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Resummed Memory Kernels in Generalized System-Bath Master Equations

Michael G. Mavros and Troy Van Voorhis∗
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 USA

Generalized master equations provide a concise formalism for studying reduced population dynamics. Usu-
ally, these master equations require a perturbative expansion of the memory kernels governing the dynamics;
in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturba-
tion series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory
kernels used in generalized master equations. In this paper we present a comparison of different resummation
techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as
a model system bath Hamiltonian, treating the diabatic coupling between the two states as a perturbation. A
novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second-
and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that
resumming the kernels through fourth order using a Padé approximant results in divergent populations in the
strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus rec-
ommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The
inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing
rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approxima-
tion (NIBA), showing a relatively quick convergence on the exact answer. The results suggest that including
higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate
resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density,
opening the way to a new class of methods for treating system-bath dynamics.

I. INTRODUCTION

Generalized master equations are useful constructs in chemi-
cal physics for solving problems that involve a few “system” de-
grees of freedom interacting with a large number of “bath” de-
grees of freedom, like when considering electron transfer in solu-
tion. When used to monitor time evolution of system populations,
these equations generally have the form

Ṗ(t)=
ˆ t

0
K(t− s)P(s)ds (1)

where P is a vector containing the populations of the various sys-
tem states and K is a matrix controlling the (non-Markovian) flow
of populations among states without explicitly referencing the bath
degrees of freedom; this time-nonlocal matrix K is often referred
to as the memory kernel. Such equations allow us to solve explic-
itly for system observables while only taking into account aspects
of the bath that directly influence the system. Formally equiva-
lent to generalized Langevin equations and path integral methods,
generalized master equations allow for a somewhat phenomeno-
logical description of the bath and are thus useful when detailed
statistical information about the bath is not known a priori.

Many different methods have been proposed that solve the
system-bath dynamics problem to varying extents; unfortunately,
none are both robust and general. Due to the existence of the
influence functional for harmonic baths [1], path-integral-based
numerical methods have been quite successful for this problem
[2, 3]. Additionally, there are also formulations of this prob-
lem that are not fully quantum-mechanical. The simplest for-
mulation is a mixed quantum-classical set-up where the system
(and perhaps a few important bath degrees of freedom) are treated
quantum-mechanically and (the rest of) the bath is treated classi-
cally. There are several detailed reviews of these methods includ-
ing their successes and shortcomings in the literature [4–6].
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In recent years, several alternative methods not based on
generalized master equations have been proposed that success-
fully solve the quantum dynamics problem for certain classes of
system-bath Hamiltonians. One method of particular merit is
the multi-configuration time-dependent Hartree approach [7–9],
which in and of itself is limited to treating only a few degrees
of freedom exactly but can be quite powerful when coupled with
other degrees of freedom semiclassically [10, 11]. Even more re-
cently, hierarchical equation of motion (HEOM) approachs to this
problem have been proposed which in principle give numerically
exact results [12, 13]. Unfortunately, these state-of-the-art numer-
ical methods are not general in that they require very specific as-
sumptions about the nature of the bath. They can also often be
extremely slow to converge, especially at low temperatures [14].

In the general case of a generalized master equation of the form
of equation 1, K(t) cannot be obtained; often, we must resort
to using perturbation theory to gain information about K(t). In
cases when the system-bath coupling is weak, one can expand the
Hamiltonian perturbatively in the system-bath coupling and utilize
the tools of Redfield theory to obtain a solution [15, 16]. In the
opposite regime, when the strength of the system-bath coupling
is much stronger than the strength of the intrasystem electronic
couplings, one can first apply a polaron transform and then ex-
pand the kernels perturbatively in the system-bath coupling. The
original polaron transform was proposed for application in solid
state physics [17, 18], but can be particularly effective for system-
bath dynamics problems in the special case of a harmonic bath
[19–23]. Recently, for particular classes of harmonic bath mod-
els, polaron transformations have been used effectively to solve
the quantum dynamics problem in an effectively nonperturbative
fashion [24, 25].

In other treatments, the memory kernel is expanded in a power
series in the electronic coupling V . A truncation of this series at
second order results in the famous non-interacting blip approxi-
mation (NIBA) [19, 26, 27], which gives a second-order approxi-
mation of the dynamics and Fermi’s Golden Rule rate constants.

Additionally, many groups have worked with this expansion out
to fourth order in certain limits. The Cao group has worked ex-
tensively with fourth order rate constants (given by k = K(ω =
0))[28, 29, 35], inspired by the analytical work of Mukamel [30]
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and Silbey [31]. Reichman, working with Silbey and Neu, derived
analytical results for dynamics in the low-temperature limit for
certain classes of baths [32–34]. Finally, a fourth-order correction
to Redfield theory that is guaranteed to obey detailed balance has
been derived [36]; however, it requires making additional assump-
tions about the system-bath coupling. Despite this work, no one
has studied detailed short-time two-state dynamics for a system-
bath Hamiltonian governed by a generalized master equation.

In this work, we examine for the first time the dynamics gen-
erated by a resummed memory kernel correct to fourth-order. We
consider in detail the spin-boson Hamiltonian [26], for which it
is possible to derive analytical expressions for K(2), K(4), and (in
principle) all higher-order coefficients. We present what we be-
lieve to be a novel derivation of K(4) for this problem that can
be easily generalized to derive both higher-order terms and non-
Condon versions of K(2), K(4), etc. with electronic coupling linear
in the bath coordinate. We then present numerical results where
we evaluate our analytical memory kernels using a model spectral
density. In our numerical results, we compare several methods
to resum K(2) and K(4) into a kernel K containing all orders of
the electronic coupling—a necessary procedure to prevent long-
time divergence of the populations. Finally, we show how we
can almost trivially force our resummed kernels to obey detailed
balance, giving the correct infinite-time equilibrium populations.
Our aim is to build towards a general, robust, systematically-
improvable system-bath approximation for molecular systems in
condensed phases.

