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Abstract
We present a new technique and system, DIODE, for auto-
matically generating inputs that trigger overflows at memory
allocation sites. DIODE is designed to identify relevant sanity
checks that inputs must satisfy to trigger overflows at target
memory allocation sites, then generate inputs that satisfy these
sanity checks to successfully trigger the overflow.

DIODE works with off-the-shelf, production x86 binaries.
Our results show that, for our benchmark set of applications,
and for every target memory allocation site exercised by our
seed inputs (which the applications process correctly with no
overflows), either 1) DIODE is able to generate an input that
triggers an overflow at that site or 2) there is no input that
would trigger an overflow for the observed target expression
at that site.

1. Introduction
Integer overflow errors are an insidious source of software fail-
ures and security vulnerabilities [1, 14, 41]. Because programs
with latent overflow errors often process typical inputs cor-
rectly, such errors can easily escape detection during testing
only to appear later in production. Overflow errors that occur
at memory allocation sites can be especially problematic as
they comprise a prime target for code injection attacks. A typi-
cal scenario is that a malicious input exploits the overflow to
cause the program to allocate a memory block that is too small
to hold the data that the program will write into the allocated
block. The resulting out-of-bounds writes can easily enable
code injection attacks [14].
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1.1 DIODE
We present a new technique and system, DIODE (Directed
Integer Overflow Discovery Engine), for automatically gener-
ating inputs that trigger integer overflow errors at critical sites.
DIODE starts with a target site (such as a memory allocation
site) and a target value (such as the size of the allocated mem-
ory block). It then uses symbolic execution to obtain an target
expression that characterizes how the program computes the
target value as a function of the input. It then transforms the
target expression to obtain a target constraint. If the input 1)
satisfies the target constraint while 2) causing the program to
execute the target site, then it will trigger the error.
Sanity Checks: A key observation behind the design of
DIODE is that programs often perform sanity checks on the
input before they use the input to compute target values. If the
input does not pass the sanity checks, the program typically
emits an error or warning message and does not further process
the input. To trigger an overflow, an input must therefore take
the same path through the sanity checks as typical inputs that
the program processes successfully.

One obvious way to obtain an input that satisfies the sanity
checks is start with a seed input that causes one or more target
sites to execute, then use a solver to obtain a new input that 1)
satisfies the target constraint as well as 2) additional constraints
that force the solver to generate an input that takes the same
path to the target site as the seed input. This approach ensures
that the input passes the sanity checks.
Blocking Checks: Unfortunately, our results indicate that
this approach often fails because, in most cases, the path
that the seed input takes through the computation contains
additional blocking checks that prevent any input that satisfies
these checks from triggering the error. To trigger an overflow,
an input must take a different path through these blocking
checks. The challenge is therefore to find inputs that 1) satisfy
the target constraint, 2) satisfy the sanity checks, and 3) find
a path through the blocking checks to execute the target site.
DIODE meets this challenge as follows:

• Target Site Identification: Using a fine-grained dynamic
taint analysis on the program running on the seed input,
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Figure 1: System Overview

DIODE identifies all memory allocation sites that are
influenced by values from the seed input. These sites are
the target sites.

• Target Constraint Extraction: Based on instrumented
executions of the program, DIODE extracts a symbolic
target expression that characterizes how the program com-
putes the target value (the size of the allocated memory
block) at each target memory allocation site. The inputs
that appear in this expression are the relevant inputs. Using
the target expression, DIODE generates a target constraint
that characterizes all inputs that would cause the compu-
tation of the target value to overflow (as long as the input
also causes the program to compute the target value).

• Branch Constraint Extraction: Again based on instru-
mented executions of the program, DIODE extracts the
sequence of conditional branch instructions that the pro-
gram executes to generate the path to the target memory
allocation site. To ensure that DIODE considers only rel-
evant conditional branches, DIODE discards all branches
whose condition is not influenced by relevant inputs.
For each remaining conditional branch, DIODE generates
a branch constraint that characterizes all input values that
cause the execution to take the same path at that branch as
the seed input. DIODE will use these branch constraints
to generate candidate test inputs that force the program
to follow the same path as the seed input at selected
conditional branches.

• Target Constraint Solution: DIODE invokes the Z3 SMT
solver [13] to obtain input values that satisfy the target
constraint. If the program follows a path that evaluates
the target expression at the target memory allocation site,
DIODE has successfully generated an input that triggers
the overflow. If the program performs no sanity checks on
the generated values, this step typically delivers an input
that triggers the overflow.

• Goal-Directed Conditional Branch Enforcement: If the
previous step failed to deliver an input that triggers an
overflow, DIODE compares the path that the seed input
followed with the path that the generated input followed.
These two paths must differ (otherwise the generated input
would have triggered an overflow).
DIODE then finds the first (in the program execution order)
relevant conditional branch where the two paths diverge
(i.e., where the generated input takes a different path than
the seed input). We call this conditional branch the first
flipped branch.

DIODE adds the branch constraint from the first flipped
branch to the constraint that it passes to the solver, forcing
the solver to generate a new input that takes the same path
as the seed input at the that first flipped branch. DIODE
then runs the program on this new generated input to see if
it triggers the overflow.
DIODE continues this goal-directed branch enforcement
algorithm, incrementally adding the branch constraints
from first flipped branches, until either 1) it generates
an input that triggers the overflow or 2) it generates an
unsatisfiable constraint.

If the program does not contain relevant sanity checks,
DIODE will typically find an input that triggers the overflow
immediately when it solves the target constraint. If the program
does contain relevant sanity checks, DIODE enforces flipped
sanity checks in the order in which they are executed by
the program. Each iteration of the goal-directed conditional
branch enforcement algorithm forces the solver to produce an
input that satisfies the next relevant unsatisfied sanity check.

As soon as DIODE enforces enough relevant sanity checks,
it typically obtains an input that triggers the overflow (if such
an input exists). Because the test inputs enforce only relevant
branch conditions associated with previously failed relevant
sanity checks, this approach gives the input the freedom it
needs to navigate the blocking checks that would, if enforced,
cause the program to fail to execute the target site (and
therefore fail to generate an overflow).

1.2 Experimental Results
We evaluate DIODE on five applications: Dillo 2.1, VLC 08.6h,
SwfPlay 0.5.5, CWebP 0.3.1, and ImageMagick 6.5.2. We
start by using DIODE to locate the target memory allocation
sites (there are 40 of these sites) and extract, for each site, the
target constraint. The target constraint for 17 of the 40 target
sites is unsatisfiable. For 9 of the remaining 23 target sites,
DIODE was unable to generate an overflow-triggering input.
Our manual inspection of the source code verified that the
applications contain sanity checks that prevent any input from
triggering an overflow at these target sites.

DIODE was able to generate inputs that trigger overflows
at all of the remaining 14 sites. We were aware of 3 of these
overflows prior to starting the study; the remaining 11 were
new. We verified that at least 4 of the new overflow errors
are still present in the latest versions of these applications
as of the submission date of this paper. For 2 of the 14 sites,
DIODE was able to generate an overflow-triggering input with
a constraint that forced the input to take the same path as the



seed input. For the remaining 12 sites, the presence of relevant
blocking checks requires any overflow-triggering input to take
a different path to the target site.

