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Fire Sales in a Model of Complexity

March 27, 2012

Abstract

We present a model of �nancial crises that stem from endogenous complexity.

We conceptualize complexity as banks�uncertainty about the �nancial network of

cross-exposures. As conditions deteriorate, cross-exposures generate the possibility

of a domino e¤ect of bankruptcies. As this happens, banks face an increasingly com-

plex environment since they need to understand a greater fraction of the �nancial

network to assess their counterparty risk. We show that complexity dramatically

ampli�es banks�perceived counterparty risk, and makes relatively healthy banks,

and hence potential asset buyers, reluctant to buy. Our mechanism takes place

in an otherwise stable (by construction) network of limited cascades. The model

features a complexity externality which provides a rationale for various government

policies used during the Subprime and European crises, including bailouts and asset

purchases.

JEL Codes: G1, E0, D8, E5

Keywords: Uncertainty, complexity, counterparty risk, �re sales, �nancial net-

work, domino e¤ects, market freezes, crises, �nancial panic, credit crunch, external-

ity.
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One of the most damaging aspects of �nancial crises is the enormous uncertainty they

generate, and a central factor behind this uncertainty is the complexity of the linkages

among modern �nancial institutions (banks, for short). The concern for the uncertainty-

complexity combination, and the perverse �re-sales that accompany it, in�uences private

and public choices alike. Fed Chairman Bernanke, in his testimony to the Senate on April

3, 2008 following the Fed�s Bear Stearns intervention, captures this concern as follows:

�Our �nancial system is extremely complex and interconnected, and Bear

Stearns participated extensively in a range of critical markets. The sudden

failure of Bear Stearns likely would have led to a chaotic unwinding of positions

in those markets and could have severely shaken con�dence. The company�s

failure could also have cast doubt on the �nancial positions of some of Bear

Stearns�thousands of counterparties and perhaps of companies with similar

businesses.... Moreover, the adverse impact of a default would not have been

con�ned to the �nancial system but would have been felt broadly in the real

economy through its e¤ects on asset values and credit availability.�

Unfortunately, Chairman Bernanke�s testimony would prove prescient only a few

months later during the Lehman episode, when the demise of the investment bank wrecked

havoc all around the world. Moreover, the concern for a repeat of such turmoil is the

central reason behind the multiple recent attempts to insulate the rest of Europe from

the sovereign debt problems of its periphery.

In this paper, we present a model of crises that builds upon the idea that complex-

ity, which is a dormant factor during normal times, becomes acutely relevant and self-

reinforcing during crises. Complexity matters in our model not directly (and in this sense

this is not a �networks�paper) but through the uncertainty it generates and how economic

agents react to the latter.

The basic structure of our model is a network of cross-exposures between �nancial

institutions (banks, for short) that is susceptible to a domino e¤ect of bankruptcies.

However, we make assumptions such that domino e¤ects are of limited size, in the absence

of our informational mechanism. In this context, we conceptualize complexity by banks�

uncertainty about cross-exposures. In particular, banks have only local knowledge of cross-

exposures: They understand their own exposures, but they are increasingly uncertain

about cross-exposures of banks that are farther away (in the network) from themselves.1

1In pratice, banks also face many other sources of complexity (e.g., about asset payo¤s). Our modest
goal in this paper is to focus on one source of complexity (about the structure of cross-exposures), and
to understand the role this type of complexity plays during crises.
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During normal times, banks only need to understand the �nancial health of their direct

counterparties. In contrast, when a surprise liquidity shock hits parts of the network, a

domino e¤ect of bankruptcies becomes possible, and banks become concerned that they

might be indirectly hit. Banks�uncertainty about cross-exposures, a dormant factor in

normal times, suddenly becomes relevant. In particular, banks now need to understand

the �nancial health of the counterparties of their counterparties (and their counterparties).

Since banks only have local knowledge of the exposures, they cannot rule out an indirect

hit. They now perceive signi�cant counterparty risk which leads them to retrench into a

liquidity-conservation mode.

This structure exhibits strong interactions with secondary markets for banks�assets.

Banks in distress can sell their legacy assets to meet the surprise liquidity shock. The

natural buyers of the legacy assets are other banks in the �nancial network, which may

also receive an indirect hit. When the surprise shock is small, the domino e¤ect is small

and buyers can rule out an indirect hit. In this case, buyers purchase the distressed banks�

legacy assets at their �fair�prices (which re�ect the fundamental value of the assets). In

contrast, when the surprise shock is large, larger domino e¤ects become possible and

buyers cannot rule out an indirect hit. As a precautionary measure, they hoard liquidity

and turn into sellers. The price of legacy assets plummets to ��re-sale�levels (i.e., below

fundamentals), which in turn exacerbates the domino e¤ect.

This feedback mechanism can generate multiple equilibria for intermediate levels of

the surprise shock. When legacy assets fetch a fair price in the secondary market, the

banks in distress have access to more liquidity, and the surprise shock is contained after

fewer bankruptcies. When the domino e¤ect is smaller, the natural buyers rule out an

indirect hit and demand legacy assets, which ensures that these assets trade at their fair

prices. Set against this benign scenario is the possibility of a �re-sale equilibrium where

the price of legacy assets collapses to �re-sale levels. This leads to a greater number

of bankruptcies and a larger domino e¤ect. With a larger domino e¤ect, the natural

buyers become worried about an indirect hit and they sell their own legacy assets, which

reinforces the collapse of asset prices.

Our model features a distinct complexity externality, which stems from the dependence

of banks�counterparty risk on the endogenous size of the domino e¤ect. In particular,

any action that increases the size of the domino e¤ect increases the counterparty risk

perceived by banks that are uncertain about the �nancial network, and banks dislike this

e¤ect. Our model features two variants of this complexity externality (one non-pecuniary,

one pecuniary), each of which supports di¤erent government policies. First, a bailout

of the distressed banks �nanced by small lump-sum taxes on all the banks may lead
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to a Pareto improvement. The market equilibrium is unable to replicate this allocation

because each bank fails to take into account that its contribution to a bailout will reduce

the counterparty risk faced by all other banks. Second, in the range of multiple equilibria,

policies that increase asset prices may lead to a Pareto improvement by coordinating

the banks on the fair-price equilibrium. In this range, the �re-sale equilibrium is Pareto

ine¢ cient because a bank that sells assets does not take into account the e¤ect of its

decision on other banks�counterparty risk. In particular, this bank generates a (small)

reduction in asset prices, which in turn leads to a larger domino e¤ect and a greater

counterparty risk, real and perceived, for all other banks.

Our paper is related to several strands of the literature. There is an extensive literature

that highlights the possibility of network failures and contagion in �nancial markets. An

incomplete list includes Rochet and Tirole (1996), Kiyotaki and Moore (1997a), Allen and

Gale (2000), Laguno¤ and Schreft (2000), Freixas, Parigi and Rochet (2000), Eisenberg

and Noe (2001), Dasgupta (2004), Leitner (2005), Cifuentes, Ferucci and Shin (2005),

Rotemberg (2008), Allen, Babus, and Carletti (2010), Zawadowski (2011), Acemoglu et

al. (2011) (see Allen and Babus, 2009, for a survey). Many of these papers focus on

the mechanisms by which solvency and liquidity shocks may generate a domino e¤ect in

the �nancial network. In contrast, we take these phenomena as the reason for the rise

in banks�uncertainty and we focus on the e¤ect of this uncertainty on banks�prudential

actions. It is also worth pointing out that the uncertainty mechanism we emphasize in

this paper is operational even for a relatively small amount of network contagion. The

contagion literature is sometimes criticized because it appears unlikely that many �nancial

institutions would be caught up in a domino e¤ect of bankruptcies.2 But as this paper

illustrates, even partial domino e¤ects can have large aggregate e¤ects since they greatly

increase counterparty risk and trigger widespread prudential (non-bankruptcy) actions.3

Our paper is most directly related to the literature on �ight-to-quality and Knightian

uncertainty in �nancial markets, as in Caballero and Krishnamurthy (2008), Routledge

and Zin (2004), Easley and O�Hara (2005), and Hansen and Sargent (2010). Our contri-

bution relative to this literature is in generating the uncertainty from the complexity of

the �nancial network itself. Our work complements a number of recent papers that focus

2See Upper (2007) for a survey of the empirical literature that uses counterfactual simulations to
assess the danger of contagion. Regarding this literature, Brunnermeier, Crockett, Goodhart, Persaud,
and Shin (2009) note that �it is only with implausibly large shocks that the simulations generate any
meaningful contagion.�

3The role of domino e¤ects in elevating complexity and uncertainty was also highlighted in Haldane�s
(2009) speech, who nicely captures the mechanism when he wrote that at times of stress �knowing your
ultimate counterparty�s risk becomes like solving a high-dimension Sudoku puzzle.�
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on other sources of uncertainty during crises. Brunnermeier and Sannikov (2011) show

that exogenous uncertainty is ampli�ed in a �re sales episode, because price uncertainty

increases natural buyers�balance sheet uncertainty (which in turn feeds back into price

uncertainty). Dang, Gorton and Holmstrom (2010) show that uncertainty (and asymmet-

ric information) in credit markets increases during crises because debt contracts become

information sensitive.

In the canonical model of �re sales, these happen because the natural buyers of the

assets experience �nancial distress simultaneously with sellers (see Shleifer and Vishny,

1992, 1997, and Kiyotaki and Moore, 1997b). More recently, Brunnermeier and Pedersen

(2008) show that, when there are few players, unconstrained potential buyers may choose

not to arbitrage �re sales in the short run because they anticipate a better deal in the

future. Our model lies somewhere in between these two views: Most potential buyers

are unconstrained, as in Brunnermeier and Pedersen (2008), but they are fearful of going

about their normal arbitrage role because of uncertainty (and in this sense they are

distressed as in Shleifer and Vishny, 1992). It is the complexity of the environment that

sidelines potential buyers and exacerbates the �re sales. Importantly, this mechanism

works even when the number of market participants is large.4

The organization of this paper is as follows. In Section I, we describe the environment

for a benchmark case with no uncertainty about cross-exposures. Section II characterizes

the equilibrium for this benchmark and illustrates the mechanics of (partial) domino

e¤ects in our setting. Section III contains our main results. There, banks have only

local knowledge about cross-exposures, and a su¢ ciently large shock increases banks�

counterparty risk and leads to �re sales in secondary markets. This section also highlights

the interaction between counterparty risk and �re sales, and demonstrates the possibility

of multiple equilibria. In Section IV, we describe the complexity externality and its policy

implications. Section V discusses the role of a number of key assumptions. The paper

concludes with a �nal remarks section and several appendices.