II. THEORY

A. Generalized Master Equation Formalism

Despite its simplicity, the brute-force numerical propagation of
a density matrix under the influence of a system-bath Hamilto-
nian is not possible, as the computational cost of such a propa-
gation scales exponentially with the number of bath modes rep-
resented; hence, generalized master equation approaches become
useful. Unfortunately, the memory kernels of equation 1 are as
computationally intractable as the propagator.

To approach this problem, we can use time-dependent pertur-
bation theory. For simplicity, we shall restrict our discussion to
the special case where our system contains only two (diabatically-
coupled) states; however, all of the results in this section can be
generalized to the general problem of many interacting system
states. For any two-level system, we can suggestively write the
Hamiltonian as

Ĥ =

(
ĥ1 0
0 ĥ2

)
+λ

(
0 V̂
V̂ 0

)
≡ Ĥ0 + Ĥ1 (2)

where ĥ1 and ĥ2 represent all diagonal elements of the Hamilto-
nian related to both system and bath, V̂ represents all off-diagonal

elements of the Hamiltonian related to both system and bath, and
we have introduced an ordering parameter λ . The physical Hamil-
tonian is recovered for λ = 1.

To study the quantum dynamics generated by memory kernel
resummations, we adopt the generalized master equation for the
populations of a two-level system interacting with a general bath
first derived by Sparpaglione and Mukamel [30] using projection
operator methods [37–39]

ṗ1(t) = −
ˆ t

0
K11(t− s)p1(s)ds+

ˆ t

0
K22(t− s)p2(s)ds

ṗ2(t) =

ˆ t

0
K11(t− s)p1(s)ds−

ˆ t

0
K22(t− s)p2(s)ds (3)

where p1(t) and p2(t) are the populations of the two states as func-
tions of time, and K11 and K22 are the time-dependent memory
kernels for the forward (1→ 2) and backward (2→ 1) transitions.
We use this formalism primarily because it can be trivially gener-
alized to include many states.

We will work explicitly with populations differences. It can be
shown using the normalization condition p1(t) + p2(t) = 1 that
equation 3 can be rewritten in terms of P(t)≡ p1(t)− p2(t) as

Ṗ(t) =−
ˆ t

0
K+(t− s)P(s)ds−

ˆ t

0
K−(s)ds (4)

where K±(t)≡ K11(t)±K22(t). Note that equation 4 has the form
of a generalized Langevin equation, with K+ acting as a friction
kernel and the integral of K− acting as a random noise term.

Using this formalism allows us to expand the memory kernels
perturbatively, using λ to collect terms of similar order:

K11/22(t) = λ
2K(2)

11/22(t)+λ
4K(4)

11/22(t)+ · · · (5)

where K(2n)
11/22(t) is the 2nth-order contribution to the memory ker-

nel. Note that in the special case where V̂ is a constant, V , this
is equivalent to expanding the memory kernels in a power series
in V . For the remainder of this paper and in order to simplify our
discussion, we shall assume that V̂ is a constant.

B. The Spin-Boson Model

In order to examine the dynamics generated by these memory
kernels in detail, we restrict ourselves to specifically to the spin-
boson Hamiltonian. This form of system-bath Hamiltonian is used
widely in elementary studies of chemical dynamics because of
its moderate assumptions and overall simplicity. The spin-boson
Hamiltonian (also known as the Caldeira-Leggett model) [26] can
be written as

Ĥ = ĤS + ĤB + ĤSB

=

(
ε

2 V̂
V̂ − ε

2

)
+∑

j

 p2
j

2m j
+ 1

2 m jω
2
j x2

j 0

0
p2

j
2m j

+ 1
2 m jω

2
j x2

j

+∑
j

(
c jx j 0

0 −c jx j

)
(6)
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II THEORY B The Spin-Boson Model

where the p j and x j describe normal mode harmonic bath coor-
dinates and momenta described by mass m j and frequency ω j,
and the c j are coefficients determining the strength that each har-
monic bath mode couples to the system. The spin-boson model
thus describes a two-level system coupled to a bath of harmonic
oscillators, where the system-bath coupling is linear in the bath
coordinate.

In practice, knowing the minute details of the bath modes is ir-
relevant: by invoking system-bath models, we are implicitly only
interested in the detailed dynamics of the system, so we only need
to know about the bath insomuch as it affects system dynamics.
For a harmonic bath, population dynamics are completely charac-
terized by the bath spectral density, [27, 40, 41]

J(ω) =
π

2 ∑
j

c2
j

m jω j
δ (ω−ω j) (7)

In principle, a particular spectral density can generally be ob-
tained by Fourier transforming a corresponding bath time corre-

lation function [41]; these time correlation functions can, in turn,
be obtained from experiment or from molecular dynamics simu-
lations. In practice, an analytical form is usually assumed for the
spectral density.