For 9 of the 14 sites DIODE was able to generate an
overflow-triggering input without enforcing any conditional
branches. The remaining 5 sites require the enforcement of a
minimum of 2, average of 4, and maximum of 5 conditional
branches. Our manual inspection of the source code indicates
that all of the enforced conditional branches involve sanity
checks on relevant inputs (all but one of which were apparently
not specifically designed to check for overflows). Our results
also indicate that, if the application does perform relevant
sanity checks and the input generation strategy does not take
these checks into account, the input generation strategy is
unlikely to find inputs that trigger an overflow even when such
inputs exist (Section 5).

1.3 Engineering Challenges and Solutions
DIODE works directly on off-the-shelf, production stripped
x86 binaries with no need for symbol information or source
code. Given a binary and one or more seed inputs, DIODE
executes instrumented versions of the binary to extract the
symbolic target expressions and branch conditions for each
target memory allocation site. For scalability reasons, DIODE
stages the symbolic expression extraction as follows.

The first stage runs the application using fine-grained taint
tracing to find memory allocation sites in which the input influ-
ences the size of the allocated memory block. This size is the
target value of the site. This stage also obtains, for each target
value, the relevant input bytes, i.e., the input bytes that influ-
ence the target value. The second stage runs the application
again, recording a (compressed for efficiency) symbolic rep-
resentation of each computation that the relevant input bytes
influence. The third stage reads the symbolic representation of
the computation to automatically derive the symbolic target
expressions at the target memory allocation sites (these expres-
sions capture the computation that the application performs
on the relevant input bytes to obtain the target value) and the
symbolic branch condition expressions at the relevant condi-
tional branches. This staging is essential in enabling DIODE to
scale to real-world applications — attempting to record a sym-
bolic representation of all computations that the application
performs is clearly infeasible for real-world applications.

Given a seed input and candidate values from the Z3 SMT
solver for relevant input fields within the seed input, DIODE
uses Hachoir [3] and Peach [4] to generate a new input file with
the candidate values. Together, Hachoir and Peach reconstruct
the input file to accommodate the values, applying techniques
such as checksum recalculation.

1.4 DIODE and Multi-Application Code Transfer
Once DIODE has identified the error, the next step is to
eliminate the error. The standard approach is to report the
error to the developers of the application, then wait for them
to develop and distribute a patch [12]. Drawbacks of this

approach include the patch development and distribution time
and the difficulty of obtaining any patch at all if the application
is no longer under development or maintained.

In response to this problem, we have developed CodePhage,
an automatic code transfer system [37]. CodePhage starts
with an input that exposes an error, a related input that the
application processes correctly, and a donor application that
processes both inputs correctly (such applications are typically
readily available for standard input file formats). CodePhage
automatically discovers code in the donor that eliminates the
error, then transfers this code into the original application to
eliminate the error. CodePhage operates directly on stripped
x86 binary donors to generate source-level patches. The code
transfer includes automatic data structure translation and the
automatic location of appropriate code insertion points in the
recipient. Combining CodePhage with DIODE produces a
system that automatically discovers and eliminates integer
overflow errors — DIODE generates inputs that expose errors;
CodePhage uses these inputs to locate and transfer code from
donor applications to eliminate the errors. To the best of our
knowledge, CodePhage is the first system to automatically
transfer code between applications.

1.5 Continuous Automatic Improvement
Given a the ability to automatically expose errors via tools
such as DIODE and the ability to automatically repair these
errors via tools such as CodePhage [37] (as well as the abil-
ity to automatically generate repairs using techniques such
as ClearView [27], Error Virtualization [35, 36], Failure-
Oblivious Computing [29], and RCV [23]), the next step is
to build continuous automatic improvement systems that au-
tomatically search for errors and generate patches that repair
the encountered errors. ClearView’s automatic patch genera-
tion capability provides continuous improvement driven by
responses to attacks and errors that users encounter in produc-
tion use [27]. Augmenting the ClearView continuous improve-
ment approach with continuously executing automatic error
detection tools would make it possible to detect and repair
errors before users encounter them and before attackers can
exploit them. The result would be significantly more secure
and robust software systems.

1.6 Contributions
This paper makes the following contributions:

• Targeted Input Generation: It introduces the approach of
automatically generating error-triggering inputs that target
potentially vulnerable program sites.

• Sanity and Blocking Checks: It identifies sanity and
blocking checks as an important challenge for techniques
that aspire to discover error-triggering inputs. Critically,
our results indicate that if the program contains relevant
sanity checks, one way to identify relevant sanity checks
and generate inputs that satisfy these checks is to incremen-
tally find and enforce first flipped conditional branches.



• DIODE: It presents DIODE, an implemented system that
works with programs that contain relevant sanity checks
to automatically generate inputs that trigger overflow
errors. Starting with seed inputs that execute a set of
target memory allocation sites, DIODE uses (optimized)
symbolic execution to obtain symbolic expressions that
characterize how input values determine the path through
the computation to the target site and control the target
value (the number of bytes that the target site allocates).
Using a targeted approach, DIODE generates a sequence of
inputs, each of which enforces the next relevant conditional
branch to find and satisfy the sanity checks that would
otherwise prevent the input from triggering the overflow
at the target site. The goal is to find inputs that satisfy the
relevant sanity checks while preserving the ability of the
input to successfully traverse relevant blocking checks and
reach the target site.

• Experimental Results: It presents experimental results
that characterize the effectiveness of DIODE in discovering
overflow errors. For our benchmark applications, DIODE
discovers 14 overflows, 11 of which are new. For 9 of these
overflows, DIODE generates overflows without enforcing
any conditional branches. We attribute this success to a
lack of relevant sanity checks in the program.
For the remaining 5 overflows, DIODE discovers the
overflow after enforcing a modest (2 to 5) number of
conditional branches. We attribute this success to the
ability of DIODE to 1) successfully identify and satisfy
relevant sanity checks that appear in these programs while
2) preserving the ability of the input to traverse relevant
blocking checks that would otherwise prevent the execution
of the target site.

Fuzzing [4, 6] and concolic execution [9, 10, 18, 25]
have been shown to be effective in discovering errors in the
initial input parsing stages of computations, but have had
little to no success in exposing errors that lie deep within the
program. DIODE shows that discovering and targeting specific
potentially vulnerable program sites can effectively expose
such deep errors. One of the keys to success is new techniques
that work appropriately with sanity and blocking checks to
obtain inputs that can successfully traverse these obstacles
to reach the target site. The success of DIODE in exposing
integer overflow vulnerabilities opens up the field to the further
development of other targeted techniques that work effectively
with sanity and blocking checks to expose deep errors.

The remainder of the paper is structured as follows. Sec-
tion 2 presents an example that illustrates the operation of
DIODE. Section 3 presents the DIODE goal-directed condi-
tional branch enforcement algorithm. Section 4 discusses the
engineering challenges that we had to overcome to enable
DIODE to operate on stripped x86 binaries. We present ex-
perimental results in Section 5, related work in Section 6, and
conclude in Section 7.