4Other papers that investigate the mechanisms for �re sales and asset price dislocations in �nancial
markets include Allen and Gale (1994), Gromb and Vayanos (2002), Geanakoplos (2003, 2009), Loren-
zoni (2008), Brunnermeier and Pedersen (2009), Acharya, Gale, and Yorulmazer (2010), Garleanu and
Pedersen (2010), Stein (2010), Diamond and Rajan (2010), and Brunnermeier and Sannikov (2011) (see
Shleifer and Vishny, 2011, for a recent survey). More broadly, this paper belongs to an extensive literature
on �nancial crises that highlights the connection between panics and a decline in the �nancial system�s
ability to channel resources to the real economy (see, e.g., Caballero and Kurlat, 2008, for a survey).
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I. Basic Environment and Equilibrium

We consider an economy with three dates f0; 1; 2g and a single consumption good (a
dollar). The economy has n continuums of �nancial intermediaries (banks, for short)

denoted by fbjgn�1j=0 . Each of these continuums is composed of identical banks. For

simplicity, we refer to each continuum bj as bank bj, which is our unit of analysis.5 Banks

start with a given balance sheet at date 0 (which will be described shortly), but they only

consume at date 2. Banks can transfer their date 0 dollars to date 2 by investing in one of

two ways. First, banks can keep their dollars in cash which yields one dollar at the next

date per dollar invested. Second, banks can also invest in an asset. Each unit of the asset

yields R > 1 dollars at date 2 (and no dollars at date 1). The asset is supplied elastically

at date 0 at a normalized price of 1.

While the asset yields a higher date 2 return than cash, it is completely illiquid at date

1. In particular, it is not possible to sell or borrow against the asset at date 1. (Thus, a

bank cannot convert the asset to dollars at date 1.) This assumption captures the standard

liquidity-return trade-o¤, which is prevalent in �nancial markets. The microfoundations

that lead to this trade-o¤ are well known (e.g., Holmstrom and Tirole, 1998). One can

think of the cash in this model as the liquid securities, such as US treasuries, which yield

lower return but which retain their market value at times of distress. In contrast, the asset

can be thought of as illiquid securities, such as asset backed securities, which potentially

yield a higher return but which lose their market value at times of distress.

Each bank initially has y dollars and 1 � y units of legacy assets. At date 0, which
is the only meaningful decision date in our model, banks can trade legacy assets in a

secondary market at an endogenous price p. This price cannot exceed 1 because legacy

assets and new assets are identical (and the price of the latter is 1). We also assume

that the natural buyers of legacy assets are the other banks in the model. In particular,

outside agents (lower valuation users) demand the asset elastically at a discounted price

pscrap < 1. Thus, if legacy assets are sold to outside agents, they fetch a price p = pscrap.

We refer to this situation as a �re sale of legacy assets.

The basic premise of our model can now be informally described. An unexpected

liquidity shock generates the possibility that banks might need dollars at date 1. This in

turn shifts banks�investments at date 0 from the asset to cash (�ight-to-quality), which

has two e¤ects: First, as banks stop buying new assets, there is a credit crunch. Second,

as banks stop buying legacy assets (and as they try to sell their own legacy assets to raise

dollars), there is a �re sale of legacy assets in the secondary market. The contribution

5The only reason for the continuum is for banks to take other banks�decisions as given.
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Figure 1: The initial balance sheet of a generic bank.

of our paper is to describe the role of complexity associated with counterparty risk in

generating this �ight-to-quality episode. To this end, we gradually introduce the main

ingredients of our model.

A. Cross-exposures and the Financial Network

At date 0, each bank has short term debt claims worth z dollars on one other bank, which

we call the forward neighbor bank. We assume that short term debt cannot be rolled

over and it must be paid back at date 1, which will be without loss of generality.6 On

the liability side, the bank also has z dollars of short term debt claims held by another

bank which we call the backward neighbor bank. The initial balance sheet of a bank is

illustrated in Figure 1.

The role of these cross debt claims is to capture various types of unsecured cross-

exposures that are common in the �nancial system, and the counterparty risk that they

bring about. One source of cross-exposures is interbank loans. Upper (2007) documents

that interbank loans constitute a large fraction of banks�balance sheets in many Euro-

pean countries.7 A second and potentially much larger source of cross-exposures is OTC

derivative contracts (such as interest rate swaps or credit default swaps) traded between

6Appendix A considers an extension of the model in which banks have the option to roll over and
shows that the equilibrium is unchanged.

7To give two examples, Upper (2007) notes: �at the end of June 2005 interbank credits accounted for
29% of total assets of Swiss banks and 25% of total assets of German banks.�
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�nancial institutions. Bank for International Settlements reports that gross credit ex-

posures in OTC derivative markets in G10 countries and Switzerland had exceeded $5

trillion by the end of 2008.8 The cross debt claims of this model can be viewed as captur-

ing the uncollateralized portion of these exposures (although the Lehman crisis revealed

that even fully collateralized repo loans can be frozen by bankruptcy courts).

In Caballero and Simsek (2009) we provide one rationale (out of many) for cross-

exposures from their role in facilitating bilateral liquidity insurance, as in Allen and

Gale (2000). In this paper, we take the exposures as given and we analyze their role in

generating �ight-to-quality episodes.

Banks�cross-exposures form a �nancial network. For simplicity, we assume that the

network takes the form of a circle. An example for a circle network is the following:

The notation, bj  � bj+1, illustrates that bank bj+1 has debt claims on bank bj. Note
that banks are ordered around a circle, with bank b0 having debt claims on bank bn�1.

We conceptualize �complexity about counterparty risk�with banks�uncertainty about

the �nancial network. In particular, banks have only local knowledge of cross-exposures:

They understand their own exposures, but they are increasingly uncertain about cross-

exposures of banks that are farther away (in the network) from themselves. We capture

this notion by assuming that banks have only local knowledge about the �nancial network :

They know the identity of their forward neighbor bank (on which they have debt claims),

but they do not know how the rest of the banks are ordered around the circle (i.e., which

banks are exposed to which other banks).

To formalize this ingredient, we need to consider a larger set of networks than the

above example. To this end, consider a template �nancial network which is described in

8Source: BIS semiannual OTC derivatives statistics. Gross credit exposures take into account bilateral
netting between the same pair of counterparties. Gross market values of exposures, which do not take
into account this netting, is much larger (more than $20 trillion in interest rate derivatives and more than
$5 trillion in credit derivatives by the end of 2008).
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terms of �nancial slots to be �lled by banks:

.

Next consider a permutation, � : f0; 1; ::; n� 1g ! f0; 1; ::; n� 1g, which assigns bank j
to slot i = � (j). Note that the bank assigned to slot i has debt claims on the bank that is

assigned to slot i� 1. However, the identities of these banks depend on the permutation,
�, which introduces uncertainty about the �nancial network. In particular, we let:

N = f� j � : f0; 1; ::; n� 1g ! f0; 1; ::; n� 1g is a permutationg (1)

denote the set of all possible �nancial networks. The earlier example corresponds to the

particular realization in which each bank is assigned to the same slot as its identity.

We capture banks�uncertainty over the network by assuming that banks do not know

the realization, �. In particular, let N j (�) � N denote the set of �nancial networks

which bank bj �nds possible given the actual realization, �. We refer to the collection

fN j (�)gj;� as an uncertainty model for banks.9

B. Surprise Shock and Banks�Response

At date 0, the banks learn that a rare event (which they had not anticipated at the

unmodeled date �1) has happened and one bank, b0, will become distressed. Similar to
Allen and Gale (2000), in order to remain solvent this bank needs to make � dollars of

payment (to an outsider) at date 1.

This outside debt is senior to the short term debt to the neighbor bank (it can be

equivalently interpreted as a shock to the value of the bank�s assets in a version of the

model in which banks have heterogeneous assets).10 Consequently, these losses might

9A simpler alternative to the permutations is to have banks ordered in the circle in the same order as
the locations (i.e. bank 1 in location 1, bank 2 in location 2, etc.) and have the uncertainty be about the
identity of the bank in distress rather than about the linkages between the banks. We chose the slightly
more cumbersome route of permutations because it aligns better with the idea of complexity that we want
to capture here. But mechanically, the results would be very similar with the alternative formulation.
10In pracice, banks are also highly leveraged, which implies that even small reductions in the value of
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spill over to other banks via the �nancial network and may bring them into �nancial

distress at date 1. To prepare for date 1, at date 0 the banks take one of the following

actions Aj0 2 fS;Bg, which are restricted to a binary choice set for simplicity.11 As a

precautionary measure, the bank may choose Aj0 = S, to invest all of its y dollars in cash

and to sell all of its legacy assets 1 � y in the secondary market, keeping a completely
liquid balance sheet. Alternatively, the bank may choose Aj0 = B, to be a potential buyer

of assets. In this case, the bank retains its own legacy assets on its balance sheet and it

uses its dollars to buy either new or legacy assets (whichever is more pro�table).

The bank chooses Aj0 to maximize its equity value at date 2, subject to meeting its

debt payment at date 1. Given the rare event, a bank may not be able to pay back its

debt in full (despite the precautionary measures it might take), but instead it ends up

paying qj1 � z. Similarly, the value of bank�s date 2 equity may be q
j
2 � R. Note that

either the bank is solvent, pays qj1 = z, and its date 2 equity value is q
j
2 � 0; or the bank

is insolvent, pays qj1 < z and its date 2 equity value is q
j
2 = 0.

The bank makes its decision at date 0 while facing Knightian uncertainty about the

network, and the counterparty risk that it might bring about. In particular, the bank

considers the range of possible �nancial networks, N j (�), and it chooses an action that is

robust to this uncertainty. Formally, let
�
qj1 (�) ; q

j
2 (�)

�
denote the bank�s debt and equity

payment in equilibrium given the �nancial network, �. We follow Gilboa and Schmeidler

(1989)�s Maximin expected utility representation and write the bank�s optimization prob-

lem as:12

max
Aj0(�)2fS;Bg

min
~�2N j(�)

qj2 (~�) . (2)

As we discuss in Section V, Knightian uncertainty is not necessary for our main results

(risk aversion su¢ ces) but it is both realistic in this context and technically convenient.

C. Secondary Market and Equilibrium

Legacy assets are traded in a centralized exchange that opens (just) at date 0. Given the

legacy asset price p, the banks that choose Aj0 = S sell all of their legacy assets (1 � y
units for each bank) while the banks that choose Aj0 = B are potential buyers of legacy

assets could lead to large losses of capital. Thus, the empirical counterpart of � is the leveraged losses
su¤ered by the bank because of a shock to its assets.
11This assumption does not a¤ect any of the qualitative conclusions of the model, as demonstrated by

an earlier version of this paper, Caballero and Simsek (2009).
12The preferences captured by (2) are a special case of Gilboa and Schmeidler (1989) in which the set of

priors consist of the convex hull of the Dirac delta measures corresponding to the networks, ~� 2 N j (�).
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assets and may spend up to y (their dollars). If p < 1, potential buyers spend all of their y

dollars on legacy assets, while if p = 1, they are indi¤erent between buying legacy or new

assets. Recall that pscrap < 1 denotes the valuation of outside agents. Thus, the market

clearing condition for legacy assets can be written as:

(1� y)
X
j

1
�
Aj0 = S

	
� y
p

X
j

1
�
Aj0 = B

	 8><>:
� 0, if p = 1

= 0, if p 2 (pscrap; 1)
� 0, if p = pscrap

. (3)

The �rst term on the left hand side denotes the total supply of legacy assets while the

second term denotes the maximum potential demand. If the left hand side of Eq. (3) is

negative for each p 2 [pscrap; 1], then legacy assets trade at their fair value 1, potential
buyers are indi¤erent between buying legacy and new assets, and they buy just enough

legacy assets to clear the market. If the left hand side of Eq. (3) is 0 for some p 2 [pscrap; 1],
then p is the equilibrium price. If the left hand side is positive for each p 2 [pscrap; 1],
then there is excess supply of legacy assets and their price is given by pscrap.