C. Derivation of K(4) for the Spin-Boson Model

Because the spin-boson Hamiltonian comprises a two-level sys-
tem linearly coupled to a bath of harmonic oscillators, it should
come as no surprise that analytical expressions can be derived for
K(2)(t), K(4)(t), and all K(2n)(t). We present here the main an-
alytical result of this paper: a novel, generalizable derivation of
K(4)(t) that does not invoke Liouville space. For the spin-boson
problem, the memory kernels can be written as

K(2)
11/22(t) = 2Re

[
f±2 (t)

]
(8)

K(4)
11/22(t) =

ˆ t

0
ds1

ˆ s1

0
ds2K(2)

+ (t− s1)K
(2)
11/22(s2)−2

ˆ t

0
ds1

ˆ t−s1

0
ds2Re

[
f±4 (t− s1− s2,s1,s2)

]
+2
ˆ t

0
ds1

ˆ −t

0
ds2Re

[
f±4 (−t− s2, t− s1,s1)

]
−2
ˆ t

0
ds1

ˆ t−s1

0
ds2Re

[
f±4 (−t, t− s1− s2,s1)

]
(9)

where K(2)
+ (t) = K(2)

11 (t)+K(2)
22 (t) and the top sign is for K11 / the bottom sign is for K22. The ubiquitous functions f±2 and f±4 can be

represented analytically as

f±2 (t) =V 2 exp
[
−iεt−

(
Q′(t)± iQ′′(t)

)]
(10)

f±4 (s1,s2,s3) =V 4 exp
[
−iε(s1 + s3)−

(
S′(s1,s2,s3)± iS′′(s1,s2,s3)

)]
(11)

where

S′(s1,s2,s3) = Q′ (s1)+Q′ (s2)+Q′ (s3)−Q′ (s1 + s2)−Q′ (s2 + s3)+Q′ (s1 + s2 + s3)

S′′(s1,s2,s3) = Q′′ (s1)+Q′′ (s2)+Q′′ (s3)−Q′′ (s1 + s2)−Q′′ (s2 + s3)+Q′′ (s1 + s2 + s3) (12)

and

Q′(t) =
4
π

ˆ
∞

0

J (ω)

ω2 (1− cos(ωt))coth
(

βω

2

)
(13)

Q′′(t) =
4
π

ˆ
∞

0

J (ω)

ω2 sin(ωt) (14)

A detailed derivation of equations 8 through 13 can be found in
the Supporting Information [42].

D. Resummation Schemes

It is well-known that series generated from perturbation theory
are not always convergent, especially when truncated [43]. Re-
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summation techniques are ubiquitous in many areas of physics, in-
cluding quantum electrodynamics [44, 45], renormalization group
theory [46, 47], and quantum chemistry [48]. Resummations have
also been used in the context of system-bath models to compute
rate constants [29–31], but to our knowledge have never been ap-
plied to time-dependent rate kernels in order to study dynamics.

We will focus our attention in particular to resummations of
memory kernels for generalized master equations. Resumming at
the level of the memory kernels is preferable to resumming at the
level of the populations for many reasons, summarized concisely
in References [49] and [50]. These resummations are historically
performed in the frequency domain, defined through the Fourier
transform

K(ω) =

ˆ
∞

−∞

eiωtK(t)dt

As such, we will be focusing in particular on ways to resum
K(2)(ω) and K(4)(ω) into a K(ω) containing all orders of the elec-
tronic coupling V .

For the particular problem at hand, two resummation schemes
have been proposed [30], dubbed the “Padé resummation” and
the “Landau-Zener resummation.” The Padé resummation is a ra-
tional resummation based off of Padé approximants [51], which
have been very successful in several areas of physics related to
the present problem. Particularly relevant is the result of Cho and
Silbey, who showed [31] that the in the subspace comprised of N
perturbatively-expanded states, the Fourier transform of the mem-
ory kernel K(ω) can best be represented by an [N/N − 1]-Padé
approximant. The authors proved that this particular resumma-
tion choice obeys Schwinger’s stationary variational principle for
scattering processes [52]. The consequence of this result is that
rates obtained from these memory kernels will obey detailed bal-
ance as best as possible, a desirable feature that suggests that Padé
resummation is the optimal resummation choice for this problem.

For the case N = 1 (our present scenario), the Padé approxi-
mant, to fourth order, is

KPadé(ω) =
V 2
[
K(2)(ω)

]2

K(2)(ω)−V 2K(4)(ω)
(15)

This form of resummation has been recently employed by Wu and
Cao [29] to study kinetics (the t → ∞ limit of equation 1). Using
the ω → 0 limit of equation 15, the authors showed that the Padé
resummation gives very good agreement with numerically-exact
results for a model problem. The authors also pointed out that
part of this agreement can be attributed to the fact that the Padé
resummation recovers the Zusman result [53] in the limit of weak
system-bath and weak electronic coupling.

The Padé resummation scheme has been previously investi-
gated in the context of certain classes generalized master equa-
tions [54, 55], with the conclusion that a Padé-resummed memory
kernel leads to dynamics that converge for all times. Later work
by Shi et al [49] pointed out that the quality of the dynamics gen-
erated by a Padé-resummed memory kernel for arbitrary regimes
of Hamiltonian parameter space is still unknown. The general ap-
plicability of the Padé resummation for dynamics is one of the
central questions this work sets out to answer.

An alternative resummation scheme proposed [56] has been
dubbed the Landau-Zener resummation due to its similarity in
form to the famous Landau-Zener equation. To fourth order, the
Landau-Zener resummation is given by

KLZ(ω) =−

[
K(2)(ω)

]2

2K(4)(ω)

[
1− exp

(
2V 2K(4)(ω)

K(2)(ω)

)]
(16)

It has been shown [30] that this resummation scheme agrees with
the Padé scheme in the nonadiabatic limit, but differs from the
Padé scheme by a factor of 2 in the adiabatic limit. This flaw
prevents the Landau-Zener scheme from being applicable to study
dynamics in the adiabatic regime. Fortunately, mixed quantum-
classical and semiclassical schemes have great success when the
dynamics evolve strictly on one adiabat, so we shall focus our
attention on the nonadiabatic regime.

