six branches are obtained by solving a cubic equation in (t2 - I/m - 1)2. We

do not include an analysis of the equation in this paper.

C. Numerical Examples

Before the numerical examples are presented, one final point of clarification must

be made. Throughout this paper, we have followed the usual terminology and referred

to El (Ic, c) and Ej+ (k, (D) as components representing RHP- and LHP-electromagnetic

waves, respectively. However, this nomenclature is proper only if Rek > 0. If Rek < 0, then

the roles played by these components are reversed and El_ (k, cD) and Ei+ (k, 6)) represent

LHP and RHP electromagnetic waves, respectively. If (in addition) Rec > 0, then both

waves are backward traveling. Moreover, if Re2 < 0, then both waves are forward traveling.

As in Sec. III, the following numerical computations are limited to the case of real

k. Then, from Eq. (102), Eq. (100) is invariant under the transformation cz -+ -c* and

k-- -k - 2/3,. This transformation is equivalent to inverting a plot of Rec vs. k

(real) through the point (Ic, Rec) = (-1/0_, 0) and reflecting a plot of Im(C) vs. k (real)

through the vertical line k = -1/#z. Because of Eqs. (103) and (104), no new information

is obtained from the transformed eigenvectors. Consequently, the region k < -1/#32 is

omitted from the following plots.

Parameter values used below are the same as those used in previous numerical ex-

amples (i.e., ^2/C2f = 0.05, yo = 2, and ao = 0.4). Functional forms considered for T(C)

are chosen as T( ) = <}( ), where <(() is defined in Figs. 3(a)-3(d). Moreover each of the

examples below is the analogue (for the axial-dependent distribution) of the example of

the same number in Sec. III.C (for the time-dependent distribution).
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Example 1: For wl = w2 = 0, which corresponds to T(C) = <(() shown in Fig. 3(a),

the dispersion relation in Eq. (100) reduces to the three independent dispersion relations

M__ (k,cL) = 0, M+ (k,0) = 0, and M,, (k,cz) = 0 for uncoupled right- and left-

circularly polarized transverse waves and the longitudinal electrostatic wave, respectively.

For a given frequency, the respective wavenumbers for these waves are k, k + 2/3,, and

k + 1/#m. Growth-rate curves are shown in Fig. 8(a) for -1/0, = -1.254 < k < 10. Plots

of Re& vs. k for -1/3 <k < 0 are presented in Fig. 8(b). Letters show corresponding

points in Figs. 8(a) and 8(b).

In Fig. 8(a), the growth-rate curve segments GH and HI are obtained from roots of

M+'+ (k, 42), so that the corresponding eigenmodes have a single nonvanishing component

E1+ (k + 2/i3, ). Referring to Fig. 8(b), we see that Ret > 0 and k + 2/3- > 0 on

both segments. Consequently, both segments represent unstable electromagnetic waves

that are LHP and forward traveling. All other growth-rate curve segments in Fig. 8(a)

are obtained from roots of M__ (k,tD) = 0, so that the corresponding eigenmodes have a

single nonvanishing component E1 _ (k, ). For all points of the short growth-rate curve

segment AB, reference to Fig. 8(b) shows that k < 0 and Re < 0. Consequently, growth-

rate curve segment AB pertains to unstable, forward-traveling LHP electromagnetic waves.

Similarily, k < 0 and Rec > 0 for eigenmodes on growth-rate curve segments BC and

DE, so that these segments represent unstable backward-traveling, LHP electromagnetic

waves. The remaining growth-rate curve segments (EF and JK) pertain to unstable

forward-traveling, RHP electromagnetic waves. As expected, there is no growth of the

RHP electromagnetic wave at the resonance wavenumber kr = 1/(1 - #@.) = 4.94. The

eigenmodes obtained from roots of M4' (k, c) are of course completely decoupled from

the eigenmodes obtained from roots of M__ (k, Cv) = 0. Nevertheless, Fig. 8(a) represents

the limit approached by any system with our parameters as both w, and w2 approach zero.

This example is analogous to Example 1 shown in Figs. 4(a) and 4(b) in Sec. III.C.

