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ABSTRACT

The black hole binary system LMC X-3 has been observed by virtually every X-ray mission since the inception
of X-ray astronomy. Among the persistent sources, LMC X-3 is uniquely both habitually soft and highly variable.
Using a fully relativistic accretion disk model, we analyze hundreds of spectra collected during eight X-ray missions
that span 26 years. For a selected sample of 391 RXTE spectra, we find that to within ≈2% the inner radius of the
accretion disk is constant over time and unaffected by source variability. Even considering an ensemble of eight
X-ray missions, we find consistent values of the radius to within ≈4%–6%. Our results provide strong evidence for
the existence of a fixed inner-disk radius. The only reasonable inference is that this radius is closely associated with
the general relativistic innermost stable circular orbit. Our findings establish a firm foundation for the measurement
of black hole spin.
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1. INTRODUCTION

The X-ray binary LMC X-3 was discovered by Uhuru in 1971
(Leong et al. 1971). Observations of its B3V optical counterpart
revealed an orbital period of 1.7 days and a mass function
of 2.3 ± 0.3 M�. Because of its massive companion star, this
established LMC X-3 as a strong dynamical black hole (BH)
candidate (Cowley et al. 1983; Kuiper et al. 1988). Subsequent
X-ray observations spanning decades have revealed a complex
behavioral pattern that includes transitions between soft and
hard states (Wilms et al. 2001) and long-term (�100 days)
variability cycles (Cowley et al. 1991). While by some metrics
LMC X-3 is a nearly archetypal BH binary, its combined
qualities of persistence and strong variability set it apart as
unique.

Among the BH systems, LMC X-3 bridges the divide between
low-mass X-ray binaries powered by Roche lobe overflow
and wind-fed, high-mass X-ray binaries (Soria et al. 2001).
The former are transients, usually locked in a deep quiescent
state, whereas the latter systems are persistently X-ray bright.
Among the classical persistent BH sources (Cyg X-1, LMC
X-1, and LMC X-3), LMC X-3 habitually shows the softest
X-ray spectrum, reaches the highest luminosity, and exhibits
the largest variations in intensity.

Because of its persistence, LMC X-3 has been observed by
nearly every X-ray astronomy mission. In this Letter, we apply
our relativistic accretion disk model (kerrbb2; McClintock
et al. 2006) to essentially all available X-ray data in order to
examine the presumed constancy of the inner radius of the BH’s
accretion disk. We draw upon data collected by eight missions,
with RXTE providing the lion’s share.

For thin accretion disks, recent magnetohydrodynamic sim-
ulations provide support for identifying the inner-disk radius
Rin with the radius of the innermost stable circular orbit RISCO
(Reynolds & Fabian 2008; Shafee et al. 2008; Penna et al. 2010;
but see Noble et al. 2009), a proposition that has a long history of
theoretical and observational support (e.g., see Section 6 in Gou

et al. 2009). With this identification and the simple monotonic
relationship between RISCO and the BH spin parameter (Shapiro
& Teukolsky 1983), a measurement of Rin is equivalent to a
measurement of the spin of the BH. This is the basis for both the
continuum-fitting (Zhang et al. 1997) and Fe–K (Fabian et al.
1989) methods of measuring spin. In recent years, both methods
have been used to estimate the spins of stellar BHs (e.g., Shafee
et al. 2006; McClintock et al. 2006; Davis et al. 2006; Reis et al.
2008; Miller et al. 2009; Blum et al. 2009).

The mass of LMC X-3’s BH primary is presently very
uncertain (Cowley 1992), and we adopt a round value that is
typical for BH binaries of M = 10 M�. For the inclination,
we adopt the provisional value i = 67◦ (Kuiper et al. 1988).
Because of the uncertainties in both M and i, in this Letter we
do not attempt to estimate the BH’s spin. Rather, we assume a
reasonable value for the mass and employ the X-ray continuum-
fitting method in order to study the constancy of Rin. We describe
our data set comprised of hundreds of multi-mission spectra in
Section 2 and our analysis in Section 3, and present our results
in Section 4. In Section 5, we explore the systematics associated
with our spectral model and conclude by discussing our results
in the context of ongoing studies of BH spin.