E. Populations at Equilibrium

For the case of a system with electronic bias, resummation is
rather arbitrary: Do we resum the forward rate kernel K11 and
the backward rate kernel K22 and then add and subtract them to
form K±? Or do we resum K± directly? Stating this another way,
we can define a resummation function that takes a second-order
kernel and a fourth-order kernel and returns a resummed kernel
(through, for instance, a Padé resummation):

K = R
[
K(2),K(4)

]
(17)

we can then imagine that we can form K±through a number of
different schemes; for instance,

K± = R
[
K(2)

11 ,K(4)
11

]
±R

[
K(2)

22 ,K(4)
22

]
(18)

or

K± = R
[
K(2)

11 ±K(2)
22 ,K(4)

11 ±K(4)
11

]
(19)

Both of these schemes give the exact perturbation series to fourth
order, but differ at higher orders. Selecting one over the other is
an arbitrary choice.

We can reduce this arbitrariness by introducing a parameter α

that interpolates smoothly between these two limits:

K± = R
[
(1−α)K(2)

11 ±αK(2)
22 ,(1−α)K(4)

11 ±αK(4)
22

]
+R
[
αK(2)

11 ± (1−α)K(2)
22 ,αK(4)

11 ± (1−α)K(4)
22

]
(20)

As long as the resummation is first-order homogeneous (as is the
case for both the Padé scheme and the Landau-Zener scheme), we
can recover equation 18 if α = 0 and equation 19 if α = 1

2 .
Adding in this additional degree of freedom allows us to en-

sure that the dynamics created by the resummed memory kernel
will obey detailed balance. It is well-known that using master
equations with second-order kernels does not guarantee that the
dynamics settle on the correct equilibrium populations in the case
of a system with electronic bias [11, 57]. Introducing α allows us
to choose from an infinitely large number of arbitrary choices the
optimal manner of resummation that gets equilibrium populations
correct. Namely, if the equilibrium populations are known (e.g.,
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III RESULTS AND DISCUSSION E Populations at Equilibrium

from a path integral Monte Carlo simulation [58, 59]), we can tune
α by enforcing the detailed balance condition

k11(α)

k22(α)
=

peq
2

peq
1

(21)

by tuning α over the interval
[
0, 1

2

]
, where k11 ≡ K11(ω = 0) and

k22 ≡ K22(ω = 0) are the forward and backward rate constants,
and peq

1 and peq
2 are the equilibrium populations.

III. RESULTS AND DISCUSSION

A. Implementation Details

For each set of spin-boson parameters studied, K(2)
11 and K(4)

11

(and, in cases where an electronic bias is present, K(2)
22 and K(4)

22 )
were calculated using a FORTRAN95 implementation of equa-
tions 8 and 9. All integrals were computed using an adaptive
Gauss-Legendre quadrature until an integral tolerance of 10−6 was
reached. The frequency integrals over the spectral density were
computed with a hard upper frequency cutoff of ω = 30, which
was found to be enough to give stable and convergent results for
the short propagation time ranges studied.

Once the kernels were computed, they were resummed accord-
ing to equation 15 (Padé resummation) and equation 16 (Landau-
Zener resummation). Then, a standard algorithm for solving
Volterra integrodifferential equations of the second kind [60] was
used to solve equation 4 for P(t)≡ p1(t)− p2(t), the difference in
population between states 1 and 2 as a function of time. Propagat-
ing population dynamics using only K(2)

11 and K(2)
22 , i.e. applying

the non-interacting blip approximation or NIBA, is also consid-
ered for comparison.

In order to benchmark our fourth-order resummations, we use
an Ohmic spectral density with a Drude-Lorentz cutoff, often re-
ferred to as a Debye spectral density

J(ω) =
ηωωc

ω2
c +ω2 (22)

where η and ωc are parameters that control the strength of the
system-bath coupling the the upper cutoff frequency of the bath,
respectively. A benefit of using this spectral density is that nu-
merical results for this problem have been presented in the past
[11, 57] using various approximate methods.

Additionally, a hierarchical equation of motion (HEOM) tech-
nique has recently been presented [12, 13] that obtains (in princi-
ple) numerically-exact results for the spin-boson problem. The
HEOM technique is a path-integral-based technique which re-
places the Vernon-Feynman influence functional with a set of
time-nonlocal auxilliary density matrices which account for non-
Markovian system-bath coherences. These density matrices are
related to one another via hierarchical equations; truncating this
hierarchy at order M is equivalent to order 2M in perturbation
theory in the system-bath coupling [61]. As such, the hierarchy
is often very quickly convergent, provided the system-bath cou-
pling is not strong. If changing the depth of the hierarchy does not
change the resulting population dynamics, the approximation is
equivalent to infinite-order perturbation theory and is thus exact.

While the HEOM has the potential to give numerically-exact
results, it has some shortcomings. The most glaring is that it can
only be used for spectral densities of the form given in equation

22. Additionally, the HEOM requires evaluation of many depths
of a hierarchy of increasing computational complexity; a deeper
hierarchy is needed for strong system-bath coupling or low tem-
perature. However, despite the breakdown of the standard HEOM
technique in the strong system-bath coupling regime and the low-
temperature regime (the latter problem which can been solved us-
ing a stochastic HEOM [14]), for many parameter regimes of the
Debye spectral density, the HEOM gives extremely accurate re-
sults. In this work, we consider results from a sufficiently deep
HEOM truncation (a hierarchy depth of 11 with a maximum Mat-
subara frequency of 6) to be numerically exact for this problem.
For all calculations, the cutoff frequency ωc was normalized to 1,
and other parameters adjusted with relation to ωc.