1 // libpng main data process function.
2 void png_process_data(png_structp png_ptr,
3 png_infop info_ptr, ...) {
4 ...
5 while (png_ptr->buffer_size) {
6 // This is a wrapper for png_push_read_chunk
7 png_process_some_data(png_ptr, info_ptr);
8 }
9 }

10 void png_push_read_chunk(png_structp png_ptr,
11 png_infop info_ptr) {
12 if (!png_memcmp(png_ptr->chunk_name,png_IHDR,4)){
13 ...
14 png_handle_IHDR(png_ptr, info_ptr, ...);
15 }
16 else if (!png_memcmp(png_ptr->chunk_name,png_IDAT, 4)) {
17 // Datainfo callback is called
18 png_push_have_info(png_ptr, info_ptr);
19 }
20 }
21 png_check_IHDR(png_structp png_ptr,
22 png_uint_32 width, png_uint_32 height, int bit_depth...) {
23 ...
24 //Check 3: Height < 1000000L
25 if (height > PNG_USER_HEIGHT_MAX) {
26 png_warning(png_ptr,
27 "Image width exceeds user limit in IHDR");
28 error = 1;
29 }
30 //Check 4: Width < 1000000L
31 if (width > PNG_USER_WIDTH_MAX) {
32 png_warning(png_ptr,
33 "Image width exceeds user limit in IHDR");
34 error = 1;
35 }
36 }
37 png_get_uint_31(png_structp png_ptr, png_const_bytep buf) {
38 png_uint_32 uval = png_get_uint_32(buf);
39 // Checks 1 & 2: Checks that width/height < 0x7fffffffL
40 if (uval > PNG_UINT_31_MAX)
41 png_error(png_ptr,
42 "PNG unsigned integer out of range");
43 return (uval);
44 }
45 # define PNG_ROWBYTES(pixel_bits,width) ((pixel_bits)>=8? \
46 ((width)*(((png_uint_32)(pixel_bits))>>3)):\
47 ((((width)*((png_uint_32)(pixel_bits)))+7)>>3))
48 void png_handle_IHDR(png_structp png_ptr,
49 png_infop info_ptr, ...) {
50 ...
51 // read individual png fields from input buffer
52 width = png_get_uint_31(png_ptr, buf);
53 height = png_get_uint_31(png_ptr, buf + 4);
54 bit_depth = buf[8];
55 ...
56 png_ptr->width = width;
57 png_ptr->height = height;
58 png_ptr->bit_depth = (png_byte)bit_depth;
59 ...
60 png_ptr->pixel_depth = (png_byte)(
61 png_ptr->bit_depth * png_ptr->channels);
62 png_ptr->rowbytes = PNG_ROWBYTES(
63 png_ptr->pixel_depth, png_ptr->width);
64 }
65 png_memset_check (png_structp png_ptr, png_voidp s1, int value,
66 png_uint_32 length)
67 {
68 png_size_t size;
69 size = (png_size_t)length;
70 if ((png_uint_32)size != length)
71 png_error(png_ptr, "Overflow in png_memset_check.");
72 return (png_memset (s1, value, size));
73 }
74 // Dillo datainfo initialization callback
75 static void
76 Png_datainfo_callback(png_structp png_ptr, png_infop info_ptr)
77 {
78 DilloPng *png;
79 ...
80 // Check 5: Incorrect check of max image size
81 if (abs(png->width*png->height) > IMAGE_MAX_W * IMAGE_MAX_H) {
82 MSG("suspicious image size request %ldx%ld\n",
83 png->width, png->height);
84 return;
85 }
86 // Where the overflow happens
87 png->image_data = (uchar_t *)dMalloc(png->rowbytes * png->height);
88 }

Figure 2: Simplified source code from Dillo 2.1 and libpng

2. Example
We next present an example that illustrates how DIODE auto-
matically generates an input that triggers an integer overflow
in Dillo 2.1, a lightweight open source web browser [2]. Fig-
ure 2 presents the simplified source code for this example. This
code is from the libpng library, which Dillo uses to read PNG
images.



Target Site Discovery: DIODE runs Dillo on the seed input,
using a fine-grained dynamic taint analysis to track the propa-
gation of input bytes through the program. The libpng runtime
calls png_process_data() (line 2) to process each PNG
image. This function then calls png_push_read_chunk()
(line 10) to process each chunk in the PNG image. When the
libpng runtime reads the first data chunk (the IDAT chunk), it
calls the Dillo callback png_datainfo_callback() (lines
76-88) in the Dillo PNG processing module. At line 87, Dillo
invokes dMalloc() to allocate the image buffer. Because the
size of the allocated memory block is influenced by the input,
DIODE identifies the site as a target memory allocation site.

Dillo computes the size of the allocated image buffer as
png→rowbytes * png→height. This is the target value.
DIODE’s goal is to generate an input that 1) executes the target
site at line 87 and 2) causes the computation of the target value
png→rowbytes * png→height to overflow. The taint in-
formation indicates that the target value is influenced by the
PNG width, height, and bitdepth fields in the seed input file.
These fields are the relevant input bytes.
Target Expression Extraction: Next, DIODE runs the ap-
plication again, this time with additional instrumentation
that records all calculations that involve the relevant input
bytes. DIODE uses the recorded information to extract the
symbolic target expression, which characterizes how the
application computes the target value (recall that this tar-
get value is the size of the allocated image buffer) as a
function of the input bytes. Conceptually, this expression
is ((width*(4*bitdepth))>>3)*height, where width,
bitdepth, and height are the PNG width, bitdepth, and
height fields in the input file. Large values of these fields will
cause this expression to overflow. Because of endianness con-
versions that take place when Dillo reads in the input field
values, the actual target expression is:

MallocArg(Mul(32,Mul(32,Add(32,ToSize(32,UShr(32,BvAnd(32,
HachField(32, ’/header/width’),Constant(0xFF000000)),
Constant(24))),Add(32,Add(32,Shl(32,ToSize(32,
BvAnd(32,HachField(32, ’/header/width’), Constant(0xFF))),
Constant(24)),Shl(32,ToSize(32,UShr(32,BvAnd(32,HachField(32,
’/header/width’),Constant(0xFF00)),Constant(8))),
Constant(16))),Shl(32,ToSize(32,UShr(32,BvAnd(32,
HachField(32, ’/header/width’),Constant(0xFF0000)),
Constant(16))),Constant(8)))),ToSize(32,Shrink(8,
UShr(32,ToSize(32,Shrink(8,Mul(32,ToSize(32,
HachField(8, ’/header/bit_depth’)),Constant(4)))),
Constant(3))))),Add(32,ToSize(32,UShr(32,BvAnd(32,
HachField(32, ’/header/height’),Constant(0xFF000000)),
Constant(24))),Add(32,Add(32,Shl(32,ToSize(32,
BvAnd(32,HachField(32, ’/header/height’),
Constant(0xFF))),Constant(24)),Shl(32,ToSize(32,
UShr(32,BvAnd(32,HachField(32, ’/header/height’),
Constant(0xFF00)),Constant(8))),Constant(16))),Shl(32,
ToSize(32,UShr(32,BvAnd(32,HachField(32,
’/header/height’),Constant(0xFF0000)),Constant(16))),
Constant(8))))),Constant(0xFFFFFFFF))

Here TargetSite indicates that, to overflow, the expres-
sion must be greater than the constant 0xFFFFFFFF (at the
end of the last line of the expression). The expression itself
references the PNG width, bitdepth, and height fields from
the input file as /header/width, /header/bit_depth, and