De�nition 1. An equilibrium is a collection of bank actions, debt payments, and equity

values,
h�
Aj0 (�) ; q

j
1 (�) ; q

j
2 (�)

	
j

i
�2N

, and a price level p 2 [pscrap; 1] for legacy assets
such that, given the realization of the �nancial network �, each bank bj chooses its actions

according to the worst case �nancial network that it �nds possible [cf. problem (2)] and

the legacy asset market clears [cf. Eq. (3)].

To characterize the equilibrium, it is useful to de�ne the notion of a bank�s distance

from the original distressed bank. The latter bank, b0, has distance d = 0 from itself.

The backward neighbor of the original distressed bank has distance d = 1. Similarly, the

backward neighbor of the backward neighbor has distance d = 2. This way, each bank

can be assigned a unique distance for each realization of the network. The distance is the

only payo¤ relevant variable in this economy. In particular, as we formally show in the

appendix, the banks�equilibrium payo¤s and actions can be written as a function of their

distance. That is, there exist functions A0 [�] ; Q1 [�] and Q2 [�] such that:�
Aj0 (�) ; q

j
1 (�) ; q

j
2 (�)

�
= (A0 [d] ; Q1 [d] ; Q2 [d]) , (4)

where d denotes the distance of bank bj given the network �.

In the next section, we will demonstrate that a bank is insolvent, Q1 [d] < z, if and

only if it is su¢ ciently close to the original distressed bank. Similarly, a bank chooses a
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precautionary action, A0 [d] = S, if and only if d is su¢ ciently small. In view of these

observations, we de�ne the following notions of a domino e¤ect and a �ight-to-quality

which facilitate the characterization of equilibrium.

De�nition 2. Consider a collection of bank actions and payo¤s
�
Aj0; q

j
1; q

j
2

	
j
.

(i) There is a domino e¤ect of size D if banks with distance d � D � 1 are insolvent
[i.e., they pay qj1 < z] while banks with distance d � D are solvent [i.e., they pay qj1 = z].

(ii) There is a �ight-to-quality of size F if banks with distance d � F � 1 choose
Aj0 = S while banks with distance d � F choose A

j
0 = B.

Note that D also corresponds to the number of banks that are insolvent, and F

corresponds to the number of banks that choose the precautionary action. In subsequent

sections, D and F will be useful to summarize the equilibrium in this economy.

II. Equilibrium in the No-Uncertainty Benchmark

In this section, we characterize the equilibrium with no-uncertainty, which provides a

benchmark for our main results with complexity (in terms of the information structure,

it essentially corresponds to the Allen and Gale, 2000, environment). We show that,

if the number of banks is su¢ ciently large, then there only can be a partial domino

e¤ect and a partial �ight-to-quality, that is, D < n and F < n. Moreover, D and F

are �proportional� to the size of the initial shock, �. That is, when banks have perfect

knowledge of the �nancial network, a su¢ ciently deep �nancial system is resilient to

perturbations. These benign results contrast with those we obtain in the next section

once we introduce complexity.

Formally, consider the (no) uncertainty model, N j (�) = f�g for each j, so that each
bank knows the realization of the �nancial network. In this benchmark, we characterize

the equilibrium under the following parametric conditions:

ny > d�e and z + y + (1� y) pscrap � �. (5)

Here, dxe denotes the ceiling function, that is, the unique integer such that dxe � 1 <
x � dxe. The �rst condition in (5) says that the �nancial system has su¢ cient aggregate

liquidity to meet the unexpected liquidity shock, �. The second condition simpli�es the

notation but does not play an essential role.

Our characterization consists of three steps. First, we characterize a generic bank�s

optimal action (and solvency) taking the payo¤s and actions of other banks as given.
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Second, we take the asset price, p, as given and we characterize the partial equilibrium

corresponding to banks� actions and payo¤s. And third, we characterize the general

equilibrium price and allocations.

A bank�s optimal action depends on its liquidity need at date 1. The liquidity need of

a bank with distance d, is:

z �Q1 [d� 1] + � [d = 0] (6)

(where � [�] denotes the product of � and the indicator function). The �rst term captures

the payment the bank needs to make on its short term debt. The second term captures the

equilibrium payment the bank receives from its forward neighbor. The last term captures

the additional payment that the original distressed bank needs to make. A bank with a

liquidity need of zero optimally chooses the aggressive action, Aj0 = B, to maximize its

equity value at date 2. In contrast, a bank with a strictly positive liquidity need would

be insolvent (and would be liquidated at date 1) if it chose the aggressive action. Thus,

it is optimal for this bank to choose the precautionary action, Aj0 = S (cf. Appendix B).

By taking the precautionary action, the bank keeps its y dollars in cash and sells 1 � y
units of legacy assets in the secondary market, obtaining an available liquidity of:

l (p) = y + (1� y) p. (7)

If l (p) is greater than the bank�s liquidity need in (6), then the bank will be able to avoid

insolvency by choosing the precautionary action. Otherwise, the bank will be insolvent

despite taking the precautionary action.

It follows that the bank chooses the precautionary action, Aj0 = S, if its liquidity need

is strictly positive, and it is insolvent if its liquidity need is strictly greater than l (p). We

next use this characterization to solve for the partial equilibrium: that is, the optimal

actions and payo¤s of all banks taking the price, p, as given.

Proposition 1 (Partial equilibrium in the no-uncertainty benchmark). Suppose
the price of legacy assets are �xed at p 2 [pscrap; 1] and the conditions in (5) hold. Then,
there is a domino e¤ect of size

D (p) =

�
�

l (p)

�
� 1, (8)

and a �ight-to-quality of size F = D (p) + 1 (cf. De�nition 2). Both the domino e¤ect

and the �ight-to-quality are contained, i.e., D (p) < n and F < n.

12



Figure 2: The partial domino e¤ect and �ight-to-quality in the no-uncertainty benchmark.

Figure 2 illustrates this result, the proof of which is relegated to the appendix. In-

tuitively, a number of banks that have the shortest distance to the original distressed

bank have a positive liquidity need. Thus, these banks choose the precautionary action,

Aj0 = S. By doing so, each of these banks uses its available liquidity, l (p), to meet their

liquidity need to some extent. In particular, as the shock propagates from one bank to

another, the liquidity need decreases by l (p). The initial liquidity need, �, is fully met

only by combining the available liquidities of
l

�
l(p)

m
= D (p) + 1 banks. It follows that

banks with distance d � D (p) choose the precautionary action. Moreover, all but the last
one of these banks are insolvent. The last bank with distance d = D (p) avoids insolvency

because it is able to meet its liquidity need fully. This bank pays its backward neighbor

bank in full. Consequently, the banks with distance d > D (p) have a zero liquidity need.

These banks choose the aggressive action, Aj0 = B. It follows that there is a domino e¤ect

of size D (p) and a �ight-to-quality of size D (p) + 1.

Eq. (8) shows that the size of the domino e¤ect is �proportional�to the ratio of the

size of the shock to the banks�available liquidity, �=l (p). A larger shock naturally leads

to a larger domino e¤ect. A reduction in available liquidity for banks also leads to a

larger domino e¤ect. Intuitively, this is because, when l (p) is lower, banks that choose

the precautionary action are less able to �ght the shock. We next state the main result

of this section which characterizes the general equilibrium price and allocations.

Proposition 2 (General equilibrium in the no-uncertainty benchmark). Consider
the no-uncertainty benchmark and suppose the conditions in (5) hold. Then,

13



(i) The unique equilibrium price is p = 1 (no �re sales).

(ii) There is a domino e¤ect of size d�e � 1 and a �ight-to-quality of size d�e.
(iii) The aggregate amount of new asset purchases is: Y = ny � d�e.

This result follows by combining Proposition 1 with the secondary market clearing

condition (3). Note that the banks with distance d � D (p) choose Aj0 = S and sell all
of their existing assets. The remaining banks choose Aj0 = B, i.e., they are potential

buyers of assets. Condition (5) ensures that, for any price p 2 [pscrap; 1], the demand from
potential buyers exceeds the supply from distressed banks. This implies that the unique

equilibrium price is p = 1. Given this price, the size of the domino e¤ect is characterized

by Proposition 1. The aggregate new asset purchases is calculated by considering the

asset demand by potential buyers net of the legacy asset supply by distressed banks (see

the proof in the appendix).

Intuitively, if the domino e¤ect is only partial and banks know the �nancial network,

then there exist safe banks which will not make losses from cross-exposures and know that

much. These banks do not sell assets and are ready to use their dollars to purchase assets

from distressed banks. When the aggregate liquidity of the �nancial system is su¢ ciently

large [cf. condition (5)], the demand from these potential buyers ensures that legacy assets

trade at their fair price 1.

Figure 3 illustrates this result by plotting the equilibrium variables as a function of

the initial shock, �. Note that the price is �xed at 1, the size of the domino e¤ect is

increasing in �, and the aggregate new asset purchases is decreasing in �. Intuitively, as

� increases, there are more losses to be contained, which further spreads the insolvency.

As the insolvency spreads, more banks keep their dollars in cash, which lowers Y. Note,
however, that Y decreases �smoothly�with �. These results o¤er a benchmark for the
next section. There we show that once auditing becomes costly, both D and Y may

experience large changes with small increases in �.

III. Equilibrium with Complexity

We next introduce our key ingredient, complexity, which we model as banks�uncertainty

about cross-exposures. As we will see, in this context when the shock is small, the system

behaves exactly as in the benchmark. But when the shock is large, banks�uncertainty

about cross-exposures becomes relevant since they need to understand distant linkages.

Their inability to �gure out these linkages leads to a complex environment and increases

banks�perceived counterparty risk. This increase in complexity (and associated counter-
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Figure 3: Equilibrium in the no-uncertainty benchmark. The top, the middle, and
the bottom panels respectively plot the size of the domino e¤ect, the asset price, and the
aggregate new asset purchases as a function of the losses in the originating bank.

party risk) overturns the relatively benign implications of the benchmark environment.

Formally, we consider the uncertainty model:

N j (�) =

(
~�

����� such that bj is in slot i and bforward�neighbor is in slot i� 1,where i = � (j) .