B. Stability with Increasing Electronic Coupling

As noted previously, NIBA fails with increasing electronic cou-
pling. The reason is quite obvious: we are doing a perturbative
expansion in the electronic coupling, so a second-order truncation
won’t capture any quantum events that involve more than two hops
between energy surfaces [57]. Figure 1 shows clearly that this is
indeed the case. For the case of small electronic coupling (panel
(a)), NIBA is good enough to reproduce the HEOM result, and, as
higher-order terms in the perturbation series are small, any fourth-
order resummation does not significantly change this result.

Going to higher and higher values of the electronic coupling
(panels (b) through (d)), NIBA breaks down: two-hop events are
no longer sufficient to accurately describe the short-time quantum
dynamics of the spin-boson model. Specifically, oscillations in
population die out much too fast. Comparing the two fourth-order
resummation schemes presented in this work with the HEOM re-
sult, however, shows that there is hope: higher-order terms re-
cover these oscillations with nearly the correct frequency and a
relatively correct damping rate.

In the case of very strong electronic coupling, it is interesting
to note that recovering qualitatively correct dynamics depends on
the nature of the fourth-order resummation. In particular, using a
Padé approximant to resum the second- and fourth-order memory
kernels gives a memory kernel which leads to populations that
oscillate wildly in time and at the incorrect frequency; by contrast,
the Landau-Zener-resummed kernel produces populations which
are well-behaved for all times.

This is a notable result, as the Padé approximant is the resum-
mation method of choice for rate constants, the zero-frequency
limit of the frequency-dependent memory kernel [29, 31]. It can
easily be shown that in the small electronic, slow bath limit, the
Padé-resummed rate is exactly the rate derived by Zusman con-
necting the nonadiabatic regime to the adiabatic regime [31, 53].

For short-time dynamics in the large electronic coupling limit,
however, the dynamics generated by a Padé resummation are qual-
itatively incorrect. The reason why this approximate resummation
is good for rate constants but bad for dynamics can be seen by
examining equation 15: When K(2)(ω) ≈ V 2K(4)(ω), the Padé-
resummed kernel diverges. It is very unlikely that this equality
will occur at ω = 0; however, as V grows, the chance that this
divergence will occur for some larger value of ω also grows. This
introduces a spurious high-frequency component to the memory
kernel in the time domain, which translates into populations that
oscillate indefinitely, rather than settling down to equilibrium at
the desired rate.
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(a) (b) 

(c) (d) 

V=0.5 V=1.0 

V=2.0 V=4.0 

Figure 1: Population dynamics of the spin-boson Hamiltonian for various strengths of the electronic coupling. The HEOM (exact) result and the NIBA
result are plotted to compare with the two different fourth-order resummations presented in this work: the Padé resummation (equation 15) and the
Landau-Zener resummation (equation 16). Values of the Hamiltonian parameters are ωc = 1.0, η = 2.0, β = 0.125, and (a) V = 0.5, (b) V = 1.0, (c)
V = 2.0, and (d) V = 4.0.

C. Temperature Dependence

The low-temperature regime has often proved problematic for
quantum dynamics studies, as many systems are “very quantum”
at extremely low temperatures. This problem was studied (and to
some extent solved for Ohmic baths) in detail by Reichman [33],
but the general case remains an open problem in quantum dynam-
ics. Even the HEOM approach to solving the spin-boson problem
breaks down as the temperature approaches 0: while still in prin-
ciple exact, computation of the exact answer requires inclusion
of many Matsubara frequencies and a very deep hierarchy, which
very quickly becomes computationally intractable. Other formu-
lations of the HEOM have been designed to fix this problem [14],
but a solution still does not exist for general spectral densities.

While our approach is robust in the strong electronic coupling
regime, the same cannot be said for the low-temperature regime.
Short-time dynamics of the spin-boson Hamiltonian to fourth or-
der in V are shown in figure 2 for moderate values of the system-
bath coupling and the electronic coupling. As can be seen in the
figure, for high temperature (small values of β ≡ 1/kBT ), even
NIBA gets qualitatively correct dynamics. This makes sense, as
the Marcus rate for electron transfer can be formulated as the high-
temperature, slow-bath, long-time limit of NIBA [30, 41], and the

Marcus rate is a quite good description of the kinetics of many
experimental systems [62].

At low temperatures, both NIBA and any fourth-order resum-
mations give qualitatively incorrect description of the dynamics:
NIBA dephases too quickly, and the fourth-order resummations
do not decay to equilibrium quickly enough. Both the lack of
low-frequency oscillations and the incorrect zero-frequency com-
ponent of the population dynamics can be traced to the presence
of a large number of low-frequency bath modes at low tempera-
tures, which have a large contribution to the memory kernels. The
fourth-order resummations studied in this work assume a “small”
V 4K(4), which may not necessarily be the case at low tempera-
tures; this observation may lend to the development of alternative
resummation schemes for fourth-order perturbation series and be-
yond.

We note in passing that for regimes where NIBA does not give
good dynamics, adding in fourth-order effects tends to overcor-
rect. This result has been observed for rates [29], and is seen very
clearly in figure 2 to also be the case for dynamics.
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(a) 

(b) 

Figure 2: Population dynamics of the spin-boson Hamiltonian for various
temperatures at moderate electronic coupling. Values of the Hamiltonian
parameters are ωc = 1.0, η = 1.0, V = 0.5 and (a) β = 0.5 (high temper-
ature); or (b) β = 10.0 (low temperature).

D. Systems with Electronic Bias

A systematic problem with NIBA arises in systems with an
electronic bias: NIBA memory kernels generate population dy-
namics that do not decay to the correct equilibrium, meaning these
memory kernels disobey detailed balance. Disobedience of de-
tailed balance implies a fictitious breaking of time-reversal sym-
metry, which may cause systemic problems with short-time dy-
namics. This issue should be addressed, at least to some extent,
by including higher-order contributions to the memory kernel; in-
deed, it has previously been shown that fourth-order corrections to
Redfield theory obey detailed balance exactly [36]. We now turn
our attention to the dynamics of a system with an electronic bias,
particularly to the question of how including fourth-order effects
in the memory kernels affects the obedience of detailed balance.