/header/height. The remainder of the expression captures
the computation of the target value as described above. It also
incorporates constructs (such as Shl and BvAnd) that capture
the conversion of the input values from big-endian to little-
endian form. From this target expression, DIODE extracts a tar-
get constraint that is satisfied if and only if the computation of
the target expression overflows. The variables in this target con-
straint represent the /header/width, /header/bit_depth,
and /header/height PNG input file fields. The target con-
straint faithfully represents integer arithmetic as implemented
in the hardware.
Target Constraint: DIODE next uses the Z3 solver [13] to
obtain candidate values for the relevant input byte values
that would cause the target value to overflow. In this ex-
ample, the solution sets /header/width to 3880563055L,
/header/bit_depth to 4, and /header/height to
689749785L. It then uses Hachoir [3] and Peach [4] to gen-
erate a new input file with the candidate values (we call this
input file the initial input file) and executes Dillo on this new
input file. Dillo and libpng contain sanity checks that together
prevent the input from triggering the overflow.
Sanity Checks: Dillo and libpng collectively contain five san-
ity checks. The first two checks occur in png_get_uint_31
(line 37), which checks that the PNG height and width values
are less than 0x7fffffffL. The third and fourth sanity checks
occur in png_check_IHDR (lines 21–36), which check that
the PNG height and width values are less than one million.
The fifth and final sanity check occurs at line 72, immedi-
ately before the target memory allocation site at line 87. This
final sanity check attempts to ensure that the size of the allo-
cated image does not exceed a specified value (IMAGE_MAX_W
* IMAGE_MAX_H) (which is 6000 * 6000). This final check
contains an overflow error that prevents it from recognizing
and correctly rejecting some inputs that cause overflows at the
target memory allocation site at line 87.
Symbolic Branch Condition Extraction: DIODE uses the
recorded instrumentation information to extract symbolic ex-
pressions (the branch conditions) that characterize how the
application computes the values of the branch conditions at
conditional branch instructions that are directly influenced by
the relevant input bytes. For Dillo, the extracted branch condi-
tions characterize how Dillo computes the branch conditions
for the sanity checks described above.
Blocking Checks: DIODE is capable of generating a con-
straint over the relevant input bytes that 1) cause the target
value to overflow and 2) cause the application to follow the
same path through the conditional branches to the target site as
the seed input. If this constraint were satisfiable, DIODE could
then use the solution to generate an input file that would trigger
the overflow. This constraint is not satisfiable. Dillo and libpng
contain blocking checks that prevent any input that would trig-
ger an overflow from following the same path through the
relevant branches to the target site.



The blocking checks occur in the png_memset procedure,
which initializes a block of memory whose size is a function
of the PNG width and bitdepth input fields. The png_memset
procedure is hand coded in assembly language using the SSE2
extensions. This procedure contains a loop that iterates over
the block of memory initializing the values in the block. The
number of iterations of this loop is a function of the size of
the block of memory. The conditional branch that controls
the number of iterations is therefore a relevant branch — its
condition depends on the PNG width and bitdepth fields. Any
input that follows the same path as the seed input through
the relevant conditions must therefore have PNG width and
bitdepth fields that produce the same number of iterations of
the loop as the seed inputs. This additional blocking constraint
makes it impossible to obtain an input that both 1) triggers the
overflow and 2) follows the same path through the relevant
branches as the seed input.

In our example, the PNG width field is 280. The number of
iterations is 8 and the constraint is width× bitdepth/8≤ 1154.
The target expression is (width× bitdepth/8)× height (which
is rowbytes× height). This value cannot overflow because the
maximum value of rowbytes is 1154 and the maximum value
of height is 1,000,000 (line 24). These values produce 1154×
1,000,000 = 1,154,000,000, which is less than 232.
Goal-Directed Conditional Branch Enforcement: DIODE
next starts goal-directed conditional branch enforcement. It
initializes the current constraint to the target constraint and the
current input to the initial input (recall that the initial input was
generated to satisfy only the target constraint). It then executes
Dillo on the seed input and the current input to find the first
(in the program execution order) relevant branch where the
seed and current input take different paths. In our example this
relevant branch corresponds to the sanity check at function
png_get_uint_31, line 48 — the seed input satisfies this
sanity check, while the current input fails the sanity check
(because the generated height is too large).

DIODE therefore adds the branch constraint from the
corresponding conditional to the current constraint. Given
this new current constraint, Z3 produces a solution that sets
/header/width to 1632109428L, /header/bit_depth to
4, and /header/height to 872360950L. The resulting cur-
rent input fails to generate an overflow because it fails the
sanity check at png_check_IHDR, line 25.

DIODE adds the branch constraint from the conditional
branch that implements the sanity check to the current con-
straint and obtains a new /header/width of 1081489513L
and /header/height of 732927L. The resulting input
file fails to trigger an overflow because it fails the sanity
check at png_check_IHDR, line 31. After adding the cor-
responding branch constraint, the solver comes back with
/header/width 966175L and /header/height 484094L.
The sanity check at Png_datainfo_callback, line 81,
which checks for an overly large image size, rejects the result-
ing current input.

x,y ∈ Var = PgmVar∪ InpVar

A,A1,A2 ∈ Aexp ::= n | x | -A | A1 aop A2
B,B1,B2 ∈ Bexp ::= true | false | A1 cmp A2 |

!B | B1 && B2 | B1 || B2

C,C1, · · · ,Cn ∈ Stmt ::= skip | x = A |
x = alloc(y) | x = y[A] | x[A] = y |
if B S1 S2 | while B S

S,S1,S2 ∈ Seq ::=C1; · · ·;Cn

Figure 3: Syntax

Successful Generation of Overflow-Triggering Input: This
sanity check, designed to detect overflows, is itself vulnerable
to an overflow — carefully chosen values can overflow the
checked value and cause the sanity check to incorrectly accept
an input that overflows the target value at line 87. After adding
the branch condition from line 81 to the current constraint,
the solver comes back with /header/width 689853L and
/header/height 915210L. With these values, the generated
input successfully navigates the sanity checks and the blocking
checks to trigger the overflow. The resulting out of bounds
writes cause Dillo to crash with a SIGSEGV exception.

3. Goal-Directed Conditional Branch
Enforcement Algorithm

We next present the basic DIODE goal-directed conditional
branch enforcement algorithm. We first define a core impera-
tive language and a small-step operational semantics for this
language. This semantics defines both concrete and symbolic
executions for programs written in the core language. We then
use this semantics to present the algorithm.

3.1 Core Language
Figure 3 presents the syntax of a core imperative language
with variables, arithmetic expressions, boolean expressions,
assignments, dynamic memory allocation, memory read/write,
conditional statements, while loops, and sequential composi-
tion.
Variables: We divide variables into two classes, PgmVar and
InpVar. A program variable∈ PgmVar is a conventional vari-
able and can store integer values or memory addresses as usual.
On the other hand, an input variable ∈ InpVar represents an
external input value to a program. DIODE uses input variables
to symbolically express how the program computes a target
value (such as the size of the allocated memory block) from
the input values.
Labels: All program statements have a unique label ` ∈ Label.
before(C) and after(C) denote the labels before and after
the statement C, respectively. In a sequence S =C1; · · ·;Cn,
after(Ci) = before(Ci+1). We define before(C1; · · ·;Cn) and
after(C1; · · ·;Cn) as follows:

before(C1; · · ·;Cn) = before(C1)
after(C1; · · ·;Cn) = after(Cn)



ρ ` n⇒ 〈n,n〉
x ∈ PgmVar

ρ ` x⇒ ρ(x)