Comparing Figs. 4(a) and 8(a), we see that they differ in two respects. First, the growth-

rate curve in Fig. 8(a) obtained from M+'+ (k,L) = 0 has the same form as the growth-

rate curve in Fig. 4(a) obtained from M++(k,cD) = 0 but is displaced to the left by

2/#3z = 2.508. Second, no information is lost in Figs. 4(a) and 4(b) by ignoring the
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negative k-axis. However, only k < -1/3. can be ignored in Figs. 8(a) and 8(b) without

losing information.

Example 2: For w, = 0 and w2 = 2v//7r, which can be obtained for T(C) = <b(C)

in Fig. 3(b) with a = ir/4, the equilibrium beam consists of two streams, each with a

water-bag distribution in # of width 7r/4. One distribution is centered at # = mQcz/pzo

and the other at # = mQcz/pzo + 7r. As z varies, each center rotates about the direction

of the applied field lines with a characteristic wavelength of 27rpzo/mQ,0 = 27rvzo/wc.

Growth-rate curves (for -1.25 < k < 16) and corresponding plots of Rec vs. k (for

-1.25 < k < 0) are presented in Figs. 9(a) and 9(b). Plots of the Poynting ratio in

Eq. (105) vs. k (for -1.25 < k < 16) appear in Fig. 9(c). Letters show corresponding

points on these plots. The letters have also been chosen to correlate with letters on the

corresponding plots for Example 2 of Sec. III.C in Figs. 5(a)-5(c), which is analogous

to the present example. Superficially the plots in Figs. 9(a)-9(c) are very similar to the

corresponding plots in Figs. 5(a)-5(c). However, it is emphasized that the eigenmodes are

very different in the two cases. The eigenmodes for Fig. 5 consist of the nonvanishing

components E1 - (k, e2) and Ei+(k, 2 - 2), whereas the eigenmodes for Fig. 9 consist of the

nonvanishing components El- (f, c) and Ej+(k + 2/3., ).

By comparing Figs. 9(a) and 9(b), it is easily seen that the eigenmodes belonging to

the growth-rate curve segments BA, CD, and FE consist of LHP, forward-traveling elec-

tromagnetic waves [from Ei+ (k + 2/#t2, @)] and LHP, backward-traveling electromagnetic

waves [from E1 _(fc,c)]. [The corresponding modes in Fig. 5 consist of RHP, forward-

traveling and LHP, backward-traveling electromagnetic waves.] From Fig. 9(c), we see

that the backward Poynting flux is relatively strong for most eigenmodes on CA and that

it varies rapidly with I for eigenmodes on CD and FE. The infinity in the Poynting flux

ratio at the cutoff at k = 0 is due to the factor 1(k + 2,3)/kl in Eq. (105). All of the

remaining growth-rate curve segments in Fig. 9(a) pertain to eigenmodes consisting of a

forward-traveling RHP and a forward-traveling LHP component. Notice that the branch

CDH of the dispersion relation shows a growth rate at the resonance kr = 4.94 which is

significantly greater than any growth rate for the uncoupled system in Fig. 8(a). Reference

to Fig. 9(c) shows that the Poynting flux of RHP electromagnetic radiation is dominant in
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the corresponding eigenmode. [This behavior is similar to that found at k = k, for Exam-

ple 2 in Sec. III.C.] Figs. 5(a) and 9(a) are very similar at large values of k in conformity

with previous analytic results pertaining to the large k behaviors Eq. (69) when si = 0

and Eq. (100) when w, = 0.

Example 3: The analogue of Example 3 of Sec. III [whose stability properties are

summarized in Figs. 6(a)-6(d)] is obtained by setting w, = -2i/7r and w2 = 0 in Eq. (98).

Growth-rate curves for -1.25 <k < 10 are presented in Fig. 10(a). Details of the growth-

rate curves in the negative k interval (-1.25 < k < 0) are shown in Fig. 10(b). Corre-

sponding plots of Rec2i vs. k (for -1.25 < k < 0) are presented in Fig. 11(a). Plots of the

Poynting ratio in Eq. (105) vs. k appear in Fig. 11(b). The component E1 (k + 1/ (D,)

will not necessarily vanish for unstable eigenmodes of this system. Consequently, plots of

E-(k,c)/Ei(k + 1/#,) vs. k for unstable modes are presented in Fig. 11(c). Letters

show corresponding points in Fig. 10 and Fig. 11.