Figure 3 shows our main result for the biased case: going to
fourth order helps, but does not guarantee, the satisfaction of the
detailed balance condition (and, in some cases, conservation of
probability!). As expected, for small values of the electronic
coupling (when effects fourth-order in the coupling are small),
the equilibrium populations are more-or-less exactly correct; for
larger values, the equilibrium populations deviate more from their
correct values. For reasons discussed in cases without bias, us-
ing a Padé resummation can exacerbate this problem; as such, a

(a) 

(b) 

(c) 

Figure 3: Population dynamics of the spin-boson Hamiltonian for various
strengths of the electronic bias. All resummations were conducted using
equation 20 for the reasons discussed in section II E; the value of the
parameter α was fixed by enforcing detailed balance, equation 21. Values
of the Hamiltonian parameters are (a) ωc = 1.0, η = 0.1, β = 5.0, V =
0.2, and ε = 0.4 (α = 0.19 for both resummations; note the different scale
on the time axis); (b) ωc = 1.0, η = 0.665, β = 0.376, V = 1.33, and
ε = 1.33 (α = 0.37 for both resummations); and (c) ωc = 1.0, η = 0.5,
β = 5.0, V = 1.0, and ε =−2.0 (α = 0.16 for Padé, α = 0.5 for Landau-
Zener).

Landau-Zener resummation is again recommended for cases with
bias.

Including memory effects up to infinite order in V is one way

7
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(a) 

(b) 

Figure 4: As stated in the text, there is an arbitrary choice of which mem-
ory kernels to resum: the forward and backwards rate kernels K11 and
K22, or some linear combination of these kernels. Plotted here are three
specific choices of which memory kernels to resum in a Landau-Zener
fashion (i.e. according to equation 16): resummation according to equa-
tion 18, equation 19, and equation 20. (a) For most choices of Hamil-
tonian parameters, it is possible to satisfy the detailed balance condition
exactly using an intermediate value of α . For the set of Hamiltonian pa-
rameters in figure 3(a) (ωc = 1.0, η = 0.1, β = 5.0, V = 0.2, and ε = 0.4),
using α = 0.19 causes detailed balance to be satisfied. (b) For other sets
of Hamiltonian parameters, it is only possible to satisfy detailed balance
in a least-squares sense. For example, with ωc = 1.0, η = 1.0, β = 0.25,
V = 2.0, and ε =−4.0, using α = 0.26 will give dynamics with the “best”
long-time asymptotics allowed. Note that the time axes on the two panels
have different ranges.

to guarantee the obedience of detailed balance. Since this is not
computationally feasible, we present an alternative approach that
guarantees that any kernel resummed to fourth order (or higher)
will generate dynamics that decay to the correct equilibrium pop-
ulations.

Following the discussion in section II E, we have tried resum-
mations of the form of equation 20, enforcing the detailed balance
relation in equation 21 to optimize a parameter α . This scheme
exploits a choice we have when deciding how to perform a re-
summation in order to guarantee the correct equilibrium. We will
note that in general, it is also possible to know a priori the correct
equilibrium populations, either by knowing the long-time limit of
a numerically exact solution (as is the case in this present work),
or, more generally, by doing path integral Monte Carlo or molecu-

lar dynamics simulations in order to explore the energy landscape
of the two states as they interact with a bath [58, 59].

Figure 4 shows the dynamics generated by a Hamiltonian in
the moderate electronic coupling, moderate system-bath coupling,
moderate temperature regime with strong electronic bias. In each
panel, four dynamics runs are plotted: the HEOM run, and runs
generated by resumming the memory kernels in a Landau-Zener
fashion according to equations 18, 19, and 20. For most sets of
Hamiltonian parameters, like those in figure 4(a), the detailed bal-
ance condition can be met exactly with some 0 ≤ α ≤ 1

2 . For
some sets of Hamiltonian parameters, like those in figure 4(b), the
detailed balance condition can only be satisfied in a least-squares
sense.

As can be seen in the figure, the different choices for how to
resum the forward and backward memory kernels can give very
different trajectories. The different trajectories are entirely arti-
factual: were we to know all of the K(2n) out to infinite order, we
wouldn’t need to perform an approximate resummation and the
discrepancy in how we choose to resum kernels disappears. Nev-
ertheless, if we wish to compute memory kernels to finite order,
we must make an arbitrary choice. Figure 4 shows that the best
value for this choice is the particular interpolation between equa-
tions 18 and 19 that satisfies equation 21 (either exactly or in a
least-square manner)—i.e., the particular resummation where the
long-time limit of the resummed kernels best obeys detailed bal-
ance.

It is worth noting that for some parameter regimes, one of the
two resummations in equations 18 and 19 diverges. A set of pa-
rameters where this occurs is the set of parameters used in figure
3(c): the kernel resummed according to equation 18 diverges but
the kernel resummed according to equation 19 does not. Using
equation 20 to resum and optimizing α gives a value α = 0.5.
For this value of α , equation 20 reduces exactly to equation 19.
Thus, using equation 20 and optimizing α to enforce detailed bal-
ance not only gives qualitatively better dynamics for some param-
eter regimes, but prevents divergences in other parameter regimes.
Doing the resummation in this manner is not just a bonus; it is im-
perative.