INPVAR
x ∈ InpVar

ρ ` x⇒ 〈π1(ρ(x)), x〉
ρ ` A⇒ 〈n,n〉

ρ ` -A⇒ 〈−n,−n〉
ρ ` A⇒ 〈n,A′〉

ρ ` -A⇒ 〈−n, -A′〉
ρ ` A1⇒ 〈n1,n1〉 ρ ` A2⇒ 〈n2,n2〉

ρ ` A1 + A2⇒ 〈n1 +n2,n1 +n2〉

ρ ` A1⇒ 〈n1,A′1〉 ρ ` A2⇒ 〈n2,n2〉
ρ ` A1 + A2⇒ 〈n1 +n2, A′1 + n2〉

ρ ` A1⇒ 〈n1,n1〉 ρ ` A2⇒ 〈n2,A′2〉
ρ ` A1 + A2⇒ 〈n1 +n2, n1 + A′2〉

ρ ` A1⇒ 〈n1,A′1〉 ρ ` A2⇒ 〈n2,A′2〉
ρ ` A1 + A2⇒ 〈n1 +n2, A′1 + A′2〉

Figure 4: Semantics of Arithmetic Expressions

` and `′ denote before(C) and after(C) of statement C in question

〈`,ρ,m,φ〉=J skip K⇒Stmt 〈`′,ρ,m,φ〉
x ∈ PgmVar ρ ` A⇒ 〈v,w〉

〈`,ρ,m,φ〉=J x = A K⇒Stmt 〈`′,ρ[x 7→ 〈v,w〉],m,φ〉

x ∈ PgmVar ρ ` y⇒ 〈n,_〉 n > 0 a /∈ dom(m)

〈`,ρ,m,φ〉=J x = alloc(y) K⇒Stmt 〈`′,ρ[x 7→ 〈a,a〉],m[(a,0) 7→ 〈0,0〉, · · · ,(a,n−1) 7→ 〈0,0〉],φ〉
x ∈ PgmVar ρ ` y⇒ 〈a,_〉 ρ ` A⇒ 〈n,_〉

〈`,ρ,m,φ〉=J x = y[A] K⇒Stmt 〈`′,ρ[x 7→ m(a,n)],m,φ〉

ρ ` y⇒ 〈v,w〉 ρ ` x⇒ 〈a,_〉 ρ ` A⇒ 〈n,_〉
〈`,ρ,m,φ〉=J x[A] = y K⇒Stmt 〈`′,ρ,m[(a,n) 7→ 〈v,w〉],φ〉

ρ ` B⇒ 〈true, true〉
〈`,ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈before(S1),ρ,m,φ〉

ρ ` B⇒ 〈true,B′〉
〈`,ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈before(S1),ρ,m,φ → 〈`,B′〉〉

〈`1,ρ,m,φ〉=J S1 K⇒Seq 〈`′1,ρ ′,m′,φ ′〉
〈`1,ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈`′1,ρ ′,m′,φ ′〉

〈after(S1),ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈`′,ρ,m,φ〉

ρ ` B⇒ 〈false, false〉
〈`,ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈before(S2),ρ,m,φ〉

ρ ` B⇒ 〈false,B′〉
〈`,ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈before(S2),ρ,m,φ → 〈`,!B′〉〉

〈`2,ρ,m,φ〉=J S2 K⇒Seq 〈`′2,ρ ′,m′,φ ′〉
〈`2,ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈`′2,ρ ′,m′,φ ′〉

〈after(S2),ρ,m,φ〉=J if B S1 S2 K⇒Stmt 〈`′,ρ,m,φ〉
ρ ` B⇒ 〈true,_〉

〈`,ρ,m,φ〉=J while B S K⇒Stmt 〈before(S),ρ,m,φ〉

〈`1,ρ,m,φ〉=J S K⇒Seq 〈`′1,ρ ′,m′,φ ′〉
〈`1,ρ,m,φ〉=J while B S K⇒Stmt 〈`′1,ρ ′,m′,φ ′〉

〈after(S),ρ,m,φ〉=J while B S K⇒Stmt 〈`,ρ,m,φ〉
ρ ` B⇒ 〈false,_〉

〈`,ρ,m,φ〉=J while B S K⇒Stmt 〈`′,ρ,m,φ〉

Figure 5: Small-Step Operational Semantics of Statements

3.2 Operational Semantics
The language has three different kinds of values

n ∈ Int
b,b1,b2 ∈ Bool = {true, false}

a ∈ Addr

where Int is a set of machine integers of finite bit-width, Bool
is the standard set of boolean values, and Addr is an address
space with an unbounded number of memory addresses.

An environment ρ ∈Env is a partial mapping from variables
to pairs of values and symbolic values. A value v ∈ Val is
either an integer or an memory address. A symbolic value w ∈
SymVal can be a symbolic arithmetic expression, integer, or
memory address. We use symbolic values to characterize how
values were computed as a function of input variables.

ρ ∈ Env = Var→ Val×SymVal
v,v1,v2 ∈ Val = Int∪Addr

w,w1,w2 ∈ SymVal = Int∪Addr∪Aexp

Similar to an environment, a memory m ∈Mem receives a
base address and an offset to the base address as its arguments
and returns a pair of a value and a symbolic value.

m,m1,m2 ∈Mem = Addr→ Offset→ Val×SymVal

` is a label in Ci 〈`,ρ,m,φ〉=J Ci K⇒Stmt 〈`′,ρ ′,m′,φ ′〉
〈`,ρ,m,φ〉=J C1; · · ·;Cn K⇒Seq 〈`′,ρ ′,m′,φ ′〉

Figure 6: Small-Step Operational Semantics of Sequences
A branch condition φ ∈ BranchCond is a sequence. Each

element 〈`,B〉 in this sequence records the symbolic branch
condition that determines the path taken at the conditional
branch at label `. The elements appear in φ in the program
execution order.

φ ∈ BranchCond := ε | 〈`,B〉 → φ

A program state σ = 〈`,ρ,m,φ〉 is composed of the current
program point (represented by a label `), an environment ρ , a
memory m, and a branch condition φ . At a state 〈`,ρ,m,φ〉,
the program is about to execute a statement C labelled ` (i.e.
before(C) = `) in the environment ρ and memory m at the
program point ` reached by taking the path recorded by the
conditional branches in the sequence φ .

σ ∈ State = Label×Env×Mem×BranchCond

Expressions: Figure 4 presents the semantics of arithmetic
expressions. Each expression evaluates to a pair 〈v,w〉, where



v ∈ Val is a concrete value and w ∈ SymVal is a symbolic
expression. The INPVAR rule, for example, defines that the
evaluation of an input variable x ∈ InpVar produces a pair
〈π1(ρ(x)),x〉, where π1(ρ(x)) is the actual input value and
x is the variable that symbolically represents that value. The
semantics of boolean expressions is defined in a similar way.
Statement: Figures 5 and 6 present the small-step operational
semantics of DIODE’s core language. Note that the meaning
of ` and `′ is slightly different in Figures 5 and 6. In Figure 5, `
is the label for the program point before the relevant statement
C; `′ is the label for the program point after C. In Figure 6, `
and `′ are the labels of some program points within (including
before for ` and after for `′) some statement Ci in C1; · · · ;Cn.

3.3 Algorithm
Figure 7 presents the DIODE goal-directed conditional branch
enforcement algorithm. Given a program S, an initial program
state σ , and a target site `, the algorithm first extracts the
symbolic target expression B and the observed path φ (from
the seed input) for that site (line 1). target(〈S,σ〉, `) is defined
as follows:

target(〈S,σ〉, `) = {〈π2(ρ(y)),φ〉 | 〈σ ,〈`,ρ,m,φ〉〉 ∈ τ∗(S)}
where `= before(x = alloc(y))

The function target(〈S,σ〉, `) is defined in terms of the re-
flexive transitive closure τ∗(S) of the transition relation of
the program S, which contains all possible transitions from a
starting state to all reachable states.

The algorithm next uses the overflow(B) function to extract
the target constraint β (line 2). The overflow(B) function
returns a target constraint β such that any input that satisfies
the target constraint β will trigger an overflow during the
computation of the target expression B.