)
. (9)

Note that the bank knows its slot and its forward neighbor�s slot: Thus, it also knows the

identity of its forward neighbor bank. However, the bank is unsure about how the rest

of the banks are ordered in the rest of the circle.13 We next characterize the equilibrium

by repeating the analysis of Section II for this uncertainty model. The characterization

similarly consists of three steps: (i) banks�optimal actions, (ii) partial equilibrium for a

given p, and (iii) general equilibrium price and allocations.

Recall from Section II that in the no-uncertainty benchmark a bank (with distance d)

chooses the precautionary action, Aj0 = S, if and only if its liquidity need is strictly posi-

tive. With uncertainty, the bank does not necessarily know its exact liquidity need in (6).

This is because the bank does not necessarily know the amount, Q1 [d� 1], it will receive
13In an earlier version, we assumed that each bank also knows the identity of its backward neighbor

(which has claims on it). This assumption does not change any of the results. Intuitively, this information
would only be relevant if the bank faced uncertainty about whether its backward neighbor will withdraw
its debt claims early. Appendix A shows that in this model all banks withdraw their debt claims early.
Thus, the identity of backward neighbor is not useful information.
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from its forward neighbor. Nonetheless, Appendix C shows that the characterization of

the bank�s optimal action is equally simple in this case: It chooses its action, Aj0, as if it

will receive with certainty the lowest possible payment from its forward neighbor.

Using the fact that banks have only local knowledge of the network, we can further

characterize their optimal actions. First consider a bank with distance d � 1. Given

the uncertainty model in (9), this bank knows its distance. Consequently, it knows the

payment, Q1 [d� 1], it will receive from its forward neighbor. Thus, the optimal action

of this bank is characterized exactly as in the no-uncertainty benchmark.

Next consider the optimal action of a bank with distance d � 2. This bank is uncertain
about its distance, and it �nds possible all distances ~d 2 f2; 3; ::; n� 1g. Consequently, it
does not necessarily know the payment, Q1

h
~d� 1

i
, it will receive from its forward neigh-

bor. The worst case scenario obtains when the bank is at the closest possible distance,
~d = 2. It follows that this bank chooses its optimal action as if it is at distance ~d = 2. Put

di¤erently, the banks that are uncertain about their distances to the distressed bank choose

their precautionary action as if they are closer to the distressed bank than they actually

are.

The following proposition, which is the analogue of Proposition 1 for this setting,

characterizes the partial equilibrium.

Proposition 3 (Partial equilibrium with complexity). Consider the economy with
network uncertainty. Suppose the price of legacy assets is �xed at p 2 [pscrap; 1] and the
conditions in (5) hold. Recall that D (p) =

l
�
l(p)

m
� 1 denotes the size of the domino e¤ect

in the no-uncertainty benchmark [cf. Eq. (8)].

(i) If � � 2l (p) [so that D (p) � 1], then there is a domino e¤ect of size D (p) and a
�ight-to-quality of size F = D (p) + 1.

(ii) If � > 2l (p) [so that D (p) � 2], then there is a domino e¤ect of size D (p) and a
�ight-to-quality of size F = n.

Figure 4 illustrates this result by plotting the equilibrium actions (and solvencies)

corresponding to the two cases. The �rst case concerns a liquidity shock, �, that is

smaller than the available liquidity of two banks (i.e., the original distressed bank and its

backward neighbor). In this case, part (i) of the proposition (and the �rst panel of Figure

4) shows that the partial equilibrium is the same as in the no-uncertainty benchmark. To

see this, recall that banks at distance d � 2 act as if they are at distance 2. In this case,
the liquidity shock is su¢ ciently small that the bank at distance 2 does not su¤er any

losses from cross-exposures. Consequently, banks with distance d � 2 optimally choose

16



Figure 4: The partial domino e¤ect and the precautionary actions with network uncer-
tainty. The top panel illustrates the �rst case of Proposition 3, � � 2l (p). The bottom
panel displays the second case, � > 2l (p).
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the aggressive action. This leads to the same partial equilibrium as in the no-uncertainty

benchmark. The proof in Appendix C formalizes this argument.

The second case concerns a liquidity shock, �, which is greater than the available

liquidity of two banks. In this case part (ii) of the proposition (and the second panel

of Figure 4) shows that the equilibrium features a much larger �ight-to-quality than the

no-uncertainty benchmark. In particular, all banks in the �nancial system choose the

precautionary action, Aj0 = S. To see this, note that the liquidity shock in this case is

su¢ ciently large to generate a domino e¤ect of at least size 2. Thus, it is optimal for a

bank at distance 2 to choose the precautionary action, Aj0 = S. Consequently, banks with

distance d � 2 also choose the precautionary action. This leads to a �ight-to-quality of
size n.

Intuitively, if the domino e¤ect (generated by the initial shock) is su¢ ciently small,

the environment is simple in the sense that banks�uncertainty about the �nancial network

does not generate counterparty risk. In particular, banks who are uncertain about their

distance ~d can rule out an indirect hit. Hence these banks continue to act as in the no-

uncertainty benchmark despite being uncertainty averse. In contrast, if the domino e¤ect

is su¢ ciently large, then the environment is complex in the sense that banks�network

uncertainty generates counterparty risk. That is, banks that are uncertain about their

distance cannot rule out an indirect hit. Since they are uncertainty averse, they respond

by choosing the precautionary action.

The following proposition jointly characterizes the equilibrium price and allocations.

Proposition 4 (General equilibrium with complexity). Consider the economy with
network uncertainty and suppose the conditions in (5) hold.

(i) Unique fair-price equilibrium: If � � 2l (pscrap), then there is a unique equi-
librium with price p = 1 (no �re sales). There is a domino e¤ect of size D (1) = d�e � 1
and a �ight-to-quality of size F = d�e. The aggregate amount of new asset purchases is
Y = ny � d�e.
(ii) Unique �re-sale equilibrium: If � > 2, then there is a unique equilibrium with

price p = pscrap (�re sales). There is a domino e¤ect of size D (pscrap) =
l

�
l(pscrap)

m
� 1

and a �ight-to-quality of size F = n. The aggregate amount of new asset purchases is

Y = 0.
(iii) Multiple equilibria: If � 2 (2l (pscrap) ; 2], then there is a fair-price equilibrium

as in part (i) and a �re-sale equilibrium as in part (ii).

Figure 5 illustrates this result. There is a unique equilibrium for su¢ ciently small and

large levels of �, but there are multiple equilibria for intermediate levels of �. Note also that
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Figure 5: Equilibria with network uncertainty. The panels plot various equilibrium
variables as a function of the shock, �. The top panel plots the size of the domino e¤ect
in partial equilibrium, D (p), for price level p = pscrap (dashed line) and price level p = 1
(solid line). The second panel plots the general equilibrium price, p. The last panel plots
the aggregate new asset purchases, Y.
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the fair-price equilibrium is the same as the equilibrium in the no-uncertainty benchmark

(cf. Proposition 2), while the �re-sale equilibrium is very di¤erent. In particular, the �re-

sale equilibrium features a greater �ight-to-quality than the no-uncertainty benchmark

(F = n vs. F = d�e). This large precautionary reaction generates a �re-sale in the
secondary asset market (p = pscrap). It also leads to a larger credit-crunch than the

no-uncertainty benchmark (Y = 0 vs. Y = ny � d�e).
Proposition 4 is our main result and it shows that as the initial losses (measured by

�) increase, the equilibrium makes a very large and discontinuous jump compared to the

no-uncertainty benchmark. This jump could be realized either in the region of multiple

equilibrium if banks coordinate on the precautionary action, or in the region of single

equilibrium if initial losses are su¢ ciently large. The resulting equilibrium features a

�ight-to-quality episode that is disproportionate to the size of the initial shock. The

central ingredient for this result is complexity, that is, banks� uncertainty about the

�nancial network.

The proof of Proposition 4 is relegated to the appendix. Intuitively, when � is su¢ -

ciently small, the size of the domino e¤ect is manageable (i.e., below the critical threshold

of 2) regardless of the price of legacy assets. In this case, the environment is simple (i.e.,

banks�network uncertainty does not generate counterparty risk). In contrast, when � is

su¢ ciently large, the size of the domino e¤ect is unmanageable and the environment is

complex (i.e., banks�network uncertainty generates counterparty risk) regardless of the

price.

For intermediate levels of �, the interaction between the asset price and complexity of

the environment generates multiple equilibria. If legacy assets trade at their fair price,

then there is more market liquidity to counter the initial liquidity shock. This leads to a

smaller domino e¤ect and a simple environment. Since the environment is simple, banks

that are uncertain about their distance are potential buyers in the secondary market,

which ensures that legacy assets trade at their fair price. Set against this benign scenario is

the possibility of a �re-sale equilibrium, in which the price of legacy assets collapses. This

reduces market liquidity available to distressed banks, which leads to a larger domino e¤ect

and a complex environment. Facing a complex environment, banks that are uncertain

about their distance panic and sell their legacy assets, which reinforces the collapse of

asset prices.

Note also that, whenever there are multiple equilibria, the fair-price equilibrium Pareto

dominates the �re-sale equilibrium for all banks. This observation suggests that there are

externalities in our setting, which we analyze next.
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IV. Complexity Externality and Policy Implications

Our model features a complexity externality, which stems from the dependence of banks�

counterparty risk on the endogenous size of the domino e¤ect. In particular, any action

that exacerbates the domino e¤ect increases the counterparty risk perceived by banks

that are uncertain about the �nancial network, and they dislike this e¤ect. Our model

features two variants of this complexity externality (one non-pecuniary, one pecuniary),

each of which supports di¤erent types of policies. The rest of this section discusses the

two variants and their policy implications.

A. Nonprice Complexity Externality and Bank Bailouts

To illustrate this externality, it is useful to start with a simple example. Consider an

alternative economy with a continuum of (measure one) agents, i 2 I, with utility func-
tions:

u
�
xi
�
� cai.

Here, xi denotes agent i�s endowment, ai 2 f0; 1g denotes a costly action taken by agent
i, and u (�) denotes a standard and strictly concave utility function. Suppose also that
each xi is a random variable with mean 1 and variance:

1�
Z
I

aidi.

In particular, each agent can take a costly action that can (slightly) reduce the variance

of endowments of all agents in this economy.

In this example, consider respectively the equilibrium and the planner�s allocations.

In equilibrium, no agent takes the costly action because she incurs a positive cost while

having only a negligible e¤ect on the variance of its own consumption. On the other

hand, for su¢ ciently small c > 0, a social planner would have all agents choose ai = 1.

This allocation gives each agent a constant consumption at a relatively small cost (by

assumption), which is a Pareto improvement over the equilibrium allocation.

In this example, the competitive equilibrium is Pareto ine¢ cient because of a non-

pecuniary externality that operates through the production technology. In particular, an

agent i does not internalize the fact that her action a¤ects the endowment variance of all

other agents. By choosing ai = 0, this agent exerts a negative externality on all other

agents, which leads to a Pareto ine¢ ciency.