2. OBSERVATIONS

RXTE. The Rossi X-ray Timing Explorer (RXTE) is our
workhorse instrument, providing a total gross sample of 712
spectra. Individual spectra were defined by grouping all the
archival pointed data from 1996 to 2009 into approximately
half-day bins with ≈90% of exposure times ranging from 1 to
10 ks. We only use pulse-height spectra obtained by the best-
calibrated Proportional Counter Array (PCA) detector, PCU-2
(Jahoda et al. 2006). Count rates have been renormalized to
correct for detector dead time, and a systematic error of 1%
has been included to account for uncertainty in the instrumental
response (Jahoda et al. 2006). These data have been analyzed
from 2.55 to 25 keV over all reliable gain epochs (�epoch 2).
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Here and elsewhere, the analysis work has been performed using
XSPEC v.12.5.1o (recent enough that an early coding error in
kerrbb has been fixed4; Arnaud 1996).

EXOSAT. Seven observations from 1983 to 1984 were ob-
tained via the HEASARC archive5; only data from the Medium
Energy Instrument (ME) are currently available. Spectra were
extracted as described in Treves et al. (1988) and analyzed from
1 to 25 keV. The customary systematic error of 1% was included.

Ginga. The Large Area Counter (LAC) observed LMC X-3
on 18 occasions during 1987–1990. To extract these spectra,
we followed the procedures described in Ebisawa et al. (1993).
Each spectrum has been analyzed from 1.5 to 25 keV with a 1%
systematic error included.

ASCA. LMC X-3 was observed twice, once on UT 1993
September 22 and later on UT 1995 April 14. We extracted
and separately combined spectra from the two Gas Imaging
Spectrometer (GIS) and two Solid-state Imaging Spectrom-
eter (SIS) instruments. Data were calibrated relative to the
GIS-2 detector and analyzed from 0.8 to 9 keV(GIS) and 0.6 to
9 keV(SIS) using a 2% systematic uncertainty.

BeppoSAX. Following the standard reduction guide (Fiore
et al. 1999), we have generated spectra for the narrow-field
instruments from each of the 23 available observations. We ex-
tracted spectra using 8′ apertures in the imaging instruments and
used a fixed rise-time threshold for the Phoswich Detector Sys-
tem (PDS). For each observation, we employed all usable Law
Energy Concentrator Spectrometer (LECS), Medium Energy
Concentrator Spectrometer (MECS), and PDS data. Through-
out, we adopted the standard inter-detector floating normaliza-
tions calibrated relative to the MECS. Data were analyzed from
0.12 to 4 keV (LECS), 1.65 to 10 keV (MECS), and 15 to 80 keV
(PDS). A 1% systematic error has been included.

XMM-Newton. All photon-counting data were severely piled
up and therefore rejected because of uncertainties in the flux
calibration. We use the single available 19 ks timing-mode
observation of LMC X-3 obtained on UTC 2000 November 25.
Because of the large number of accumulated counts, ∼2 × 106,
uncertainties in the response of the detector are dominant, and
we therefore included a 3% systematic error and fitted over
0.5–10 keV. Reduction and processing has been performed
using XMM SAS v9.0.0.6

Swift. The sole X-ray Telescope (XRT) windowed-timing
mode observation of LMC X-3, taken on UTC 2007 November
26, has been procured and analyzed following the procedures
outlined in Capalbi et al. (2005). We rejected all the photon-
counting data because they suffer from extreme pileup. Cali-
bration version 11 files have been used for the data reduction.
In consultation with the Swift Help Desk, we have included an
extra model component to account for an instrumental artifact
near the Si edge around 1.7 keV. Analysis has been conducted
over 0.4–10 keV using a 1% systematic error.

