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Abstract

The effects of beam intensity on the laser field on Inverse-Bremsstrahlung
Electron Acceleration are investigated. A self-consistent Hamiltonian formal-
ism that takes into account both particles and wave dynamics is developed. It
is shown that efficient acceleration is achieved for high-density beams. How-
ever, for such high densities, beam plasma effects impose a limitation on

energy gain. A method is proposed in order to remove the limiting effects.
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With the advent of powerful coherent radiation-generation systems a good deal of effort
has been directed to the analysis of new concepts for particle acceleration that can over-
come the acceleration gradient limitations of current linear accelerators [1]. Among different
methods proposed for laser-particle acceleration a promising branch is the one where par-
ticles and electromagnetic fields interact directly without the aid of dielectrics or plasmas
[2-7], because of the difficulties to control instabilities and other damaging effects generated
by the presence of such media. In particular, Kawatana and co-workers introduced the con-
cept of Inverse-Bremsstrahlung Electron Acceleration [5], where a small electrostatic field
applied perpendicular to a propagating electromagnetic wave breaks the symmetry in the
oscillatory wave-particle interaction. They showed that with properly chosen values for the
applied electrostatic field strength, net energy gain is obtained in one cycle of the wave.
By analyzing the nonlinear equations involved in the single-particle-wave interaction, Hus-
sein and Pato [6] demonstrated that by alternating the direction of the applied electrostatic
field at appropriate positions, the acceleration is extended for more than one wave cycle,
leading to high energy gain. They called this scheme as Nonlinear Amplification of Inverse-
Bremsstrahlung Electron Acceleration (NAIBEA). Subsequent analysis on the wave-particle
interaction based on particle-in-cell simulations indicated that although space-charge forces
are negligible, beam current effects on the electromagnetic fields may play an important role
in the acceleration process [8].

In this paper we further investigate beam current effects in the NAIBEA scheme. A self-
consistent Hamiltonian formalism that takes into account both particles and wave dynamics
is developed. It is shown that, if on one hand, increasing densities are necessary in order to
achieve efficient acceleration, on the other hand, it causes beam plasma effects to become
pronounced, setting certain limits on the energy gain. A method is proposed to overcome
these limitations.

We consider a beam of electrons of charge —e and mass m interacting with an applied
plane electromagnetic wave propagating in the z-direction and an applied electrostatic field

pointing along the y-direction. The vector potential that describes the electromagnetic wave



is written as
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where c¢ is the speed of light in vacuo, ¢ = wt — kz, with w being the wave frequency and
k = w/c the wave number, A is the complex wave amplitude, and c.c. stands for complex
conjugate. The wave electric and magnetic fields are then given by E,e.. = Fyé, and
Buawe = B8, with E, = B, = i£e"% /2 + c.c. and € = mawA/e. Normalizing space to 1/k,
time to 1/w, energy to mc?, momentum to mc, vector potential to e/mc? and electric field
to e/mcw, the dynamics of the i** electron in the beam is described by the following particle

Hamiltonian
Hi = i + Eapplis (2)
where
Yo = AL PL o [Pyt A+ PEP (3)

is the relativistic mass factor, P; = p; — A is the canonical momentum, with p; being
the mechanical momentum, and I,,, is the normalized applied electrostatic field in the

y-direction. The energy equation for the particle is readily obtained from Eq. (2) as
Hi — _vyiEyv (4)

where the dot stands for derivative with respect to ¢t and v; = p;/~; is the normalized (to c¢)
particle velocity. The NAIBEA scheme consists of alternating the sign of a properly chosen
FE.ppy at the positions where the phase ¢ satisfies ¢ = 2n + 1)n/2, n = 1,2,---. With
this alternation, one shows that the right-hand-side of Eq. (4) is always positive leading to
continuous particle energization [6].

To self-consistently take into account the effects generated by beam current on the elec-
tromagnetic fields we apply a formalism which is similar to that employed in Ref. [9]. We

start from Maxwell equation for the vector potential (in normalized form)
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where
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is the y-component of the electron current density, which has been normalized to eck®. Here,
N is the total number of particles in the system, and r;(¢) is the instantaneous displacement
of the " particle. From Eq. (5) one readily derives a slow-time scale evolution equation for

the complex wave amplitude as
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where a Fourier transform over the fast (primed) variables has been performed introducing
the volume V and period T. Using the polar representation for the wave amplitude A =
Ve, Eq. (6), and the relation

Pyi + Aylzi(t'), ']
Vi

(8)

Vyi (") =

we can re-write Eq. (7) in the form
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N . i
where use has been made of the conditions v.; ~ 1 and |Py1| = |Eapp| < 1. The effect of the

electron current density on the electromagnetic fields appears through the parameter
= WP Jw? (11)

where wf = 4me*n./m is the beam plasma frequency squared, with n. being the average

electron density.