We next describe the nonprice complexity externality of our model, which is reminis-
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cent of the externality in this example. To this end, consider the setup of Proposition

3, that is, suppose there is network uncertainty and prices are exogenously �xed (which

shuts down any pecuniary channels). Suppose also that

� 2 (2l (p) ; 3l (p)) , (10)

which ensures that there is a domino e¤ect of size 2 and a �ight-to-quality of size n (cf.

Proposition 3). In particular, all banks choose the precautionary action, Aj0 = S. Banks�

Minimax utility at date 0 [cf. Eq. (2)] is given by:(
0, if d < 2.

3l (p)� � 2 (0; l (p)) , d � 2.
(11)

In this setting, consider a modi�cation of equilibrium by introducing the possibility of

a �bailout� of the distressed bank, b0, by other banks. In particular, each bank j can

choose to contribute some of her date 0 dollars, y, to a bailout fund. Without loss of

generality, suppose banks�actions are restricted to a binary set,
�
0; �

n

	
, that is: a bank

either contributes 0 dollars or �
n
dollars to the bailout fund. Note that contributing

�
n
dollars is feasible because the banks have su¢ cient aggregate liquidity by condition

(5). Once all contributions are made, the total amount in the fund is used to pay some

(possibly all) of the liquidity need, �, of bank b0. The equilibrium is then characterized

as before with a potentially lower level of the shock for the original distressed bank and

a lower level of date 0 dollars for the contributing banks.

In this modi�ed equilibrium, banks optimally choose to contribute 0 dollars to the

bailout fund (and thus, the equilibrium remains unchanged). To see this, consider a bank

with distance d � 2. By contributing to the bailout fund, this bank incurs a positive

cost while receiving no bene�ts. This is because this bank alone is not able to change

the size of the domino e¤ect (since it is in�nitesimal by assumption). On the other hand,

consider a social planner that requires all banks to contribute �
n
dollars. With this bailout

policy, the original distressed bank remains solvent and the domino e¤ect disappears.

In particular, banks�counterparty risk also disappears. Consequently, banks choose the

aggressive action, that is, they keep their legacy assets and they spend their remaining,

y � �
n
, dollars to acquire new assets. Their Minimax utility at date 0 is given by:

(1� y)R +
�
y � �

n

�
R =

�
1� �

n

�
R. (12)
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Comparing Eqs. (11) and (12) shows that this bailout policy leads to a Pareto improve-

ment as long as n or R is su¢ ciently large. The fact that banks with distance d < 2 are

better o¤ is not remarkable because these banks are (either directly or indirectly) bailed

out. However, it is remarkable that all other banks at distance d � 2 are also better o¤.
The equilibrium is Pareto ine¢ cient for the same reason as in the earlier example.

Each bank with distance d � 2 does not internalize that its contribution, �
n
, would

mitigate the domino e¤ect, and thus, reduce the counterparty risk faced by other banks.

By not contributing, this bank exerts a negative externality on other banks, which we

refer to as the nonprice complexity externality. A bank bailout policy generates a Pareto

improvement by internalizing this externality. Viewed di¤erently, network stability (and

similarly, endowment stability in the earlier example) is a public good. Each bank would

like to enjoy this good because it reduces its counterparty risk. However, each bank would

rather not incur the costs and free ride on other banks. The bailout could be viewed as

the provision of the public good of stability, which solves the free rider problem.

We stress that the nonprice complexity externality is di¤erent than the �re-sale exter-

nality that is common in the literature. In particular, in the above setting there cannot

be a �re-sale externality because the asset price is �xed. We next consider the setting

with endogenous asset price to illustrate the second variant of the complexity externality.

B. Price Complexity Externality and Government Asset Pur-

chases

This externality operates through the interaction of legacy asset prices and the size of

the domino e¤ect. In particular, a bank that decides to sell assets (i.e., that chooses the

precautionary action, Aj0 = S) has a (small) negative impact on asset prices. This in

turn has a (small) positive impact on the size of the domino e¤ect. In particular, with

a lower asset price, the available liquidity, l(p), of each bank is lower. Thus, the crisis is

contained after a greater number of insolvencies [cf. Eq. (8)]. The increase in the size of

the domino e¤ect increases the counterparty risk faced by other banks and lowers their

welfare, demonstrating the price complexity externality.

The price complexity externality is what leads to multiple Pareto-ranked equilibria

in our setup, as we have already seen in Proposition 4. In particular, an increase in

counterparty risk due to a reduction in the legacy asset price not only lowers the welfare

of many banks, but also induces these banks to take extreme precautionary measures,

which includes further asset sales. The sale of assets by banks in panic mode reduces

asset prices further, which leads to a vicious cycle culminating in the �re-sale equilibrium.
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In contrast, an increase in asset prices reduces the counterparty risk, which may mitigate

the precautionary measures and turn more sellers into buyers, leading to a virtuous spiral

towards the fair price equilibrium. In particular, a social planner that puts a �oor on

asset prices (e.g., through an asset purchase policy) can generate a Pareto improvement

by coordinating banks on the fair-price equilibrium.

We stress that the price complexity externality is also di¤erent than the usual �re-sale

externality (e.g., in Kiyotaki and Moore, 1997b, or in Lorenzoni, 2008). It is true that both

externalities operate through asset prices. However, the commonalities end there because

the particular channels for the two externalities are di¤erent. In a �re-sale externality,

the decrease in asset prices erodes the net worth of �nancial institutions that are natural

buyers of this asset. This in turn tightens these institutions�borrowing constraints, which

lowers their welfare and puts further downward pressure on asset prices. Instead, in the

price complexity externality, the decrease in asset prices increases the counterparty risk

perceived by �nancial institutions that are uncertain about the network. The increase in

counterparty risk (as opposed to binding constraints) is what lowers the welfare of these

institutions. Moreover, their precautionary reaction (as opposed to binding constraints)

is what puts further downward pressure on asset prices.

This comparison also suggests that the price complexity externality could be much

more potent than the �re-sale externality. To see this concretely, consider a drop in the

price of subprime mortgage backed securities. From the lenses of the conventional �re-

sale externality, this shock should mostly a¤ect the natural buyers of these securities. In

particular, it should not a¤ect much the institutions that specialize in other businesses

or other asset classes (or natural buyers that happen not to hold the securities at the

time of the shock). Instead, from the lenses of the price complexity externality, this shock

could have a much bigger impact. In particular, suppose the shock is su¢ ciently large

that it leads to the failure of some natural buyers and generates the possibility of domino

e¤ects. This in turn increases the counterparty risk faced by all �nancial institutions that

are uncertain about the �nancial network. In practice, this includes virtually all �nancial

institutions, illustrating the much greater scope of the price complexity externality.14

Finally, it is also worth noting that the price complexity externality ampli�es the

standard overleverage result, e.g., in Lorenzoni (2008). The previous literature noted that

banks tend to leverage and invest too much ex-ante because they do not internalize the

�re sale externalities their deleveraging generates during crises. Our model suggests that

14In our model, we assumed for simplicity that the natural buyers of the asset are the same as banks
that face network uncertainty. Instead, this discussion suggests natural buyers are likely to be a subset of
the banks that face network uncertainty. Our model could be easily modi�ed to incorporate this feature.
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banks might choose to overleverage and overinvest for an additional reason: Because they

do not take into account the increase in counterparty risk their asset sales generate when

domino e¤ects become possible.

V. Discussion of Key Assumptions

The previous sections established that small shocks can dramatically increase banks�coun-

terparty risk in view of banks�uncertainty about the �nancial network of cross-exposures.

To illustrate the main mechanism, we made a number of strong assumptions. In par-

ticular, we assumed that the shock is unanticipated, that the network has a particularly

simple form, and that banks face Knightian uncertainty about the �nancial network. In

this section, we discuss and support these assumptions.

A. The role of the unanticipated shock

In our model, banks do not anticipate the surprise shock (at date �1). If banks assigned a
su¢ ciently large probability to the shock, they would also naturally seek insurance against

it at the unmodeled date �1, and the �nancial system would become more resilient to

the shock. However, the kind of shocks that we are trying to capture are by their very

nature either impossible or very costly to insure against. One could imagine two versions

of this insurance: (i) A speci�c insurance contract, such as �bank bj receives some dollars

if bank b0 loses � dollars�or (ii) A blanket insurance contract, such as �bank bj receives

some dollars if its forward neighbor is insolvent (i.e., a CDS on the forward neighbor).�

We next argue that the �rst type of (speci�c) insurance is implausible, while the second

type of (blanket) insurance is likely to be very costly and possibly ine¤ective during severe

systemic events.

Speci�c insurance contracts are not plausible due to the complexity of banks�balance

sheets. This complexity, which is the reason for network uncertainty in our model, also

naturally makes the event very di¢ cult to describe ex-ante. Arguably, banks would be

unable to tell if the shock would hit bank b0, or another bank, or a combination of banks.

In addition, they would also be unable to tell the size of the shock, and thus, the size

of the domino e¤ect that it would bring about. These observations resonate well with

the run-up to the recent crisis. Even though the possibility of the subprime losses was

discovered in the summer of 2007, the exact form and the magnitude of these losses

remained not well understood until 2008. Empirical evidence in support of this point

can be gleaned from the Bank for International Settlements (BIS) Quarterly Review for
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December 2007. Graph 4 of this review illustrates that the 5-year CDS spreads increased

for banks on average between June 2007 and December 2007. However, the same graph

also shows that the dispersion of large banks�spreads actually decreased over the same

period, i.e., banks�CDS spreads became closer to one another. The BIS review interprets

this lack of di¤erentiation as �possibly re�ecting a continuing lack of transparency about

their (banks�) exposures.�

Even if speci�c insurance was not possible, banks could still purchase �blanket insur-

ance�against all possible shocks that could hit the �nancial system. For example, a bank

could buy CDS on its forward neighbor, which would e¤ectively reduce its exposure, z,

and immunize it against any shock to the network. However, this type of insurance is

very costly because it comes as a bundle. In particular, while it insures banks against

systemic shocks that could generate domino e¤ects, it also insures them against garden

variety shocks which lead to the failure of their counterparty without a systemic compo-

nent. Banks might prefer not to buy insurance against the latter types of shocks which

are always present in the �nancial system. If this is the case, then banks might �nd it

optimal not to buy CDS insurance (or other types of blanket insurance) even though they

recognize the bene�ts this would bring about during a systemic crisis.

A separate restriction on both speci�c and blanket insurance concerns the counterparty

risk in CDS contracts. During a systemic event, the sellers of these contracts might

themselves become distressed, and thus, might be unable to deliver on their promises.