The algorithm next compresses the path φ to coalesce
multiple occurrences of conditional branch constraints of
a conditional statement into a single constraint (line 7 and
Figure 8). This single constraint is the conjuction of all of
the observed branch constraints. The algorithm then extracts
the relevant branch constraints (line 8) and performs the goal-
directed conditional branch enforcement algorithm (lines 10-
16).

The relevant(φ ,β ) function takes a branch condition φ and
a target constraint β as its arguments, and removes conditions
that are not relevant to the target constraint β from the branch
condition φ . A condition 〈`,B〉 in a branch condition is relevant
to a target constraint β if the condition B and the target
constraint β share the same input variable.

4. System Design and Implementation
We next discuss how DIODE deals with the many complica-
tions that it must overcome to effectively operate on stripped
x86 binaries. DIODE consists of approximately 9,000 lines
of C (most of this code implements the taint and symbolic
expression tracking) and 6,000 lines of Python (the target and

Input :a program S, an initial state σ , a target label `
Output :an input I that triggers an integer overflow at label `

1 for 〈B,φ〉 in target(〈S,σ〉, `) do
2 β ←− overflow(B)

3 if the solver generates an input I that satisfies β then
4 if the input I triggers an overflow at label ` then
5 return the input I

6 else continue

7 φ ←− compress(φ)
8 φ ←− relevant(φ ,β )
9 φ ′←− true

10 while true do
11 if the previous input I satisfies φ then break

12 φ ′←−
φ ′∧ (the first condition in φ that the previous input I
does not satisfy)

13 if the solver generates an input I that satisfies φ ′∧β

then
14 if the input I triggers an overflow at label ` then
15 return the input I

16 else break

17 return not found

Figure 7: Goal-Directed Conditional Branch Enforcement

Parameters :φ ∈ BranchCond
Returns :φ ’s compressed form ∈ BranchCond

1 Function compress(φ) =
2 begin
3 if φ is ε then
4 return ε

5 else if φ is 〈`,B〉 → φ then
6 B←− B∧ (

∧
〈`,B′〉 in φ B′)

7 φ ←− filter out all 〈`,B′〉 from φ

8 return 〈`,B〉 → compress(φ)

Figure 8: Branch Condition Compression

branch constraint generation algorithms, code that interfaces
with Z3, code that manages the database of relevant experi-
mental results, and a distributed work queue system). We first
describe our techniques for target site identification. Second,
we introduce the dynamic instrumentation used for target and
branch constraint extraction. Third, we discuss how DIODE
generates and solves target constraints. Fourth, we discuss how
DIODE generates new inputs. Fifth, we discuss the implemen-
tation of our goal-directed conditional branch enforcement
algorithm. Finally, we discuss how DIODE detects any errors
caused by the overflow.

4.1 Target Site Identification
To extract the set of symbolic target expressions that character-
izes how the application computes the target value at critical



program sites, DIODE uses a fine-grained dynamic taint analy-
sis built on top of the Valgrind [26] binary analysis framework.
Our analysis takes as input a specified taint source, such as a
filename or a network connection, and marks all data read from
the taint source as tainted. Each input byte is assigned a unique
label and is tracked by the execution monitor as it propagates
through the program until it reaches a potential target site (e.g.,
malloc). To track the data-flow dependencies from source to
sink, our analysis instruments arithmetic instructions (e.g.,
ADD, SUB), data movement instructions (e.g., MOV, PUSH)
and logic instructions (e.g., AND, XOR). Using the dynamic
taint analysis on the application and a seed input, DIODE
generates the set of target sites and relevant input bytes.

4.2 Target and Branch Constraint Extraction
Next, DIODE reruns the program with additional instrumen-
tation that enables DIODE to reconstruct the full symbolic
target expression. Conceptually, DIODE generates a symbolic
record of all calculations that the application performs (Sec-
tion 3). Obviously, attempting to record all calculations would
produce an unmanageable volume of information. DIODE re-
duces the volume of recorded information with the following
optimizations:

• Relevant Input Bytes: DIODE only records calculations
that involve the relevant input bytes. Specifically, DIODE
maintains an expression tree of relevant calculations that
only tracks calculations that operate on tainted data (i.e.,
relevant input bytes). This optimization drastically reduces
the amount of recorded information.

• Simplify Expressions: DIODE further reduces the amount
of recorded information by simplifying recorded expres-
sions at runtime. Specifically, DIODE identifies and simpli-
fies resize, move and arithmetic operations. For example,
DIODE can convert the following sequence of VEX IR
instructions:

t15 = Add32(t10, 0x1:I32)
t16 = Add32(t15,0x1:I32)
t17 = Add32(t16,0x1:I32)

that would result in: Add32(Add32(Add32(t10, 0x1), 0x1),0x1)

into: Add32(t10, 0x3)

To convert relevant input bytes to symbolic representations
of the input format, DIODE uses the Hachoir [3] tool to convert
byte ranges into input fields (e.g., in the PNG format, bytes
0-3 represent /header/height).

DIODE also uses the recorded information to extract
symbolic expressions that characterize how the application
computes the values of conditional branch instructions that
relevant input bytes directly influence.

4.3 Target Constraint Solution
DIODE uses the Z3 SMT solver [13] to obtain new input
values that satisfy the target constraint. Note that the generated
target constraint is designed to capture any overflow in the

evaluation of the expression, including in the evaluation of
subexpressions. For example, if bbp8 ∈ {8,16,32}, there are
no values that cause the following expression to overflow:

((width16×height16)×4)/bbp8)> 232

But there are values that cause the following subexpression to
overflow:

((width16×height16)×4))> 232

4.4 Test Input Generation
DIODE uses a combination of Hachoir [3] and Peach [4]
to generate input files with the values obtained from the
SMT solver for the target expression. Together, these tools
reconstruct the input file such that it satisfies any checksum
calculations or any required field orderings. If DIODE needs
to operate on an unknown input format, it also supports a raw-
byte option, where modifications are made directly on the input
bytes. To deal with any required checksum calculations in raw-
byte mode, DIODE can use standard checksum reconstruction
techniques [40].

4.5 Goal-Directed Branch Enforcement
If a test input that is generated from a target constraint solu-
tion fails to trigger an integer overflow error, DIODE turns
on instrumentation that records the path taken at all condi-
tional branches that the seed input executes. DIODE uses this
instrumentation to find the first conditional branch at which
the generated input takes a different path from the seed input.
DIODE uses this information to drive the goal-directed branch
enforcement algorithm described above (Section 3).

4.6 Error Detection
We use Valgrind’s memcheck to detect errors (invalid reads and
writes; uninitialized reads and writes) that occur as a result of
the overflow. Our automated system therefore does not directly
detect the overflow; it only detects the overflow indirectly
through its effect on the computation (for our benchmark
applications, we manually verify that the generated input
actually produces an overflow and generates the reported errors
as a result of the overflow). Our automated system first filters
any errors that occur during t he execution on the seed input.

5. Evaluation
We evaluate DIODE on five applications: Dillo 2.1, VLC 08.6h,
SwfPlay 0.5.5, CWebP 0.3.1, and ImageMagick 6.5.2. For
each application we obtain a seed input, then use DIODE to
automatically generate input files that trigger overflows in the
applications. We perform all tests on a quad Intel i7 2.2 GHz
machine with 8 GB RAM.