A detailed comparison of Figs. 10 and 11(a) gives the following description of the un-

stable eigenmodes. The components of an eigenmode pertaining to the short growth-rate

curve segment DR are two forward-traveling LHP electromagnetic waves [from E- (k, c)

and E1j (k + 2/#,6, Cv)] and a backward-traveling electrostatic wave [from Ez (k + 1/2,2)].

The components pertaining to the growth-rate curve segments REF, ABCG, and MN

are a backward-traveling LHP electromagnetic wave [from El_ (k, c)], a forward-traveling

LHP electromagnetic wave [from Ei+ (k + 2/#2, L2)], and a forward traveling electrostatic

wave [from E-,(k + 1/#,, 62)]. All other growth-rate curve segments have eigenmodes con-

sisting of forward traveling LHP and RHP electromagnetic waves and a forward traveling

electrostatic wave.

The most rapidly growing eigenmode of this system is that at point C in Figs. 10(a)

and 10(b). The components of this eigenmode are a backward-traveling LHP wave, a

forward-traveling LHP wave, and a forward-traveling electrostatic wave. Reference to

Figs. 11(b) and 11(c) shows that the backward-traveling component [which arises from

E1 (k, c)] is the largest component both in amplitude and energy transfer. A similar

situation was found for small IkI in Fig. 6(a) for the axial-dependent case except that the

forward-traveling electromagnetic component was found to be RHP.
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Two branches of the growth-rate curves in Figs. 10(a) and 10(b) (MNO and

ABCGHI) show moderate growth rates at the resonance wavenumber k, = 4.94. For

both of these branches, Figs. 11(b) and 11(c) show that the eigenmode at k, = 4.94 has a

relatively large RHP electromagnetic component. Again we see that this behavior differs

from that of the uncoupled system in Fig. 8(a), which shows no growth of RHP electromag-

netic waves at the resonance wavenumber. The growth rates at k, are approximately the

same in Fig. 6(a) for the time-dependent equilibrium and Fig. 10(a) for the axial-dependent

equilibrium; however, the electrostatic components of the corresponding eigenvectors are

of greater relative amplitude in the axial-dependent case than in the time-dependent case.

[Compare Fig. 11(c) with Fig. 6(d).]

Finally, at large values of k, Figs. 10(a) and 6(a) approximate each other closely. This

fact conforms with our previous results giving the large-lkl behaviors of Eq. (69) for s2 = 0

and Eq. (100) for w2 = 0. However, the corresponding eigenmodes [E in Eq. (60) and E' in

Eq. (91)] are different even in the limit of large k. By comparing Fig. 6(d) with Fig. 11(c),

it is seen that (at large k) the electrostatic component is relatively much stronger in the

case of the axial-dependent equilibrium distribution.

Example 4: To obtain the analogue of Example 4 of Sec. III.C (whose stability prop-

erties are summarized in Fig. 7), choose w, = W2 = 1. These values are obtained by

choosing I(() = E' 6(C - 2n7r), so that in effect the phase of any particle is given

by # = mQcz/p,). Growth-rate curves (for -1.254 < k < 8) and corresponding plots

of Reci vs. k (for -1.254 < c < 0) are presented in Figs. 12(a) and 12(b), respectively.

For unstable branches of the dispersion relation in Eq. (100), plots of the Poynting flux

ratio in Eq. (105) vs. k and El.-(k, cD)/Ej(k + 1/0z, ) vs. k are presented in Figs. 12(c)

and 12(d), respectively. Letters show corresponding points in these plots. The letters

correspond only loosely to those in Fig. 7.

Comparing Figs. 12(a) and 12(b), we see that the components of an eigenmode

on growth-rate curve segment DN are a backward-traveling LHP electromagnetic wave

[E 1+(k + 2/#.,cD)], a forward-traveling LHP electromagnetic wave [Ei_(Ic,C)], and a

backward-traveling electrostatic wave [E 1z(k + 1//z, )]. Eigenmodes on growth-rate

curve segments ACB and NEF consist of a backward-traveling LHP electromagnetic
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wave [E 1- (k, L)], a forward-traveling LHP electromagnetic wave [E+(k + 2/#z, (D)], and a

forward-traveling electrostatic wave [E 1 z(c + 1/3z,)]. Eigenmodes on all other growth-

rate curve segments consist of forward traveling RHP and LHP electromagnetic waves and

a forward-traveling electrostatic wave.