This point is supported by the Financial Crisis Inquiry Commission�s (FCIC) January

2011 report on the causes of the �nancial crisis, which quotes the managing director at

AIG Financial Products as saying: �And we�re one of the few guys who can do that (sell

disaster insurance). Because if you think about it, no one wants to buy disaster protection

from someone who is not going to be around... That was AIGFP�s sales pitch to the Street

or to banks.�Ironically, when the disaster struck AIGFP was one of the �rst institutions

to collapse. In particular, AIGFP would be unable to deliver on its insurance promises

absent an intervention by the Fed, which illustrates further the practical di¢ culty of

obtaining insurance against systemic events.15

Finally, one might imagine that banks could mitigate the counterparty risk in CDS

contracts by requiring the sellers to post su¢ cient collateral. Appendix D incorporates

15The unreliability of CDS insurance in the run-up to the crisis is also emphasized by Vause (2010), in
the BIS Quarterly Review for December 2010, as follows: �Market participants responded to increased
concern about counterparty risk by buying protection on CDS dealers... But none of these trading
responses represented a comprehensive solution to the problem. Buying protection on one dealer from
another dealer is of limited value if there are systemic concerns about the robustness of counterparties in
the market.�
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collateralized insurance contracts into our model and shows that the results are robust

to this extension. There, we consider the possibility that banks could purchase CDS

insurance on their counterparties at date 0, once the nature of the shock is understood

(which is the main di¤erence from a blanket insurance). We also require each CDS

contract to be individually and fully collateralized. In this setting, while banks demand

counterparty insurance at date 0, the supply of this insurance is restricted because of

sellers�collateral constraints. In particular, sellers within the �nancial network choose not

to pledge their collateral in an insurance contract in view of their own payo¤ uncertainty

(in fact, they would rather demand insurance for their own cross-exposures). Thus, the

only insurance supply comes from sellers that are outside the network. When the collateral

of these sellers is small relative to the size of the network, allowing for collateralized

counterparty insurance does not change our qualitative results. This analysis is consistent

with the behavior of the CDS markets during the recent Bear Sterns and Lehman debacles.

As described by Du¢ e (2011), the demand for counterparty insurance in both episodes

spiked, but this demand could not be met by insurance sellers.

B. The role of the network structure

For simplicity, we assumed that the network structure takes the form of a circle. This

is an example of a highly incomplete network which tends to increase the likelihood of

contagion (cf. Allen and Gale, 2000). To illustrate the point, consider a more complete

network in which each bank has exposures (of z=2 each) to two other banks. In this case,

a shock � that leads to the insolvency of bank b0 would lead to a smaller liquidity need for

each of the backward neighbor banks [��l(p)
2

instead of � � l (p)]. Consequently, it would
take a larger shock, �, to generate a domino e¤ect.

In contrast, the incompleteness of the network does not play an important role for

our main result, panics driven by complexity, as long as we control for banks�information

appropriately. To see this, consider the two networks illustrated in Figure 6. The left panel

concerns the circle network we have analyzed, with the additional assumption that banks

know the identities of their two forward neighbors (as opposed to just their immediate

neighbor). It is easy to see that all banks choose the precautionary action, Aj0 = S,

if there is a domino e¤ect of size at least 3, which in turn happens if the initial losses

satisfy � > 3l (p). The right panel illustrates an alternative three-tiered network in which

each bank in the bottom two tiers have exposures to two other banks (and the initially

distressed bank is in the top tier). For this network, we assume that the banks know the

identities of their immediate neighbors only. With this assumption, the banks have the
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Figure 6: The two panels illustrate �ight-to-quality episodes in two networks that di¤er
in their completeness, but not in banks�information about the network (measured as the
number of other banks whose locations each bank knows).

same amount of information as the �rst case in the sense that they know the locations of

exactly two other banks. In this case, all banks in the bottom row choose the precautionary

action, Aj0 = S, if there is a domino e¤ect of length at least 2. This in turn happens if

the initial losses satisfy � > 3l (p), which is the same condition as in the �rst case. Put

di¤erently, even though the second network is more complete, it takes a shock of the same

size to generate a �ight-to-quality episode in both networks.16

Intuitively, while a more complete network features a shorter domino e¤ect, it also

generates a greater informational burden for banks. The more neighbors a bank has, the

more balance sheets it needs to inspect to assess its �nancial health (and the �nancial

health of its neighbors, and their neighbors etc). Consequently, controlling for the bank�s

information, it takes a smaller domino e¤ect to trigger a �ight-to-quality episode in a

16It is also instructive to show a more general version of this result. Consider the network on the right
panel of Figure 6 with a large number of tiers (as opposed to three). Suppose banks know their neighbors
up to distance k, so that they know the locations of K � 2 + :: + k other banks. It is easy to see that
a su¢ cient condition for a �ight-to-quality episode is � > (K + 1) l (p). This is the same condition that
generates a �ight-to-quality episode in the circle network when banks know their forward neighbors up
to distance K. Thus, the key determinants of a �ight-to-quality episode is the size of the shock, �, the
banks�information, K (measured by the number of other bank-locations a bank understands), and the
available liquidity of each bank, l (p).
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more complete network. Figure 6 illustrates that, under appropriate assumptions (related

to the symmetry of the network), the two forces exactly cancel and the completeness of

the network does not a¤ect the incidence of panics.

It is also worth noting that banking networks in practice appear to be highly incom-

plete and specialized. Direct evidence for this point can be gleaned from the Bank of

England�s Financial Stability Report for June 2009. Chart 3.8 of this report plots the

network of large exposures between UK banks. While the UK banking network does not

exactly take the form of a circle (it looks more like a hub-and-spoke network), it shares

the key characteristic of being highly incomplete. Similarly, the US �nancial network is

highly incomplete and concentrated, as evidenced by the recent regulatory attempts (in

particular, the Dodd-Frank act) to curb large and systemic banks�exposures to a single

counterparty.17

C. The role of Knightian uncertainty about the network

The Knightian uncertainty, and the corresponding Maximin representation in (2), is not

essential for our results. In particular, our qualitative results also apply in a standard

expected utility framework as long as banks are risk averse (or as long as they are averse

to bankruptcy in view of �xed costs). We consider the Maximin representation for two

reasons. First, it provides analytical tractability by enabling us to focus on the worst

case scenario, instead of specifying a distribution over N j (�) and taking expectations.

Second, and more importantly, Knightian uncertainty seems more appropriate for our

context than quanti�able risk. Given the complexity of the network of cross-exposures in

real �nancial markets, banks are unlikely to have a unique belief distribution over various

possible networks. Microeconomic studies (both empirical and theoretical) have argued

that economic agents are more averse to this type of uncertainty compared to quanti�able

risks. The Maximin representation enables us to capture this feature in a tractable way.

17An important reason for the incompleteness of the network in practice is the heterogeneity in the
bene�ts and the costs of forming links. To see this, consider the example of a bank that enters an interest
rate swap agreement in the OTC derivative markets. Depending on the movements of the yield curve, this
contract might generate exposures to banks�counterparties. In this setting, a more complete network
would correspond to the case in which the bank buys a small amount of swaps from a large number
of counterparties, thereby spreading its exposures across the network. However, this is unlikely to be
optimal for several reasons. First, some intermediaries might lack the necessary expertise to value this
swap, especially if the terms of the contract are complex. If this is the case, the bank would have to enter
the agreement with a few specialized intermediaries. Second, even the specialists�valuations often di¤er
from one another, depending on their portfolio risks and beliefs. If this is the case, the bank would �nd it
optimal to enter the agreement with the specialists that o¤er the best price, leading to a highly incomplete
network. More generally, heterogeneity in �nancial institutions�valuations of derivative contracts would
naturally lead to an incomplete network of exposures in the OTC derivative markets.
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That said, the Maximin representation corresponds to an extreme form of ambiguity

aversion which provides quantitative ampli�cation for our results. We could have instead

used the smooth ambiguity model of Klibano¤, Marinacci, and Mukerji (2005), which

would lead to similar qualitative conclusions but milder quantitative e¤ects.

VI. Conclusion

In this paper we provide a model that illustrates how �re sales can arise even when

�nancial markets are deep and the shock is small relative to the wealth in the �nancial

network. The key ingredient for this outcome is complexity, which we have captured as

banks�uncertainty about the network of cross-exposures. This feature, which is a dormant

factor in normal times, generates counterparty risk once banks are unable to �gure out

their exposures to an indirect hit.

We also show that there is a powerful feedback between �re sales and complexity. More

severe �re sales amplify the potential domino e¤ects and increase banks�counterparty risk.

This triggers a precautionary reaction from potential asset buyers, which pull back and

exacerbate the �re sale. In extreme scenarios these potential buyers can turn into sellers,

leading to a complete collapse in secondary markets.

We only partially explored policy questions, but it is apparent that our environment

creates many policy opportunities. In particular, the complexity externality supports

government actions during crises that are aimed at mitigating domino e¤ects (e.g., bailing

out distressed banks or asset purchases), as well as those that are aimed at reducing the

network uncertainty (e.g., stress testing, and widespread guarantees to banking liabilities

or assets). In addition, the complexity externality also supports preemptive measures

that are aimed at simplifying (and increasing the transparency of) the �nancial network,

e.g., moving OTC transactions to exchanges.

A question that emerges in our environment is whether banks can aggregate their (lo-

cal) information about the �nancial network. In our model, banks cannot credibly share

their information if we assume that distressed banks su¤er losses from revealing that they

are distressed (which is likely to be the case in reality). This is because banks that are

close to the original distressed bank have an incentive to misreport their distance, which

prevents the aggregation of information. More broadly, one could imagine many other

reasons why information production and sharing during a crisis is ine¢ cient, which em-

phasizes the importance of policies that provide information (e.g., stress testing, collecting

data on OTC transactions, living wills, etc.).
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As a parting thought, we note that the particular insolvency motive we consider raises

the question of what would happen if the distressed institutions chose to gamble for res-

urrection by not selling their assets, which would improve their outcome in good states at

the cost of a greater bankruptcy risk. Our model suggests that gambling for resurrection

may be a mixed blessing for the aggregate. Gambling by potential buyers, that is, insti-

tutions that are far from the domino e¤ect but that do not know this, would limit the

�re sales and the downward spiral of prices. On the other hand, gambling by institutions

near the domino e¤ect would exacerbate contagion and trigger the complexity mechanism.

This issue also points to important policy trade-o¤s for the decision on which institutions

to guarantee during a systemic event.

31



Appendix: Omitted Proofs and Extensions

A. Endogenizing Banks�Debt Rollover Decision

In the main text, we have simpli�ed the model by assuming that all short term debt

claims must be settled at date 1. In this appendix, we consider the extension of the

model with banks�roll-over actions, and we show that the equilibrium is unchanged as all

banks choose to withdraw their debt claims immediately.