5.1 Benchmark Selection
The benchmark applications were selected as follows. First,
we select applications that process input formats supported
by Hachoir [3] and Peach [4]. Second, we filter applications
that cannot be successfully processed by DIODE’s dynamic
instrumentation engine. Third, we select applications that
contain at least one known integer overflow vulnerability,

Sanity
Total DIODE Target Checks
Target Exposes Constraint Prevent

Application Sites Overflow Unsatisfiable Overflow
Dillo 2.1 12 3 1 8

VLC 08.6h 4 4 0 0
SwfPlay 0.5.5 8 3 5 0
CWEBP 0.3.1 7 1 6 0

ImageMagick 6.5.2 9 3 5 1

Table 1: Target Site Classification

5.2 Target Site Classification
Table 1 classifies the target sites in our benchmark applications.
There is one row for each application. The first column
(Application) identifies the application. The second column
(Total Target Sites) presents total number of exercised memory
allocation sites from the executions on the seed inputs. These
sites are the target sites. The third column (DIODE Exposes
Overflow) presents the number of sites for which DIODE was
able to generate an input that triggered an overflow at the site.
The fourth column (Target Constraint Unsatisfiable) presents
the number of sites for which the target constraint, by itself, is
unsatisfiable. We verified, via a manual inspection, that there
is no input that will cause an overflow at any of these sites. The
fifth column (Sanity Checks Prevent Overflow) presents the
number of remaining sites. For all of these remaining sites, we
manually verified that the application contains sanity checks
that ensure that there is no input that triggers an overflow at
that site.

Note that, for each target site, either 1) DIODE finds an
input that triggers an overflow at that site, or 2) no such in-
put exists. Our analysis indicates that, except for VLC 0.8.6h,
whenever DIODE is able to generate an input that triggers an
overflow at a given site, the application is missing overflow
sanity checks for that site (of course, the applications contain
other relevant sanity checks that DIODE must successfully
navigate to trigger the overflow). VLC 0.8.6h contains inef-
fective overflow sanity checks that are designed to protect the
application against overflow, but do not, in fact, do so. DIODE
is able to generate inputs that successfully evade these checks
to trigger overflows at the target sites.

5.3 Overflow Characteristics
Table 2 summarizes the results for each overflow. The table
contains one line for each overflow that DIODE discovers. The
first column (Application) identifies the application that con-
tains the overflow. The second column (Target) presents the
source code file and line that contains the memory allocation

statement for which the overflow occurs. The third column
(CVE Number) presents either the CVE number of the over-
flow (if the overflow was known) or "New" if the overflow was
new. We note that all but three of the 14 overflows were new.
Four of the 11 new overflows persist in the latest versions of
the benchmark applications as of the submission date of this
paper. Specifically, the latest versions of CWebP and Display,
CWebP 0.4.1 and Display 6.8.9-8, are still vulnerable to error
triggering inputs discovered by DIODE. We have notified the
developers and are awaiting confirmation.

The fourth column (Error Type) characterizes the effect of
the overflow on the application for the first input (that DIODE
discovers) that triggers the overflow. In most cases the overflow
causes the program to generate a SIGSEGV exception and
crash, either from an invalid read or from an invalid write as
presented in the table. The remaining two overflows cause the
application to perform invalid reads and/or writes that do not
crash the application. We detect these invalid reads and writes
using the Valgrind memcheck tool [26], which monitors the
reads and writes and detects invalid reads and writes. All of the
invalid reads or writes occur because the overflow makes the
memory block allocated at the target allocation site too small
to contain the data.

The fifth column (Analysis and Discovery Time) presents
the initial analysis time required for each application (per-
formed once) and the subsequent time to generate an error
input for each bug. Each entry in this column is of the form (A)
B, where A is the analysis time and B is the time required to
generate the error input.

The sixth column (Enforced Branches) presents the number
of relevant conditional branches that DIODE enforced before
generating an input that triggered the overflow. Each entry
in this column is of the form X/Y, where X is the number of
enforced conditional branches and Y is the total number of
relevant conditional branches on the path that the seed input
takes to the target memory allocation site. We note that the
number of enforced conditional branches is small, especially
relative to the total number of relevant conditional branches —
to discover the overflow, DIODE enforces only between two
to five out of the 35 to 5779 total relevant conditional branches.
Our manual inspection of the code indicates that all of the
enforced branches are sanity checks, but that (apparently) only
one of these checks is designed (obviously incorrectly) to
detect an overflow (Section 2).

5.4 Blocking Checks
Recall that DIODE can generate a constraint that requires 1)
the computation of the target value to overflow and 2) the
input to follow the same path through the relevant conditional
branches as the seed input. If this constraint is satisfiable,
the solution typically immediately provides an input that will
trigger an overflow at the site. Because of blocking checks,
this constraint is unsatisfiable for all but two of the sites,
specifically SwfPlay 0.5.5 at jpeg.c@192 and CWebP 0.3.1 at
jpegdec.c@248.



Analysis and Enforced Target Target + Enforced
Application Target CVE Number Error Type Discovery Time Branches Success Rate Success Rate

Dillo 2.1 png.c@203 CVE-2009-2294 SIGSEGV/InvalidRead (42m) 8m 4/35 0/200 190/200
Dillo 2.1 fltkimagebuf.cc@39 New SIGSEGV/InvalidRead (42m) 7m 5/69 0/200 189/200
Dillo 2.1 Image.cxx@741 New SIGSEGV/InvalidRead (42m) 7m 4/5779 0/200 190/200

VLC 0.8.6h messages.c@355 New SIGSEGV/InvalidRead (6m) 1m 2/117 32/200 108/200
VLC 0.8.6h wav.c@147 CVE-2008-2430 InvalidRead/Write (6m) 1m 0/62 2/2 N/A
VLC 0.8.6h dec.c@277 New SIGSEGV/InvalidRead (6m) 8m 5/291 57/200 97/200
VLC 0.8.6h block.c@54 New InvalidRead (6m) 4m 0/151 200/200 N/A

SwfPlay 0.5.5 jpeg_rgb_decoder.c@253 New SIGSEGV/InvalidWrite (7m) 13m 0/1736 200/200 N/A
SwfPlay 0.5.5 jpeg_rgb_decoder.c@257 New SIGSEGV/InvalidWrite (7m) 13m 0/1736 200/200 N/A
SwfPlay 0.5.5 jpeg.c@192 New SIGABRT/InvalidWrite (7m) 1m 0/1012 200/200 N/A
CWebP 0.3.1 jpegdec.c@248 New SIGSEGV/InvalidWrite (11m) 2s 0/651 155/200 N/A

ImageMagick 6.5.2 xwindow.c@5619 CVE-2009-1882 SIGSEGV/InvalidWrite (6m) 1m 0/2521 200/200 N/A
ImageMagick 6.5.2 cache.c@803 New SIGSEGV/InvalidWrite (6m) 1m 0/306 199/200 N/A
ImageMagick 6.5.2 display.c@4393 New SIGSEGV/InvalidWrite (6m) 2m 0/154 200/200 N/A

Table 2: Evaluation Summary

5.5 Inputs That Satisfy Target Constraint Alone
The seventh column (Target Success Rate) presents the results
from the experiment in which DIODE generated 200 inputs
that satisfied the target constraint by itself (with none of the
conditional branch constraints added to the target constraint
passed to the solver). Note that all of these inputs will trigger
an overflow at the target memory allocation site if they follow
a path that evaluates the target expression at that site. Note
also that every discovered input that triggers the overflow is
in the set of inputs that satisfy the target constraint alone and
therefore could potentially be generated as one of the sampled
200 inputs.