IV. CONCLUSIONS

In this manuscript, we have shown for the first time numeri-
cal results for a generalized system-bath master equation that uses
rate kernels resummed from a fourth-order perturbation series in
the electronic coupling. We have shown that for the case of a two-
level system interacting with a harmonic bath that an exponen-
tial resummation (the “Landau-Zener form”) is recommended for
computing short-time dynamics, as the previously-recommended
Padé resummation diverges for even moderate values of the elec-
tronic coupling. The current resummation techniques robustly de-
scribe the dynamics for a wide range of Hamiltonian parameters,
including cases with an electronic bias—cases which have histori-
cally troubled system-bath methods. The low-temperature regime,
a regime which has plagued system-bath models for decades, re-
mains problematic. We have lastly shown that by using a fourth-
order resummation, one can always guarantee that the dynamics
reach the correct equilibrium by exploiting a freedom inherent in
the structure of the problem.

One of our goals when beginning this work was to develop a
general, systematically improvable scheme to study system-bath
dynamics. We have noted that the scheme that we have presented
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gets close to the exact answer for a model spectral density in
most parameter regimes, but does not recover the exact result for
regimes of very strong electronic coupling or low temperature.

To address the former issue, we need to include higher orders
in the perturbation series. The simplest approach is to generalize
our derivation in section II C to arrive at an expression for K(6);
unfortunately, the computational scaling becomes limiting when
going out to such high orders of perturbation theory. Perhaps a
more promising approach is to enforce both good short-time be-
havior and good strong-coupling behavior. The Landau-Zener re-
summation scheme succeeds at the former, but disagrees with the
adiabatic (V → ∞) limit by a factor of two [30]. Correct behavior
in the adiabatic limit can be built into a more sophisticated resum-
mation scheme. To improve even more on behavior in the strong-
coupling (but not adiabatic) regime, we can derive expressions
for the lowest-order non-adiabatic correction to adiabatic behav-
ior and incorporate it into our resummed memory kernels.

To address the latter issue, new resummation schemes are re-
quired that correctly capture the low-temperature limit. Other re-
summation schemes, such as a generalized high-order resumma-
tion [30], the noncrossing cumulant scheme [34], and convolution
resummation with auxillary kernels [49, 63] have the potential to
capture this limit. Exploration into the numerical results of ker-
nels generated by these resummation schemes to fourth order is
ongoing.

Finally, and perhaps most excitingly, we have limited the dis-
cussion in this work to one particular form of the spectral density
J(ω)—namely, the Debye spectral density. Our method makes
no assumptions as to the form of the spectral density; as such,
we should be able to investigate system-bath dynamics using arbi-
trary spectral densities. Many procedures have been suggested
in the literature for sampling numerical spectral densities from
classical molecular dynamics trajectories and applying a post-hoc
quantum-mechanical correction to the classical trajectories to ex-
tract a semiclassical spectral density [2, 62, 64–66]. We are cur-
rently investigating the fourth-order dynamics for the case of a
general spectral density, with the hope that approximate dynamics
for a large number of chemically-relevant problems may become
accessible in the near future.
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Supplementary Material

A. Derivation of general expressions for K(2)
11 and K(4)

11 from time-dependent perturbation theory

Our starting point is time-dependent perturbation theory for the density matrix, ρ(t). We’re interested in deriving an expression for
K(2n)

11 and K(2n)
22 —quantities related to ṗ1 and ṗ2, the time derivatives of the populations of the two states. We shall examine K(2n)

11 and
p1 in particular, but the steps in this derivation can easily be repeated with p2 as the starting point to arrive at an expression for K(2n)

22 .
Additionally, we will specifically derive the expressions for K(2)

11 and K(4)
11 , but the result can easily be generalized to derive higher-order

rate kernels.
In the interaction representation, we can write the population in state 1 as

p1(t) = Trb
[
U(t)ρ(0)U†(t)|1〉〈1|

]
(1)

where U(t) is the time evolution operator U(t)≡ exp
[
−iĤt

]
, and the subscript “b” on the trace indicated a trace over all bath coordinates.

To 4th order,

p1(t) = 1+Trb

[
2Re

[
U (2)(t)ρ(0)

]
|1〉〈1|

]
+Trb

[
2Re

[
U (4)(t)ρ(0)

]
|1〉〈1|

+U (2)(t)ρ(0)U†(2)(t)|1〉〈1|
]
+ ...

≡ 1+V 2 p(2)1 (t)+V 4 p(4)1 (t)+ ...

where we have defined p(2n)
1 in the last line and used the operator identity Ô+ Ô† = 2Re

[
Ô
]
. Taking a time derivative and working

through some algebra, one can show that

ṗ(2)1 (t) =−2
ˆ t

0
Re
[

f+2 (s1)
]

ds1 (2)

ṗ(4)1 (t) = 2
ˆ t

0
ds1

ˆ t−s1

0
ds2[ˆ t−s1−s2

0
ds3Re

[
f+4 (s1,s2,s3)

]
+

ˆ t−s1−s2

−s1−s2

dt3Re
[

f+4 (−s1− s2− s3,s1,s2)
]]

(3)

where we have introduced two functions f+2 (s1) and f+4 (s1,s2,s3) defined as

f+2 (s1)≡V 2Trb
[
Ô(s1)ρ(0)

]
(4)

f+4 (s1,s2,s3)≡V 4Trb
[
Ô(s1)Ô†(s2)Ô(s3)ρ(0)

]
(5)

where we have defined Ô(t)≡ eiĥ1te−iĥ2t , and ĥ1 and ĥ2 are defined through equation 2 in the main text.
We can perform a similar expansion on equation 3 in the main text (using p(0)1 = 1− p(0)2 = 1) to show that

ṗ(2)1 (t) = −
ˆ t

0
K(2)

11 (t− s)ds (6)

ṗ(4)1 (t) = −
ˆ t

0

(
K(2)

11 (t− s)p(2)1 (s)

+K(4)
11 (t− s)+K(2)

22 (t− s)p(2)1 (s)
)

ds (7)

Comparing equations 2 to 6 and equations 3 to 7 (doing some algebra in the latter case) allows us to arrive at the equations for K(2)

and K(4) in terms of equations f+2 and f+4 ; all that remains is to work out the functional forms of these traces. This result is general for
any two-level system coupled to a bath, so long as the electronic coupling is constant; we have not yet specified the bath to be harmonic.