To see this, consider an extension in which each bank bj has an additional action at

date 1, Aj1 = W (~z) for some ~z 2 [0; z]. A bank that chooses Aj1 = W (~z) withdraws

~z dollars of its debt claims on its forward neighbor bank at date 1, and rolls over the

remaining z � ~z dollars of its debt claims to date 2. In this setting, consider a distressed
bank with a positive liquidity need at date 1 (e.g., the original distressed bank b0). This

bank could try to obtain the required liquidity either by withdrawing its debt claims at

date 1 (i.e., by choosing Aj1 = W (~z) for some ~z > 0) and/or by taking the precautionary

action at date 0 (i.e., by choosing Aj0 = S). Taking the precautionary action is strictly

costly for the bank because it sacri�ces equity value at date 2. However, withdrawing

debt claims is not costly. In fact, either the forward neighbor bank is insolvent, in which

case withdrawing is strictly better than rolling over (recall that each bank is small and

takes the debt payment of the forward neighbor bank as given), or the forward bank is

solvent in which case withdrawing and rolling over generate the same amount of equity

value. Hence, the bank always prefers ex-post withdrawal to the ex-ante precautionary

actions. In other words, the liquidity pecking order is such that a bank that will need

liquidity at date 1 �rst chooses Aj1 = W (~z), and then (if there is need) resorts to ex-ante

precautionary measures.

Next consider the original distressed bank, b0, that will need at least � dollars of

liquidity. This bank withdraws a positive amount of its debt claims from its forward

neighbor, i.e., A01 = W (~z) for some ~z > 0. This puts the neighbor bank also in need of ~z

dollars of liquidity, which also withdraws ~z units of its debt claims on the forward neighbor.

As in Allen and Gale (2000), this triggers further withdrawals until, in equilibrium, Aj1 =

W (~z) for all j. Hence, the original distressed bank tries, but cannot obtain, any net

liquidity through cross debt withdrawals. In particular, this bank still needs at least �

dollars of liquidity after cross debt withdrawals. This further implies that, in equilibrium,

the bank withdraws all of its debt claims, i.e., ~z = z. Thus, no bank rolls over its debt

and all debt claims are settled at date 1. It follows that the equilibria analyzed in the

main text continue to be the equilibria in this setting with a more general action space
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at date 1.

B. Equilibrium in the No-Uncertainty Benchmark

This appendix presents the analysis and the proofs omitted from Section II.

Characterizing banks� optimal actions. Consider a bank with distance d. This

bank�s optimal action can be characterized by comparing its liquidity need in (6) and the

available liquidity in (7). There are three cases to consider. First, if the bank�s liquidity

need is zero, then it is not distressed. Since this bank does not need dollars at date 1,

it chooses the aggressive action, Aj0 = B, to maximize its equity value. Second, if the

bank�s liquidity need lies in the interval, (0; l (p)], then its available liquidity is su¢ cient

to meet its liquidity need. This bank chooses the precautionary action, Aj0 = S, to avert

insolvency at date 1 (which maximizes its equity value at date 2). Third, if the bank�s

liquidity need is greater than l (p), then its available liquidity is not su¢ cient to meet its

liquidity need. This bank is indi¤erent between choosing Aj0 = S or A
j
0 = B, because it

will be insolvent regardless of the action. Nonetheless, choosing the precautionary action

increases the liquidation outcome because it enables the bank to liquidate with time:

More speci�cally, the bank�s assets yield l (p) dollars with the precautionary action and 0

dollars with the aggressive action. Thus, the precautionary action increases the payo¤ to

debtholders. Given that equity holders are indi¤erent, we restrict attention to equilibria

in which the bank [with liquidity need > l (p)] chooses the precautionary action, Aj0 = S.

Combining the three cases, note that the bank chooses the precautionary action, Aj0 =

S, if and only if its liquidity need is strictly positive. Moreover, the bank is insolvent

at date 1 if and only if its liquidity need is strictly greater than l (p). We next use this

characterization to solve for the partial equilibrium: that is, banks�actions and payments

for a given price p.

Proof of Proposition 1. Under the claim in the proposition, the original distressed

bank (with distance 0) receives full payment from its debt claims on its forward neighbor,

i.e., Q1 [n� 1] = z. Hence, the liquidity need of bank with distance 0 is � > 0. According
to the earlier characterization, this bank chooses the precautionary action, A0 [0] = S. If

� � l (p), then this bank avoids insolvency and the size of the domino e¤ect is D (p) = 0,
which is consistent with (8).

Suppose instead � > l (p). In this case the bank with distance 0 is insolvent and pays
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Q1 [0] = z + l (p)� � < z: (13)

where Q1 [0] � 0 in view of the second condition in (5).18 Note that the bank receives
z dollars from its claims on its forward neighbor, has l (p) units of liquidity at date 1,

and it has to make a payment of � dollars. Thus, its backward neighbor bank (which has

distance 1) receives Q1 [0] < z from its debt claims, and it has liquidity need, (6), of

z �Q1 [0] = � � l (p) : (14)

Here, the second expression comes from using (13) to substitute for Q1 [0]. Since we are

considering the case � > l (p), the neighbor bank also has a positive liquidity need, and

thus it chooses A0 [1] = S. If � � 2l (p), then the neighbor bank�s available liquidity, l (p),
is greater than its liquidity need. In this case, this bank is able to avoid insolvency and

there is a domino e¤ect of size D (p) = 1. Otherwise, the neighbor bank is also insolvent,

and it pays

Q1 [1] = l (p) +Q1 [0] .

From this point onwards, a pattern emerges. The payment by an insolvent bank with

distance d� 1 is

Q1 [d� 1] = l (p) +Q1 [d� 2] = l (p) (d� 1) +Q1 [0] .

Here, the �rst equality shows that banks�payments are linearly increasing in their dis-

tance, and the second equality uses this property to solve for the payment of the bank

with distance d � 1 in closed form. Using this expression along with Eq. (14), the bank
with distance d has the liquidity need:

z �Q1 [d� 1] = � � l (p) d. (15)

That is, banks�liquidity needs are linearly decreasing in their distance, d. If � > l (p) d,

then the bank with distance d has a positive liquidity need, and thus chooses the pre-

cautionary action, A0 [d] = S. If � � l (p) (d+ 1), this bank is able to avoid insolvency.
Otherwise, it is also insolvent despite taking the precautionary action.

Next note that D (p) de�ned in Eq. (8) is the �rst nonnegative integer such that � �
18Note that Q1 [0] = 0 when the second condition in (5) is violated. That is, the original distressed

bank pays zero on its debt claims because it is unable to make the outside payment. To accommodate
for this case, Eq. (13) could be modi�ed to Q1 [0] = max (0; z + l (p)� �). The rest of the analysis would
be identical at the expense of additional notation.
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l (p) (D (p) + 1). Consequently, all banks with distance d � D (p)� 1 are insolvent since
their liquidity needs are greater than their available liquidity, l(p). These banks choose

A0 [d] = S to improve their liquidation outcome. In contrast, bank with distance D (p) is

solvent since it can meet its losses by choosing the precautionary action, A0 [D (p)] = S.

Since this bank is solvent, all banks with distance d � D (p) + 1 are also solvent as

they do not incur losses in cross debt claims. These banks choose the aggressive action,

A0 [d] = B, to optimize their equity value. It follows that there is a domino e¤ect of size

D (p) and a �ight-to-quality of size F = D (p) + 1. The �rst condition in (5) also implies

that D (p) < n and F < n, completing the proof of the proposition.�

Proof of Proposition 2. We complete the sketch proof provided in the paragraph

following Proposition 2. Suppose p 2 [pscrap; 1] and consider the banks�asset supply and
demand. There are D (p) + 1 banks that choose Aj0 = S. The supply of assets from

these banks is given by (1� y) (D (p) + 1). The remaining n � D (p) � 1 banks choose
Aj0 = B. The demand for assets from these banks is given by y(n�D(p)�1)

p
. We claim that

the demand exceeds the supply regardless of the price, that is:

y (n�D (p)� 1)
p

> (1� y) (D (p) + 1) for each p 2 [pscrap; 1] . (16)

By the secondary market clearing condition (3), this claim ensures that the equilibrium

price is p = 1, proving part (i). Given price p = 1, D and F are characterized by

Proposition 1, proving part (ii). Finally, the aggregate amount of new asset purchases is

equal to banks�demand for assets net of the supply of legacy assets. Taking the di¤erence

of the left hand side and right hand side of the inequality in (16) and using p = 1, we

have:

Y = ny � (D (1) + 1) = ny � d�e ,

proving part (iii).

The remaining step is to show the claim in (16). Recall that D (p)+1 =
l

�
l(p)

m
. Using

this expression, the claim in (16) can be written as:

ny >

�
�

l (p)

�
(y + p (1� y)) =

�
�

l (p)

�
l (p) ,

where the equality follows from the de�nition of l (p) in Eq. (7). To show this inequality,

note that:

ny > d�e �
�
�

l (p)

�
l (p) ,

35



where the �rst inequality follows from condition (5) and the second inequality follows

since l (p) � 1. This implies the claim in (16), completing the proof.�

C. Equilibrium with Complexity

This appendix presents the analyses and proofs omitted from Section III. We �rst present

the characterization of the banks�optimal actions. We then present proofs of Proposition

3 and 4.

Consider banks� optimal actions, taking the cross debt payments,
�
qj1
	
j
, as given.

Note that a su¢ cient statistic for bank bj with distance d to choose action Aj0 2 fS;Bg
is the amount it will receive in equilibrium from its forward neighbor. In particular, to

decide on the level of its precautionary measure, this bank only needs to know its liquidity

need in (6), which only depends on the debt payment of its forward neighbor. Formally,

if the bank chooses Aj0 at date 0 and its forward neighbor pays x at date 1, then this

bank�s debt payment and equity value can be written as a function
�
q1
�
Aj0; x

�
; q2
�
Aj0; x

��
.

However, the bank chooses Aj0 while facing uncertainty about the �nancial network, and

consequently about x = qj1 (�). More speci�cally, the bank knows that x lies in some

interval: �
xworst = min

~�2N j(�)
qj1 (~�) ; x

best = max
~�2N j(�)

qj1 (~�)

�
,

but it is uncertain about the exact location of x in this interval. Note also that q1
�
Aj0; x

�
and q2

�
Aj0; x

�
are weakly increasing in x for any choice of action. That is, the bank�s debt

and equity payments are increasing in the amount it receives from its forward neighbor

regardless of the ex-ante precautionary measure it takes. In view of the minimax opti-

mization [cf. problem (2)], it follows that the bank will choose its action as if it will receive

with certainty the lowest possible payment, xworst. This completes the characterization

of banks�optimal actions.

Proof of Proposition 3.

Case (i): � � 2l (p). We prove the statement by showing that banks� payo¤s (and

thus solvencies) and actions are the same as in the no-uncertainty benchmark (which is

characterized in Proposition 1).