Suzaku. Two observations were made on 2008 December 22
and 2009 December 21 (UT). The Suzaku attitude calibration
was improved using the AEattcor routine.7 We applied the
appropriate reduction procedures for a bright point source.8

Pileup was kept well below ∼3% by excluding the innermost 10′′

4 http://heasarc.nasa.gov/docs/xanadu/xspec/issues/archive/
issues.12.5.0an.html
5 http://heasarc.nasa.gov
6 http://xmm.esac.esa.int/sas/
7 http://space.mit.edu/CXC/software/suzaku/
8 http://www.astro.isas.ac.jp/suzaku/analysis/xis/pileup/
HowToCheckPileup_v1.pdf

Table 1
Data and Instrument Summary

Instrument Nobs Nsel
a fTS

b ΔΓTS
b Ref.

RXTE (PCU-2) 712 391 (568) 1.097 0.010 · · ·
Suzaku (XIS0) 2 2 (2) 0.98 −0.01 1,2
Swift (XRT) 1 1 (1) 1.01 −0.04 3c

XMM (MOS-1) 1 0 (1) 1.00 0.01 4,5,6
BeppoSAX (MECS) 23 2 (23) 0.95 0.00 7
ASCA (GIS-2) 2 2 (2) 0.97 −0.01 8,9
Ginga (LAC) 18 7 (11) 0.94 −0.02 10
EXOSAT (ME) 7 6 (6) 0.98 0.00 11

Notes.
a Number of selected observations. Parentheses indicate the selection numbers
when high luminosities lD > 0.3 are allowed (see Figure 2).
b fTS is the ratio of the Crab normalization to that of Toor & Seward and ΔΓTS

is the difference between photon indices.
c The Swift values are derived from a comparison between RXTE and Swift
observations of 3C 273.
References. (1) Serlemitsos et al. 2007; (2) http://heasarc.gsfc.nasa.gov/docs/
suzaku/prop_tools/suzaku_td.html; (3) Godet et al. 2009; (4) Guainazzi et al.
2009; (5) Stuhlinger et al. 2006; (6) I. de la Calle 2009, private communication;
(7) Fiore et al. 1999; (8) Makishima et al. 1996; (9) Ebisawa 1996; (10) Turner
et al. 1989; (11) Parmar & Smith 1985.

and 30′′ for the 2008 and 2009 observations, respectively. In all
other respects, we have followed the methods of Kubota et al.
(2010), including using their energy intervals and adopting a
1% systematic error. A fixed cross-normalization of 1.16 is used
between X-ray Imaging Spectrometer and Hard X-ray Detector-
PIN detectors (Maeda et al. 2008).

2.1. Flux Calibration

Just as deducing the radius of a star from its spectrum requires
knowledge of its luminosity, in order to estimate the inner
radius of an accretion disk it is also necessary to determine
its luminosity. However, the measurement of X-ray luminosity
is problematic in X-ray astronomy because of the significant
flux-normalization differences, often �10%, between missions.
We address this issue by using the power-law spectrum of the
Crab Nebula as measured by Toor & Seward (1974): Γ = 2.1
and N = 9.7 photons s−1 keV−1 at 1 keV.

For each mission considered herein (excepting Swift; see
Table 1), we either rely on the Crab calibration performed
by the instrument team or we compute a correction to the
effective area by comparing the spectrum predicted by Toor &
Seward (1974) to parameters obtained by analyzing proximate,
archival observations of the Crab. Toor & Seward normalization
coefficients fTS and slope differences ΔΓTS are presented for each
mission in Table 1. This table also summarizes for LMC X-3 the
gross number of observations available from each mission, Nobs,
as well as the number of observations that meet our selection
criteria, Nsel (Section 3.1).