B. Derivation of the bath correlation functions f2 and f4 for the spin-boson problem using Gaussian coherent states

We now compute the traces in equations 4 and 5 for the special case of a harmonic bath. In order to make computation simple, we
shall assume that the reduced density matrix describing the system initially contains no populations in state 2 and no coherences (i.e. its
(1,1) element is unity, and all other elements are zero). We shall additionally assume that the bath is in equilibrium with a thermal heat
reservoir of inverse temperature β ≡ 1/kBT . This brings our list of assumptions up to 3:

1. The electronic coupling is constant;

2. The bath is harmonic and coupled to the system linearly to the system; and

3. The full density matrix at time t=0 can be represented as ρ(0) = e−β ĥ1 / Tr
[
e−β ĥ1

]
Of particular importance is that we have not assumed anything about the bath other than its harmonicity, which should manifest in the
form of our equations depending on a general spectral density function J(ω). In passing, we will also note that it should be possible to
repeat this derivation relaxing assumption 1, though we shall leave this to future work.

In the position representation, a Gaussian coherent state |p,q;φ〉 parameterized by average position q and average momentum p with
phase φ can be written

〈x|p,q;φ〉=
(

ω

π

)1/4
exp
[
−ω

2
(x−q)2 + ip(x−q)+ iφ

]
(8)

Note that for a harmonic oscillator, the phase φ(t) does not depend explicitly on t, only on p(t) and q(t) [1]; thus, phase space integration
over p and q will eliminate φ as well. Nevertheless, we include it in the definition of our Gaussian coherent state for clarity, as will be
made evident over the next few steps in the derivation.

Using these Gaussian coherent states as a basis, we can work out the traces. For brevity, we shall work out the fourth-order trace
(equation 5), as it is more related to the general case and the second-order trace has been previously computed elsewhere. The trace can
be written as

f+4 (s1,s2,s3) =
V 4

Z

ˆ
〈p,q;φ |Ô(s1)Ô†(s2)Ô(s3)e−β ĥ1 |p,q;φ〉d p0dq0

where Z ≡
´
〈p,q;φ |e−β ĥ1 |p,q;φ〉d pdq is the partition function, and the phase space integral is over all initial positions and momenta.

In order to compute this integral, we can utilize the property of Gaussian coherent states that their average position, momentum, and
phase evolve classically in time. We can also exploit the fact that ĥ1 and ĥ2 are related by symmetry: since the bath is (by assumption)
significantly larger than the system, the bath Hamiltonians contain identical spectra, and only differ by some displacement δ along one
coordinate. These two facts allow us to compute the action of the operator eiĥ1te−iĥ2t on the state |p,q;φ〉 mode-by-mode. We shall
perform this deconstruction, and then “reassemble” the complete bath in the final step. The two states of the system see a bath mode
of frequency ω as the same one-dimensional harmonic well displaced horizontally by a distance δ and vertically by a distance ε , the
energy bias between the states. The time evolution due to the (constant) energy bias ε can be factored out; the rest of the time evolution
can be evaluated analytically according to the classical equations of motion for a harmonic oscillator [2]

eiĥ1te−iĥ2t |p,q;φ〉 = eiεt |p(t),q(t);φ(t)〉
q(t) = q0−δω (cos(ωt)−1)
p(t) = p0−δω sin(ωt)

φ(t) =
δ 2ω

2
(cos(ωt)−1)sin(ωt)−δωq0 sin(ωt)

Acting the real time evolution operators to the left, and the imaginary time evolution operator to the right, we obtain

f+4 (s1,s2,s3) =
V 4

Z

ˆ
〈−p(s1)+ p(s2)− p(s3),−q(s1)+q(s2)−q(s3);−φ(s1)+φ(s2)−φ(s3)|p(−iβ ),q(−iβ );φ(−iβ )〉d p0dq0

which is just the integral of the overlap of two Gaussians over all possible initial values of position and momentum. This can be computed
analytically (inserting a resolution of the identity and using equation 8) to derive an explicit form for f4(s1,s2,s3) for a single bath mode.
We were able to verify that our expression for K(4) together with equation 7 gives the correct fourth-order population for the one mode
problem by solving the for the populations of this problem numerically-exactly through brute-force time propagation of the full density
matrix.

A spectral density can be incorporated noting that a spectral density is just a way of specifying exactly what the harmonic displacement
δ that each state “sees” at each frequency of the bath ω:

J(ω) =
π

2 ∑
j

ω
3
j δ

2
j δ (ω−ω j)

Putting all of this together, one arrives at equation 11 in the main text. A similar (simpler) derivation can be used to arrive at equation
10 in the main text, and the extension to calculate bath correlation functions involving five-time events, seven-time events, and higher is
straightforward.



C. A note on the backwards rate kernel, K22

All of the results in the previous two sections can be applied as well to compute K22. Only two things change:

1. We must compute the trace over the equilibrium configuration of state 2, which effectively means ĥ1↔ ĥ2 (and thus, by symmetry,
δ/2↔−δ/2) everywhere

2. The initial condition changes to p1(0) = 1− p2(0) = 0, changing K(2)
11 (s2)→ K(2)

22 (s2) in equation 9 in the main text.

Otherwise, the derivation proceeds virtually identically.
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