Some properties of the growth-rate curves in Fig. 12(a) are similar to those in Fig. 7(a).

Like Fig. 7(a), Fig. 12(a) shows no growth at large values of k. Both sets of curves show

very large growth rates at small values of IkI, where backward waves occur [i.e., near point

B in Fig. 7(a) and point C in Fig. 12(a)]. The eigenmode at point C in Fig. 12(a) consists

of a backward-traveling LHP electromagnetic wave [from El. (k, CD)], and forward-traveling

LHP electromagnetic and electrostatic modes. Reference to Figs. 12(c) and 12(d) shows

that the backward-traveling component exceeds the other two components in amplitude.

In Sec. III.C, a similar situation was found to exist at point B in Fig. 7(a), except that

the forward-traveling electromagnetic component is RHP. Like Fig. 7(a), Fig. 12(a) shows

a fairly large growth rate at the resonance wavenumber on the branch ACBIJ. Moreover,

Figs. 12(c) and 12(d) show that the corresponding eigenmode has a relatively strong RHS

electromagnetic component.

Finally, notice that no gap appears in the growth-rate curves in Fig. 12(a) to corre-

spond to the gap between points F and H in Fig. 7(a).

D. Remarks Concerning Numerical Examples.

The analysis of the above numerical examples for the axial-dependent equilibrium

leads to the same general conclusions as those given in Sec. III.C for the time-dependent

equilibrium. A rich structure of different growth-rate curves and unstable eigenmodes

can be induced by varying the form of q(C), i.e., the values of w1 and w2. A suitable

choice of T(C) can significantly increase growth rates of RHP electromagnetic waves at

the resonance wavenumber k = 1/(1 - #,) and can significantly increase or reduce growth

rates at large values of k. At small values of k, where backward-traveling components are

present, growth rates and the structures of eigenmodes depend strongly on the form of

I[((). This fact suggests that properties of absolute instabilities may depend strongly on

T(C). However, a study of this conjecture has not been carried out.
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For the same parameters (Qyo, ao), growth rate curves for corresponding (si = wi,

S2 = w2) time-dependent and axial-dependent systems usually show some resemblance.

Nevertheless, the eigenmode structures are very different in the two cases. In the time-

dependent case, unstable eigenmodes for coupled systems consist of two or three compo-

nents of the same wavenumbers and different frequencies, whereas in the axial-dependent

case the components have the same frequencies and different wavenumbers. Moreover,

for small values of Ic, the handedness and directions of motion of components may differ

between the two cases.
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V. Conclusions

We have studied stability properties of a relativistic electron beam propagating along

an applied magnetic field Bo0z, using the Maxwell-Vlasov equations under the constraint

that spatially dependent quantities are functions of z only. Of particular interest are

those cases in which the equilibrium distribution is not uniformly random in the electron

gyro-phase angle #. Two equilibrium distributions have been considered. These are the

time-dependent distribution fo(pi-,pz,), where = #- Qct/y, and the spatial-dependent

distribution fo (p, pz, (), where ( = # - m1z/pz. Since neither of these distributions

can be converted into the other by a Lorentz transformation, the distributions represent

two physically different systems. It is found that in general the Fourier components of the

perturbed electric and magnetic fields are related the integral equations (26)-(28) for the

case of the time-dependent equilibrium distribution, and by the integral equations (41)-(43)

for the case of the spatial-dependent equilibrium distribution. In our numerical analysis,

however, we consider special cases in which the integral equations reduce to algebraic

equations even though the equilibrium distribution is not uniformly random in phase.

If there is no spread in electron energies (or equivalently p) in the time-dependent

equilibrium distribution, then the integral equations (26)-(28) reduce to just three algebraic

equations [Eq. (58)] relating the Fourier components E 1 _(k,w), E 1 +(k,w - 2w,), and

Elz(k, w - w.) of the perturbed fields. Consequently, an eigenmode of the system consists

of a RHP electromagnetic wave, a LHP electromagnetic wave, and an electrostatic wave.

These components have the same wavenumber, and the same spatial and temporal growth

or decay rates, but have different frequencies. [The electrostatic component is decoupled

if the Fourier coefficient §1 (po, a) in Eq. (57) vanishes, and all three components decouple

if §2(po, a) also vanishes.]