An interesting point is that rescaling the wave dynamical quantities according to ¢ =
25 /N and p = dp one concludes that all relevant dynamical equations for both particles and

fields can be derived from one generalized Hamiltonian given by

N N

H = ZHi = Z Vi + Eapplil, (12)
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= {1+ P31 [Py — \Jopcos(t — x; + 20 /N) > + P2}V2, (13)

In the above Hamiltonian formalism the equations of motion for the particles and the wave

quantities are given, respectively, by

(14)

and
(15)

where o and p play the role of canonically conjugated coordinate and momentum, respec-
tively.
It readily follows from the generalized Hamiltonian in Eq. (12) that the energy exchange

between particles and electromagnetic wave obeys a conservation law of the form [10]

= N

N
TP 3 (Vi + Eappyi) = const. (16)
=1

Note that mc*(Np/2) = tUwave Va is the total electromagnetic energy stored in the wave,
where Uyqe = |E]? /87 is the wave energy density and V; = V/k? is the dimensional volume.

In order to analyze the self-consistent interaction in a NAIBEA scheme, we numerically
integrate the set of equations (14) and (15). We model the interaction considering a cold
beam of N electrons per wavelength of the laser field, homogeneously distributed along the
z-direction. We consider a specific example discussed in previous papers [6,11], namely,
a 10 um wavelength laser with electric field amplitude |€] = 1.636 x 10? V/cm, which

corresponds to an intensity of 3.5 x 10 W/em?. The strength of the applied electrostatic
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field is |Fapp| = 4.28 x 107°|&|. The electrons are injected with an energy corresponding to
v = 106.8 at an angle of 0.608° with respect to the x-axis. For this case, the single-particle
(not self-consistent) analysis, based on Eq. (2), reveals that an electron initially at z(0) = 0
attain a final energy corresponding to v = 850 after 96 cm of interaction when one inversion
in the sign of FE,,, is performed. The optimal position for the electrostatic field reversion
(i.e., when ¢ = 37/2) is found to be 32.8 em from the injection point.

Now we investigate what happens when the wave dynamics is taken into account. We
consider two distinct cases, a low-density beam with § = 5 x 107® and a high-density beam
with § = 1073, We note that although the values of ¢ are different from those found in
Ref. [11], they correspond to equivalent beam densities since the normalization adopted
there introduces a factor of 27/32 &~ 0.2 in the definition of ¢ {compare Eq. (20) in [11]
with Eq. (11) in this paper}. In Fig. 1 we show the results obtained for the self-consistent
interaction with N = 50 particles per wavelength when one inversion in I, is performed
at the optimal position determined by the single-particle analysis. The number of particles
in the simulation is chosen to obtain convergent (independent of N) results for the wave
dynamical quantities. To compare self-consistent results with single-particle results, one
particle is chosen among the N particles as a tag particle whose energy is monitored during
the acceleration. The tag particle is launched exactly with z(0) = 0 (which is the initial
condition used in the single-particle analysis). The figure presents the amplitude (a) and
phase (b) of the wave, and the energy (in terms of ) of the tag particle (c¢) as a function of
the dimensional interaction distance s = x/k for both the low-density case (dashed curves)
and the high-density case (solid curves).

For the low-density case with § = 5 x 107 (dashed curves) the wave is essentially unaf-
fected by the presence of particles, with p and ¢ keeping their values unchanged throughout
the interaction, as seen in Figs. 1(a) and 1(b). Hence, the acceleration shown in Fig. 1(c)
agrees with that found in the single-particle analysis where a maximum energy correspond-
ing to v = 850 is attained at s = 96.0 cm. Despite the large particle energization, it should

be pointed out that the acceleration process for low densities is clearly inefficient, since little
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energy is transferred from the wave to the particle beam.