To this end, it su¢ ces to show that the payments and actions of the no-uncertainty

benchmark constitute a partial equilibrium also in this case. To show this, �rst consider

the actions of banks with distance d � 1. Recall that these banks�optimal actions are
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characterized exactly as in the no-uncertainty benchmark. Moreover, in the conjectured

equilibrium, they receive the same payment from their forward neighbors, x = Q1 [d� 1],
as in the no-uncertainty benchmark. Consequently, they optimally choose the same ac-

tions. Next consider the actions of banks with distance d � 2. Given � � 2l (p), and the
size of the domino e¤ect D (p) � 1, these banks choose the aggressive action, Aj0 = B,

in the no-uncertainty benchmark. In particular, the bank at distance d = 2 chooses the

aggressive action since it does not make any losses from cross-claims. With uncertainty,

recall that banks with distance d � 2 act as if they are at distance 2. Thus, these banks
optimally choose the aggressive action also with uncertainty. It follows that the partial

equilibrium with no-uncertainty continues to be a partial equilibrium with uncertainty.

This analysis also veri�es for this case that the banks�actions and payments can be

written as a function of their distance [cf. Eq. 4]. Moreover, the function Q1 [d] is weakly

increasing because it is the same as in the no-uncertainty benchmark.

Case (ii): � > 2l (p). To prove this claim, �rst consider the banks with distance d � 1.
It can be seen that these banks�optimal actions and payments are the same as in the no-

uncertainty benchmark. Since � > 2l (p), the size of the domino e¤ect satis�es D (p) � 2.
Consequently, banks with distance d � 1 are insolvent and they choose Aj0 = S, proving
the claim for these banks.

Consider next the banks with distance d � 2. Recall that these banks act as if they
are at distance ~d = 2. Given the characterization for banks with distance d � 1, the

bank at distance ~d = 2 receives the payment, Q1 [1], which is the same as in the no-

uncertainty benchmark. Consequently, these banks choose the action that the bank at

distance ~d = 2 would choose in the no-uncertainty benchmark. Since D (p) � 2, all of
these banks optimally choose the precautionary action, Aj0 = S. It follows that the banks

with distance d � D (p)�1 are insolvent and their debt payments and equity values are the
same as in the no-uncertainty economy. The transition bank with distance D (p) is solvent

and its debt payment and equity value is also the same as in the no-uncertainty economy.

The banks with distance d � D (p) + 1 are also solvent and they pay Q1 [d] = z on their
debt. However, the equity values of these banks are di¤erent than the no-uncertainty

economy. In particular, the equity value of a bank with distance d � D (p)+1 is given by

Q2 [d] = y + (1� y) p < R:

This discussion proves the claim also for banks with distance d � 2, and completes the
proof of the proposition.
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This analysis also veri�es for this case that the banks�actions and payments can be

written as function of their distance [cf. Eq. 4]. Moreover, the function Q1 [d] is weakly

increasing because it is the same as in the no-uncertainty benchmark.�

Proof of Proposition 4. There are three cases to consider. The �rst case concerns a

shock, �, that is weakly smaller than the available liquidity of two banks even when the

price of legacy assets is at its lowest level. In this case, part (i) of Proposition 3 applies

regardless of the price. Consequently, the banks�payo¤s and actions are the same as

the no-uncertainty benchmark. In particular, all banks with distance d � 2 choose the
aggressive action, Aj0 = B. In view of condition (5), the asset demand from these banks

exceed the asset supply from distressed banks. This leads to an equilibrium price p = 1

and a domino e¤ect of size D (1). Furthermore, aggregate purchase of new assets is the

same as in Proposition 2.

The second case concerns a liquidity shock, �, which is greater than the available

liquidity of two banks even when the price of legacy assets is at its highest level. In

this case, part (ii) of Proposition 3 applies regardless of the price. Consequently, there

is a �ight-to-quality of size n. In particular, all banks choose the precautionary action,

Aj0 = S, which has two e¤ects. First, since all banks are sellers in the secondary market

(and there are no buyers), the market clearing condition (3) implies that p = pscrap.

Second, since all banks choose to keep their dollars in cash, no new assets are purchased,

i.e., Y = 0.
The third case concerns a liquidity shock, �, which is weakly smaller than the available

liquidity of two banks when the price is at its highest level, but not when the price is

at its lowest level. In this case, there are multiple equilibria. To see this, �rst suppose

legacy assets trade at their fair price, p = 1. With this price, the available liquidity,

l (1), is su¢ ciently large that part (i) of Proposition 3 applies. In particular, banks with

distance d � 2 are potential buyers of the asset. This ensures that the fair price, p = 1,
corresponds to an equilibrium. Suppose, instead, that legacy assets�price is at the �re-sale

level, p = pscrap. With this price, the available liquidity, l (pscrap), is su¢ ciently small that

part (ii) of Proposition 3 applies. In particular, all banks (including banks with distance

d � 2) are sellers in the secondary market. This ensures that the �re-sale price, p = pscrap,
also corresponds to an equilibrium.�
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D. Robustness to Collateralized CDS Contracts

In our setting, partial domino e¤ects lead to aggregate e¤ects because they increase banks�

idiosyncratic counterparty risk from cross-exposures. A natural question is to what extent

this risk could be insured at date 0 (once banks learn about the shock). In practice,

banks could obtain some insurance by purchasing credit default swaps (CDS) on their

counterparties. However, as discussed in the main text, the CDS contracts that pay in

systemic events need to be collateralized to protect insurance buyers against a potential

default of the insurance seller. This appendix allows for collateralized CDS contracts at

date 0 and shows that our results are robust to this extension. The key insight is that,

while banks demand CDS insurance on their counterparties, the supply of insurance is

also restricted because of sellers�collateral constraints.

Consider the setting of Proposition 3 with network uncertainty and �xed asset price

(for simplicity). Consider also parameters such that D (p) � 2, so that banks are trying to
maximize their available liquidity at date 1 (in their worst case scenario). In this setting,

banks have a demand for insurance contracts that pay when they are distressed at date

1. To capture this aspect, suppose banks can invest at date 0 in insurance contracts on

the insolvencies of their forward neighbor banks. In particular, for each bank j, there is

a contract, Ij, that pays 1 dollar if bank j is insolvent at date 1 (i.e., if it pays qj1 < 1).

Suppose also that insurance contracts, fIjgj, must be individually and fully collateralized.
In particular, the insurance seller must pledge 1 unit of cash as collateral for each unit

of insurance contract she sells at date 0. Each contract, Ij, is traded at date 0 in a

competitive market at price f j 2 (0; 1), which will be endogenously determined.
The collateral constraint implies that banks within the network choose not to sell

insurance contracts. To see this, note that selling the contract, Ij, requires the bank to

pledge 1 � f j dollars of cash (in addition to f j dollars which she raises from the sale).

In particular, selling insurance reduces banks�available liquidity at date 1 (even though

it may increase their return at date 2). Given that banks are trying to maximize their

available liquidity, they choose not to sell insurance. Put di¤erently, network uncertainty

not only increases banks�demand for insurance, but it also naturally decreases their supply

of insurance.

It follows that insurance contracts must be sold by an agent outside the �nancial

network. Suppose the outside agent has yout dollars at date 0 and consumes only at

the end of date 1. Suppose the outside agent does not know the �nancial network. In

addition, suppose also that the outside agent does not know the identity of the original
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distressed bank, b0.19 Importantly, the outside agent knows that the size of the domino

e¤ect will be exactly D (i.e., not all of the banking system can go under). This is the

main feature that will facilitate insurance.

Let xj denote the amount of contract Ij sold by the outside agent. We conjecture an

equilibrium for the insurance market in which f j � f 2 (0; 1) for each j and xj � x for
each j. That is, all banks�insurance contracts trade at the same price and the outside

agent sells equal number of contracts.

To characterize this equilibrium, �rst consider the supply of insurance by the outside

agent. This agent�s portfolio choice problem can be written as:

max
~x�0

yout + ~xfn� ~xD, (17)

s.t. n~x (1� f) � yout.

The �rst line is the outside agent�s expected pro�t: For each contract she sells, she collects

fn dollars in premiums and she expects to pay D dollars. Note that, even though the

outside agent does not know the network, it knows that exactly D banks will fail. The

second line of (17) is the outside agent�s budget constraint. For each contract she sells,

she raises f dollars. However, she needs to put an additional, 1� f , dollars as collateral.
The total amount of collateral she pledges cannot exceed her available collateral, yout.

Problem (17) implies that as long as fn > D, which we will verify in equilibrium, the

outside bank sells as much insurance as possible. That is:

x =
yout

n (1� f) . (18)

Next consider the demand for insurance by banks. To maximize their available liq-

uidity at date 1, banks, fbjgn�1j=1 , spend all of their date 0 resources to buy insurance

on their respective forward neighbor banks. This is because they buy insurance at price

f < 1 (which is fully collateralized), that gives them 1 dollar at date 1 in their worst

case scenario (when their forward neighbor is insolvent). Thus, these banks�demand for

insurance is given by:

x =
l (p)

f
. (19)

With these insurance purchases, their available liquidity at date 1 (when their forward

19This assumption is only made for simplicity. The results do not change if we assume the outside
agent knows b0 (i.e., she knows as much as the inside banks).
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neighbor is insolvent) becomes:

l (p; f) = x =
l (p)

f
. (20)

Consider next the original distressed bank, b0. This bank cannot increase its available

liquidity by buying insurance on its forward neighbor, because its forward neighbor will

always be solvent. On the other hand, this bank is indi¤erent between any level of

insurance (because it will be insolvent regardless of its action). To keep the analysis and

the notation simple, consider equilibria in which this bank�s insurance demand is also

given by (19), which leads to an available liquidity of 0 dollars at date 1.

Given this characterization of insurance purchases and available liquidities, the size of

the domino e¤ect can be calculated as before. In particular, the analogue of Eq. (8) in

this setting is given by:

D (p; f) =

�
�

l (p; f)

�
.

Note that when f is lower, more liquidity is available to banks in distress, which leads to

a smaller domino e¤ect.

The equilibrium price of insurance is characterized by equating the supply of insurance

in (18) with the demand for insurance in (19). This leads to the following closed form

solution:

f =
l (p)

yout

n
+ l (p)

and x =
yout

n
+ l (p) .

Note that insurance is expensive when the aggregate collateral of the insurance sellers,

yout, is small relative to the number of banks that demand insurance, n. When yout

n
is

su¢ ciently small, f is close 1, which has two implications. First, the condition, fn > D

[which lead to Eq. (18)], is veri�ed because n > D. Second, banks�available liquidity in

(20) is close to l (p). Consequently, the equilibrium is qualitatively similar to the earlier

setting without insurance.

This analysis illustrates that, as long as the collateral of insurance sellers outside

the �nancial network is scarce, the CDS market does not overturn our results. The

behavior of the CDS market during the recent Bear Sterns and Lehman debacles is broadly

consistent with this analysis. Du¢ e (2011) describes that the demand for insurance spiked

in both episodes (measured by novation requests), and that this demand could not be met

by insurance sellers (dealers). These observations suggest that collateralized insurance

contracts might fail to eliminate fully the counterparty risk in systemic episodes, because

the supply of this type of insurance is also limited.
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