If there is no spread in the axial component of momentum (p,,) in the spatial-dependent

equilibrium distribution, then the integral equations (41)-(43) reduce to just three al-

gebraic equations [Eq. (89)] relating the perturbed field Fourier components E1 - (k, w),

E1+(k + 2mQc/pzo, w), El.(k + mf2c/pzo, w). Therefore, the components of an eigenmode

are a RHP electromagnetic wave, a LHP electromagnetic wave, and an electrostatic wave.
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These components have the same frequency, and the same spatial and temporal growth or

decay rates, but have different wavenumbers. [In analogy with the time-dependent case,

the electrostatic component is decoupled if the Fourier coefficient h1 (Pi,PzO) in Eq. (88)

vanishes, and all of the components decouple if h2 (pj., pzo) also vanishes.)

Numerical computations of stability properties have been carried out for both the time-

and spatial-dependent equilibrium distributions for the case where no spread is present

in both p and the pitch angle a (or equivalently in both pj and p). In this case the

frequencies and wavenumbers can be normalized to the relativistic cyclotron frequency w.

by defining V = w/wc, and I = ck/we. The computations are restricted to real values of k,

so that Im,; > 0 indicates temporal growth. It is found that (for fixed applied magnetic

field, energy, and pitch angle) a rich variety of growth-rate curves and eigenmodes can be

obtained by changing the dependence of the equilibrium distribution on the phase angle.

Appropriate choices of the phase-angle dependence can significantly increase growth rates

near the resonance wave number I, = 1/(1 - P,). Growth rates at large values of k can

on the one hand be enhanced and on the other hand be suppressed altogether. Moreover,

finite intervals (in k) of no growth can be produced. Finally, growth rate curves and

the form of eigenvectors at small values of Ikl, where backward traveling components are

present, are particularly sensitive to the 4-dependence of the equilibrium distribution.

As an important area in our current research, we are analyzing the integral equations

to determine the structures of eigenmodes in the general case.

VI. Acknowledgement

This research was supported in part by the Air Force Office of Scientific Research,

Grant Numbers F49620-94-1-0374 and F49620-97-1-0325.

42



References

1. K. R. Chu and J. L. Hirschfield, Phys. Fluids 21, 461 (1978).

2. R. C. Davidson and P. H. Yoon, Phys. Rev. A 39, 2534 (1989).

3. P. H. Yoon and R. C. Davidson, Phys. Rev. A 35, 2619 (1987).

4. P. H. Yoon and R. C. Davidson, Phys. Rev. A 35, 2718 (1987).

5. P. H. Yoon and R. C. Davidson, J. Plasma Physics 43, 269 (1990).

6. H. S. Uhm and R. C. Davidson, Phys. Fluids 29, 2713 (1986).

7. A. Fruchtman and L. Friedland, J. Appl. Phys. 53, 4011 (1982).

8. A. Fruchtman and L. Friedland, IEEE J. Quantum Electron. 19 327 (1983).

9. T. H. Kho and A. T. Lin and L. Chen, Phys. Fluids 31, 3120 (1988).

10. C. Chen, J. A. Davies, G. Zhang, and J. Wurtele, Phys. Rev. Lett. 69, 73 (1992).

11. P. Yoon and T. Chang, J. Plasma Physics 42, 193 (1989).

12. V. L. Bratman, N. S. Ginsberg, G. S. Nusinovich, M. I. Petelin and P. S. Strelkov,

Int. J. Electron. 61, 541 (1981).

13. T. H. Kho, A. T. Lin, Phys. Fluids B 2, 822 (1990).

14. K. R. Chen, J. M. Dawson, A. T. Lin, and T. Katsouleas, Phys. Fluids B 3, 1270

(1991).

15. B. G. Danly, J. A. Davies, K. D. Pendergast, R. J. Tempkin, and J. S. Wurtele, Proc.

SPIE, Microwave and Particle Beam Sources and and Directed Energy Concepts,

1061, 243 (1989).

16. C. Chen and-J. S. Wurtele, Phys. Rev. Lett. 65 3389 (1990).

17. C. Chen and J. S. Wurtele, Phys. Fluids B 3, 2133 (1991).

43



18. C. Chen, B. G. Danly, G. Shevets and J. S. Wurtele, IEEE Trans. Plasma Sci. 20, 149

(1992).