3. ANALYSIS

At energies above ∼5–10 keV, the spectra of BH binaries in
all states show a contribution from a power-law component. This
power law is widely attributed to inverse Compton scattering of
thermal disk photons by hot coronal electrons. The power-law
model we employ, simpl, generates this Compton component by
upscattering seed photons from the thermal component (Steiner
et al. 2009b).

http://heasarc.nasa.gov/docs/xanadu/xspec/issues/archive/issues.12.5.0an.html
http://heasarc.nasa.gov/docs/xanadu/xspec/issues/archive/issues.12.5.0an.html
http://heasarc.nasa.gov
http://xmm.esac.esa.int/sas/
http://space.mit.edu/CXC/software/suzaku/
http://www.astro.isas.ac.jp/suzaku/analysis/xis/pileup/HowToCheckPileup_v1.pdf
http://www.astro.isas.ac.jp/suzaku/analysis/xis/pileup/HowToCheckPileup_v1.pdf
http://heasarc.gsfc.nasa.gov/docs/suzaku/prop_tools/suzaku_td/suzaku_td.html
http://heasarc.gsfc.nasa.gov/docs/suzaku/prop_tools/suzaku_td/suzaku_td.html


No. 2, 2010 LMC X-3: A BASIS FOR MEASURING BH SPIN L119

The thermal and principal component of our model is ker-

rbb2, a thin accretion disk model that includes all relativistic
effects, self-irradiation of the disk (“returning radiation”), limb
darkening, and the effects of spectral hardening (Li et al. 2005;
McClintock et al. 2006). During analysis, this latter effect is
handled on the fly via a look-up table of the spectral hardening
factor f for a given value of the disk viscosity parameter α (we
adopt α = 0.01 as default). These tables were computed us-
ing bhspec, a second relativistic disk model (Davis et al. 2006;
Davis & Hubeny 2006).

Our fit to the thermal component of the spectrum effectively
determines the solid angle subtended by the accretion disk:
Ω = π (Rin/D)2cos i, where D is the distance and i is the
inclination of the accretion disk with respect to the line of sight.
For D, we use the average distance to the LMC, D = 48.1 kpc
(e.g., Orosz et al. 2009), while for inclination we use i = 67◦
(Section 1). Finally, we express Rin in dimensionless form,
rin ≡ Rin/(GM/c2) using M = 10 M� (Section 1). We have
recently shown that the choice of M, i, and D, which effectively
sets the absolute scale for rin and the luminosity, is quite
unimportant for testing the stability of rin (see Figure 3 and
text in Steiner et al. 2009a). (These values are crucial, however,
when it comes to estimating the spin of the BH.)

Using our adopted values of the source M, i, and D, our
source model has four fit parameters: two for kerrbb2, Rin
and the mass accretion rate Ṁ , and two for simpl, the photon
index Γ and fSC, which is the fraction of disk photons that
get re-directed via scattering into the power law. Our full
model is tbabs(simpl⊗kerrbb2), where tbabs models the
effects of photoelectric absorption; we fix its sole parameter:
NH = 4×1020 cm−2 (Page et al. 2003), using abundances from
Wilms et al. (2000). For kerrbb2 we include limb darkening and
returning radiation effects, set the torque at the inner boundary
of the accretion disk to zero, and fix the normalization to unity.
We use the efficient, upscattering-only version of simpl, and in
Section 5 we show that this choice is unimportant.

3.1. Data Selection

Our preliminary analysis of all the data showed that for many
spectra the power-law index Γ was essentially unconstrained,
even for the BeppoSAX, EXOSAT, Ginga, and RXTE missions,
which have the requisite coverage to detect this component.
This is because the source is relatively faint (� 50 mCrab)
and its Compton power-law component is generally very weak,
showing a median normalization fSC ≈ 0.3%. The extreme
dominance of the thermal component in LMC X-3 makes it an
ideal source for accretion disk studies like this.