Each entry in the column is of the form X/200, where X
is the number of generated inputs that actually trigger the
overflow. We note that there is a bimodal distribution — in
general, either all or the vast majority of the 200 generated
inputs trigger the overflow or none or few of the 200 gener-
ated inputs trigger the overflow. This bimodal distribution is
correlated with the presence or absence of sanity checks on
relevant input values — without sanity checks, all or the vast
majority of the generated inputs trigger the overflow. If the
application contains sanity checks, the generated inputs are
unlikely to pass the sanity checks to trigger the overflow. These
data indicate that, if the application contains sanity checks and
the input generation strategy does not take these checks into
account, the input generation strategy is unlikely to find inputs
that trigger an overflow (even when such inputs exist).

For CVE-2008-2430, the target expression is of the form
x+2, where x is an input field. The target constraint for this
expression has only two solutions (because there are only two
values of x that cause the target expression to overflow).

5.6 Target and Enforced Branch Success Rate
The eighth column (Target + Enforced Success Rate) presents
experimental results for those overflows that DIODE discov-
ered only after enforcing some of the conditional branches.
DIODE generated 200 inputs that satisfied the corresponding
constraint (i.e., the target constraint plus the constraints that
enforced the discovered first flipped branches in Algorithm 7).

Each entry in the column is of the form X/200, where X is the
number of generated inputs that trigger the overflow (note that
we do not run this experiment if the majority of the inputs that
satisfy the target constraint alone also trigger the overflow).

We note that, for three of the five overflows, the vast major-
ity of the generated inputs trigger the overflow. For the remain-
ing two overflows, approximately half of the generated inputs
trigger the overflow. We attribute this success to DIODE’s
ability to produce inputs that satisfy the sanity checks while
preserving their flexibility to satisfy the blocking checks and
traverse alternate paths through the computation to reach the
target memory allocation site and trigger the overflow.

The success of DIODE in generating these overflows also
illustrates the difficulty of writing sanity checks that detect
inputs that cause overflows — even though Dillo 2.1 and VLC
0.8.6h contain sanity checks, these checks do not detect all
inputs that trigger overflows.

6. Related Work
Random and Directed Fuzzing: Random fuzzing has been
shown to be surprisingly effective in uncovering errors [24, 38]
and is heavily used by security researchers [4, 6, 30]. But
because most randomly generated inputs fail input sanity
checks, random fuzzing has been relatively ineffective at
generating inputs that trigger errors (such as integer overflows)
deep inside applications. Their ability to generate such inputs
can be especially limited for programs that process deeply
structured formats such as videos.

Motivated by the need to expose errors deep inside ap-
plications, researchers have proposed directed fuzzing tech-
niques [15, 16, 40]. BuzzFuzz [16] and TaintScope [40] use
taint tracking to identify input bytes that influence values at
critical program sites such as memory allocation sites and
system calls. In contrast with random fuzzing techniques that
modify the entire input, these techniques then fuzz the input
bytes that influence critical program points. While successful
at reducing the size of the mutation space, our results indicates
that these directed techniques are ineffective at finding the care-
fully crafted inputs required to navigate the sanity checks and



expose integer overflow errors. Because these directed fuzzing
systems operate directly on the raw binary input bytes, the
modifications can also produce syntactically incorrect inputs
that immediately fail the sanity checks.
Symbolic Test Generation: Symbolic test generation (i.e.,
concolic testing) has been proposed as an alternative to ran-
dom and directed fuzzing [9, 10, 17–19, 25, 33, 39]. These
systems execute programs both concretely and symbolically
on a seed input until an interesting program expression is
reached (e.g., an assert, a conditional or a specific expression).
Although successful in many cases [9, 10, 18, 25], symbolic
test generation faces several challenges [8, 34]. Specifically,
once past the initial parsing stages, the resulting deeper pro-
gram paths may produce very large constraints with complex
conditions that are currently beyond the capabilities of current
state of the art constraint solvers. Our results also show that
the path taken by a seed input may contain additional blocking
checks that can prevent a constraint solver from generating
inputs that satisfy the checks and trigger an overflow.

SmartFuzz [25] is a symbolic test generation tool to dis-
cover integer overflows, non-value-preserving width conver-
sions, and potentially dangerous signed/unsigned conversions.
SmartFuzz, like other concolic systems, is limited by deep
program paths and blocking checks.

Dowser [19] is a fuzzer that combines taint tracking, pro-
gram analysis, and symbolic execution to find buffer overflows.
The key idea is to use program analysis to guide symbolic ex-
ecution (e.g.,KLEE [9]) along a path that is more likely to
discover buffer overflows than running symbolic execution
over the entire program. Like most concolic systems, Dowser
optimizes for path coverage and is thus unlikely to discover
integer overflow errors.

DIODE differs from all of these techniques in that it is
targeted — instead of exploring paths to find critical sites,
it starts with a critical site that is executed by a seed input,
then uses a variety of techniques that are designed to produce
inputs that successfully navigate sanity and blocking checks
to trigger an overflow at the critical site.
Runtime and Library Support: To alleviate the problem
of false positives, several research projects have focused on
runtime detection tools that dynamically insert runtime checks
before integer operations [7, 14, 42]. Another technique is
to use safe integer libraries such as SafeInt [5] and CERT’s
IntegerLib [32] to perform sanity checks at runtime. Using
these libraries requires developers to rewrite existing code to
use safe versions of integer operations. DIODE, in contrast,
pro-actively finds integer errors during testing (i.e., does not
rely on observing a malicious input in the wild) and imposes
no runtime overhead.

Input Rectification is another technique that can protect
applications from integer overflow errors [20, 21, 28] by
empirically learning input constraints from benign training
inputs and then monitoring inputs for violations of the learned
constraints. Instead of discarding inputs that violate the learned

constraints, input rectification modifies the input so that it
satisfies the constraints. The goal is to nullify potential errors
while still enabling the program to successfully process as
much input data as possible. Because it learns the constraints
from examples, the technique is susceptible to false positives.
In contrast, DIODE has no false positives and can proactively
discover integer overflow errors.
Static Analysis For Finding Integer Errors: Several static
analysis tools have been proposed to find integer overflow
and/or sign errors [11, 31, 41]. KINT [41], for example,
analyzes individual procedures, with the developer optionally
providing procedure specifications that characterize the value
ranges of the parameters. Despite substantial effort, KINT
reports a large number of false positives [41]. In contrast,
DIODE generates inputs that prove the existence of integer
errors without any false positives.

SIFT [22] is a system for generating input filters that nullify
integer overflow errors associated with critical program sites
such as memory allocation and block copy sites. SIFT uses a
sound static program analysis to generate filters that discard
inputs that may trigger overflow errors. SIFT requires access
to source code and is not designed to identify errors. DIODE,
in contrast, operates directly on stripped x86 binaries with no
need for source code to generate overflow-triggering inputs.

7. Conclusion
We present a system, DIODE, for discovering integer overflow
errors in real-world applications. DIODE is designed to work
with programs that first perform sanity checks on relevant
input fields, then use the input fields to compute target values
such as the sizes of allocated memory blocks. Leveraging
this pattern, DIODE generates inputs that are designed to
satisfy the relevant sanity checks, generate an overflow in
the target expression, and impose no other constraints on
the specific path that the input takes to trigger the overflow.
Our experimental results show that DIODE is effective at
generating inputs that trigger integer overflow errors, including
previously unknown errors in widely used applications.
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