19. H. P. Freund and C. Chen, Int. J. Electronics 72, 1005 (1992).

20. C. S. Wu, Space Science Reviews 41, 215 (1985).

21. H. P. Freund, C. S. Wu and J. D. Gaffey, Jr., Phys. Fluids 27, 1396 (1984).

22. H. P. Freund, J. Q. Dong, C. S. Wu and L. C. Lee, Phys. Fluids 30, 3106 (1987).

23. P. H. Yoon and D. Krauss-Varban, Phys. Fluids B 2, 1918 (1990).

24. P. H. Yoon and C. S. Wu, Phys. Rev. A 44, 6819 (1991).

25. F. Ziebelland P. H. Yoon, Phys. Plasmas 2, 1285 (1995).

26. A. Bers, Handbook of Plasma Physics, vol 1. Basic Plasma Physics I (ed.' A. A.

Galeev and R. N. Sudan) North Holland, Chap. 3.2 (1983).

27. Y. Y. Lau, K. R. Chu, L. R. Barnett, and V. I. Granatstein, Int. J. Infrared and

Millimeter Waves 2, 373-393 (1981).

28. J. A. Davies, Phys. Fluids B 1, 663 (1989).

44



Appendix. Relations between Equilibrium Distributions

In this paper, we consider equilibrium distributions whose form in the laboratory

reference frame is either fo (p, t) = fo (pi,p, ) or fo (z,p) = fo (P-i,pz,(). Below it is

shown that, under a Lorentz transformation to a new reference frame moving in the z-

direction relative to the laboratory frame with velocity Pu = u/c, either of these forms is

transformed into combinations of the two original forms.

It is well known that a distribution fo (z, p, t) is invariant under a Lorentz transforma-

tion. Consequently, under the Lorentz transformations described above the the distribution

becomes

f (z', p',t') = fo (z,p, t), (Al)

where

z = -Y" 1 (Z' + O3,.ct'),I

ct = -y, (ct' + u2z') ,

PZ = ^/u (P' + I-37'Mc) ,

-ymc = -Y, (Y'mc +3up') . (A2)

Moreover, p = p', 4=4, and 7y = (1 23) 2.

Expressing = 2t/'y in terms of transformed (primed) quantities, we find that

(1 + PU.,') C,+ OZ'fu (1 + OUP');

=Y. Ougz (1 + _Y#)(' pu (fl, - flu)(',I (A3)

where #z = vz/c, and

=t (A4)

Z' (A5)

Consequently, if the laboratory frame distribution is of the form fo (p,t) =

fo (p±,pz, ), then the moving frame distribution will be of the form fo (z',p', t') =
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fo(pi,,p',ci'+c 2('), where cl = (1+ %Q#' and c2 = ' + '. Notice

that cl + c2 = 1 and that ci > 0, so that a Lorentz transformation cannot change the

form of a distribution from fo (pip., p,,) into fo (p±,p', (') for any value of p'. Finally,

notice that Eq. (55) must be applied with care to the singular case of fl. = # (i.e.,

= 0), because o' -- co as #--+ 0. In this singular case, -= - 13# z'/Yc where

'= (p/m 2c 2 + 1)1/2.

Expressing = 4- mQz/7pz = - icz/-yv- in terms of primed quantities, we obtain

= + yu(11-p>)'+ (#2 -13 . (A6)

Under a Lorentz transformation, a distribution of the form fo (z, p) = fo (p±,pz, () attains

the form fo(z', p', t') = fo (p±, p', c16' + c2 ('), where now ci = Pu/ (Pu + P') and c2 =

0' / (flu + fl'). Again, notice that c1 + c2 = 1. In the singular case of #u -- i3 (i. e.,

-- + 0), Eq. (A6) reduces to ( = ' - . Consequently, a Lorentz transformation

cannot change the form of a distribution from fo (pi., p, () into fo (p±, p', ') for any value

of p'.
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Figure Captions

1. The phase angle 4 and the pitch angle a of the single particle momentum p.

2. Schematic diagrams of (a) the time-dependent phase distribution at a single instant

of time for the case where ( = 0 for all particles, and (b) of the axial dependent

distribution for all time for the case where C = 0 for all particles.