Restricting our census to the 134 RXTE spectra for which the
photon index is measured to a precision better than σΓ = 0.5,
we find a strong clustering of values in the range Γ ≈ 2–2.6.
For our baseline model, we fix Γ = 2.35 which matches the
constant index derived from 22 deep RXTE pointings by Smith
et al. (2007), and in Section 5, we show that our results depend
very weakly on this choice for 2 � Γ � 3.

Meanwhile, three missions, ASCA, Swift, and XMM, have
no sensitivity above E ≈ 10 keV, and therefore only very
loosely measure the power-law normalization parameter, fSC.
At the same time, a self-consistent and fruitful analysis of the
thermal and Compton components requires that fSC be sensibly
constrained. Therefore, and because the power law is generally
so weak, we impose an additional data-selection requirement,
namely, that for each fit fSC falls within the lower 95% span of
the RXTE rank-ordered values.
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Figure 1. Top: accretion disk luminosity in Eddington-scaled units (M =
10 M�) vs. time for all the data considered in this study (766 spectra). Red
arrows show RXTE data which are off scale. Data in the unshaded region
satisfy our thin-disk selection criterion (H/R < 0.1, which implies lD < 0.3;
McClintock et al. 2006). The dotted line indicates the lower luminosity threshold
(5% LEdd) adopted in Section 3.1. Bottom: values of the dimensionless inner-
disk radius rin are shown for thin-disk data in the top panel that meet all of
our selection criteria (411 spectra; see Section 3.1). Despite large variations in
luminosity, rin remains constant to within ≈4% over time. The median value
for the RXTE data alone (rin = 3.77) is shown as a red dashed line.

We further adopt a goodness-of-fit requirement, χ2/ν < 2,
and a lower limit on the Eddington-scaled disk luminosity,
lD ≡ LD/LEdd > 0.05. This latter criterion removes any hard-
state data in which the disk is likely truncated at r > rin (e.g.,
Esin et al. 1997). Finally, in consonance with the thin-disk model
employed, we only select data for which lD < 0.3 (McClintock
et al. 2006).

4. RESULTS

The top panel of Figure 1 shows a 26 year record of the disk
luminosity of LMC X-3, which is seen to vary by orders of
magnitude. Two-thirds of the data meet our thin-disk selection
criterion lD < 0.3. In the lower panel, we show the time history
of the inner-disk radius rin for just those data that meet all of
our selection criteria (Section 3.1). The radius is constant over
the 26 years of monitoring to within ∼2% for RXTE alone and
∼4% considering all missions.

Figure 2 explores the dependence of rin on luminosity. In
this figure, we include the high-luminosity data (lD > 0.3)
that meet all of our other selection criteria (Section 3.1). For
lD < 0.3 there is a gentle, nonlinear rise of rin with luminosity.
Especially visible in the RXTE data, this rise becomes prominent
beyond lD ∼ 0.25, above which there is a ∼12% increase in rin.
No significant change in χ2/ν is associated with the apparent
increase of rin. We cannot say if this represents a real increase in
rin at high luminosities or is simply an artifact of using the thin-
disk model, which is expected to be increasingly inaccurate
at higher luminosities (Penna et al. 2010; Abramowicz et al.
2010) at which a transition may occur to an advective slim-
disk accretion mode. Interestingly, however, despite this rapid
rise, we note that the RXTE data appear tightly clustered
along a well-defined curve. We approximate this dependence
using a non-parametric curve fit (LOWESS; Cleveland 1979)
that allows us to detrend the data. We conclude that results from
all eight missions, including the high-luminosity data, are in
agreement with one another to within ≈6%.



L120 STEINER ET AL. Vol. 718

0.1
lD

r i
n

0.05 0.2 0.3 0.5
 

2

3

4

5

6
 

EXOSAT
Ginga

BeppoSAX
ASCA
XMM
Swift

Suzaku
RXTE

Figure 2. Dimensionless inner-disk radius rin vs. luminosity for the filtered data
(Section 3.1) and our baseline model. The vertical black line shows our adopted
thin-disk upper limit, lD = 0.3. As in Figure 1, the red dashed line shows the
RXTE average below this limit.