For the high-density case with & = 1072 (solid curves), however, the acceleration process
is dramatically affected by the wave dynamics. Figure 1(a) shows that the wave is severely
damped as it interacts with the particle beam, transferring up to 70% of its initial energy
to the beam. As a result of wave depletion, the instantaneous rate of energy change given
by Eq. (4) is reduced, and the maximum energy obtained by the tag particle is decreased
to v = 350 [see Fig. 1(c)]. Although the final energy in the high-density case is much lower
than that in the low-density case, it still represents a good acceleration with gradients on
the order of hundreds of MeV /m.

By examining the high-density case in more detail, one readily finds another reason for
the limited particle acceleration, besides the wave depletion. Figure 1(b) shows that beam
plasma effects cause the wave phase velocity to increase, which is indicated by a nearly
monotonic increase in . Because phase synchronous is required in the NAIBEA scheme,
even small changes in ¢ can drive particles and wave out of phase, eventually changing the
sign of —v,; E, in Eq. (4) and ceasing the acceleration process.

To overcome the limitation on particle acceleration imposed by the beam-plasma-induced
phase shift, we notice, from the generalized Hamiltonian in Eq. (12), that the effective wave
phase seen by the particles is ps. = ¢ + 26/N instead of ¢. Thus, by changing the sign
of E.pp according to ¢s. = (2n+ 1)7/2, n = 1,2,---, we can compensate self-consistent
variations of the wave phase, thereby prolonging the acceleration process.

To test the efficacy of the compensation procedure, we consider the high-density beam
example presented in Fig. 1. Integrating the self-consistent set of equations (14) and (15),
we readily obtain the interaction distance s for which .. = 37/2 is satisfied: s = 28.0 cm.
In Fig. 2, the wave amplitude p (solid curve) and the tag particle energy v (dashed curve)
are shown as a function of s for the case where E,,, is changed at the optimized position
s = 28.0 em. Comparing these results with the previous results in Figs. 1(a) and 1(c),
solid curves, one observes apparent improvements in the acceleration process with a 20%

increase in the total energy delivered by the wave to the particle beam, as well as a 30%
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increase in the energy attained by the tag particle. To better analyze the overall efficiency of
high-density beam acceleration, we also perform a simulation with the same parameters used
in Fig. 2, using a larger number of particles: N = 1000. The particle energy distribution
function f() obtained for s = 67.8 cm is presented in Fig. 3. Although beam heating takes
place, the fact that 20% of the particles are accelerated beyond v = 400 demonstrates the
efficacy of the acceleration scheme.

To place above results into certain perspective, two remarks are in order. First, although
the results in this paper are obtained for the particular laser particle acceleration scheme,
i.e., Inverse-Bremsstrahlung Electron Acceleration, one might expect that similar effects
may occur in other laser accelerator schemes. Second, the formalism developed here may
be generalized to describe a phased array of laser beams interacting with an electron beam
in a NAIBEA scheme, which was proposed in ref. [11] in order to avoid the laser diffraction
problem.

In conclusion, we have investigated the effects of beam intensity on the laser field on
the NAIBEA scheme. In particular, a self-consistent Hamiltonian formalism that takes into
account both particles and wave dynamics has been developed. It was found that high
particle gain and efficient energy exchange between wave and particles can be achieved
simultaneously for high-density beams if beam plasma effects are judiciously taken into

account.
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FIGURES
FIG. 1. Amplitude (a) and phase (b) of the wave, and energy of the tag particle (¢) as a

function of the interaction distance s, for § = 5 x 1078 (dashed curves) and § = 1073 (solid curves).
Here, one inversion in I, is performed at the position determined by the single-particle analysis
s = 32.8 cm. The laser is a 10 um wavelength with an initial amplitude |£] = 1.636 x 10° V/cm,
and the applied electric field is given by |Fy,,,| = 4.28 x 107°|&|. The simulations are performed

with N = 50 particles per wavelength.

FIG. 2. Wave amplitude and tag particle energy as a function of the interaction distance s for
the high-density case § = 10~2 when the inversion in Epp is performed at the optimized position

s = 28.0 cm. Remaining parameters are the same as in Fig. 1.

FIG. 3. Energy distribution function f(v) obtained for s = 67.8 cm and N = 1000 particles
per wavelength when the inversion in Iy, is performed at the optimized position s — 28.0 cm.

Remaining parameters are the same as in Fig. 2.
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