3. Distributions in phase I(() used in numerical examples. Plot (a) is a uniformly

random (gyrotropic) distribution. Also shown are plots of nongyrotropic distributions

for which (b) si = 0 and s2 = sin a/a, (c) si = -4iK and s2 = 0, and (d) si =

(2/a) exp(-ia/2) sin(a/2) and S2 = (1/a) exp(-ia) sin a.

4. Plots of complex Z vs. k (real) for the system parameters wC/w; = 0.05, -yo = 2, and

ao = 0.4. The time-dependent equilibrium distribution in phase is characterized by

Si = S2 = 0. Plots are (a) Imc vs. k for 0 < k < 10 and (b) Rec2 vs. k for 0 < k < 1.4.

5. Dispersion relations and properties of corresponding eigenvectors for system parame-

ters wc/w; = 0.05, -yo = 2, and ao = 0.4. The time-dependent equilibrium distribution

in phase is characterized by si = 0 and s2 = 2v2/7r. Plots are (a) Imc vs. k for

0 < k < 15 and (b) Re2 vs. k for 0 < k < 1.5. Also shown for unstable eigenmodes

is (c) the Poynting flux ratio in Eq. (85) vs. k.

6. Dispersion relations and properties of corresponding eigenvectors for system parame-

ters W2/w2 = 0.05, -yo = 2, and ao = 0.4. The time-dependent equilibrium distribution

in phase is characterized by si = -2i/7r and S2 = 0. Plots are (a) Imcz? vs. k for

0 < k < 10 and (b) ReD vs. k for 0 < k < 2. Also shown for unstable eigenmodes are

(c) the Poynting flux ratio in Eq. (85) vs. k and (d) 2- 1/ 2 Ei_ (k,')/Eiz(k,6 - 1)

vs. k.

7. Dispersion relations and properties of corresponding eigenvectors for system parame-

ters wc/w; = 0.05, -yo = 2, and ao = 0.4. The time-dependent equilibrium distribution

in phase is characterized by si = S2 = 1. Plots are (a) Imc) vs. k for 0 < k < 8 and (b)

RecD vs. k for 0 < k < 1.5. Also shown for unstable eigenmodes are (c) the Poynting

flux ratio in Eq. (85) vs. k and (d) 2- 1/2 Ei-f(k, c)/Eif(k, o - 1) vs. k.

8. Plots of complex 4 vs. Ic (real) for the system parameters wl/w2 = 0.05, -yo = 2, and
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ao= 0.4. The spatial-dependent equilibrium distribution in phase is characterized by

= w2= 0. Plots are (a) Imca vs. k for -1.254 <k < 10 and (b) Re2; vs. k for

-1.254 <k < 0.

9. Dispersion relations and properties of corresponding eigenvectors for system parame-

ters wC/W; = 0.05, yo = 2, and ao = 0.4. The spatial-dependent equilibrium distribu-

tion in phase is characterized by w, = 0 and w2 = 2V'/7r. Plots are (a) Imc vs. k

for -1.254 <k < 14 and (b) Rec vs. k for -1.254 < k < 0. Also shown for unstable

eigenmodes is (c) the Poynting flux ratio in Eq. (105) vs. k.

10. Growth-rate curves (Imc vs. k, real) for system parameters w/w2 = 0.05, yo = 2,

and ao = 0.4. The spatial-dependent equilibrium distribution in phase is characterized

by w, = -2i/7r and W2 = 0. Plots are (a) Imc vs. c for -1.254 < c < 10 and (b) a

detail of the previous plot for -1.254 < k K 0.

11. Additional properties of the system whose growth-rate curves are plotted in Fig. 10.

Plot (a) of Reo vs. c for -1.254 <c < 0. Shown for unstable eigenmodes are (b) the

Poynting flux ratio in Eq. (105) vs. k and (c) 2- 1/2 E_ (k2)/Ei(k+1/#,,) vs. Ic.

12. Dispersion relations and properties of corresponding eigenvectors for system parame-

ters -l/W = 0.05, -yo = 2, and ao = 0.4. The time-dependent equilibrium distribution

in phase is characterized by w, = W2 = 1. Plots are (a) ImD vs. c for -1.254 <c < 8

and (b) Ret vs. I for -1.254 < Ic < 0. Also shown for unstable eigenmodes are (c)

the Poynting flux ratio in Eq. (105) vs. k and (d) 2-1/ 2 1Ei-(k, )/Ei,(kc + 1/P8, c')

vs. k.
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