5. DISCUSSION

Figure 2 clearly demonstrates the limitations of the thin-disk
model at high luminosities. We further illustrate this point in
Figure 3 using LOWESS fits to the abundant RXTE data. We
vary, one-at-a-time, the model components and parameters of
our baseline model, grouping these trials into four separate
“families.” In order of increasing importance, these families
are (1) column density NH, (2) power-law index Γ, (3) choice
of power-law model, and (4) α. Figure 3 illustrates the changes
introduced by adjusting each family of settings.

We highlight two conclusions from Figure 3: (1) our results
are relatively insensitive to all settings with the single exception
of the choice of α-viscosity; the value α = 0.1 increases
significantly the dependence of rin on luminosity. (2) The
positive correlation between rin and luminosity is generally
present for all families over the full range of luminosity, but
it becomes prominent only above lD ≈ 0.2–0.3.

Inspecting the families of curves in Figure 3 from top to
bottom, one concludes the following: as the first two families
show, our results are insensitive to the choice of NH and only
modestly sensitive to the choice of Γ. In modeling the Compton
tail component (third family), one sees that our results are
essentially identical whether one uses our baseline upscattering-
only model simpl ≡simpl-1 or a two-sided scattering model
simpl-2 (Steiner et al. 2009a), while the results obtained using
the standard power-law model powerlaw differ only modestly
(�5%).

The fourth family considers the primary setting for bhspec,
the viscosity parameter α, used to compute spectral hardening
(Section 3). Here, we examine several distinct cases: our fiducial
value, α = 0.01 (dotted), the value α = 0.1 (Section 3; dark
blue), and alternative stress prescriptions αMD = 0.1 (orange)
and αβ = 0.1 (green). The parameter α typically refers to
viscosity in the disk which is proportional to the total pressure
at the disk mid-plane. However, other choices exist such as
“beta disk” and “mean disk” models in which αβ and αMD,
respectively, describe viscosities which scale proportionally to
the gas pressure or the geometric mean of the gas and total
pressures (Done & Davis 2008). Both latter options produce
spectral hardening values quite similar to those obtained for
α = 0.01. In conclusion, only the second option, α = 0.1, has
an important effect on our results.
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Figure 3. Four families of models showing how our baseline results in Figure 2
are affected when a single model component or parameter is varied. The black
dotted line drawn with each family of curves represents our fiducial model:
NH = 4 × 1020 cm−2; Γ = 2.35; simpl-1; and α = 0.01. The horizontal dashed
line for each family is set by the average value of rin (see Figures 1 and 2),
and each family is offset by 30% for clarity. Each curve represents a LOWESS
curve fit to the RXTE data alone. Both axes are scaled logarithmically.

Our results indicate that the value of the inner-disk radius
rin—and hence spin—is stable over decades, as is expected
given the minute effects of accretion torques on a BH over such
a timescale. We also confirm that rin is nearly independent of
luminosity provided that the disk is geometrically thin. The
stability of rin over time (for lD < 0.3) despite large fluctuations
in the mass accretion rate provides strong evidence that rin and
RISCO are closely associated, as we tacitly assume in measuring
BH spin (Section 1).

The inter-mission consistency of our results (≈4% below
lD < 0.3 and 6% overall) is very important for future X-ray
continuum measurements of BH spin: for some transient BH
sources (e.g., A0620–00 and GRS 1009–45), only one or a
few spectra are available in the data archives. Our results for
LMC X-3 show that, as long as the power-law component is
reliably measured, even a single, suitable spectrum can deliver
an estimate of the disk inner radius accurate to several percent,
and thereby a reliable measurement of spin.
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