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Taxi services are a vital part of urban transportation, and a consider-
able contributor to traffic congestion and air pollution causing
substantial adverse effects on human health. Sharing taxi trips is
a possible way of reducing the negative impact of taxi services on
cities, but this comes at the expense of passenger discomfort
quantifiable in terms of a longer travel time. Due to computational
challenges, taxi sharing has traditionally been approached on
small scales, such as within airport perimeters, or with dynamical
ad hoc heuristics. However, a mathematical framework for the
systematic understanding of the tradeoff between collective
benefits of sharing and individual passenger discomfort is lacking.
Here we introduce the notion of shareability network, which
allows us to model the collective benefits of sharing as a function
of passenger inconvenience, and to efficiently compute optimal
sharing strategies on massive datasets. We apply this framework
to a dataset of millions of taxi trips taken in New York City,
showing that with increasing but still relatively low passenger
discomfort, cumulative trip length can be cut by 40% or more. This
benefit comes with reductions in service cost, emissions, and with
split fares, hinting toward a wide passenger acceptance of such
a shared service. Simulation of a realistic online system demon-
strates the feasibility of a shareable taxi service in New York City.
Shareability as a function of trip density saturates fast, suggesting
effectiveness of the taxi sharing system also in cities with much
sparser taxi fleets or when willingness to share is low.

carpooling | human mobility | urban computing | maximum matching

ehicular traffic congestion—and the air pollution that results

from it—is one of the greatest challenges facing cities all
over the world. It comes at great monetary and human cost: in
the 83 largest urban areas of the United States alone, the amount
of wasted time and fuel caused by congestion has been placed at
USS$ 60 billion (1). At the same time, the World Health Orga-
nization has estimated that over one million deaths per year
worldwide can be attributed to outdoor air pollution (2), which
is to a large part caused by vehicular traffic (3). Further adverse
effects include fatalities through road accidents and economic
losses from missed business activities. For these reasons, great
hope is placed today in the rapid deployment of digital in-
formation and communication technologies that could help
make cities “smarter” (4), and, in particular, that could help
manage vehicular traffic more efficiently. The use of real-time
information allows the monitoring of the urban mobility in-
frastructure to an unprecedented extent, and opens up new po-
tential for the exploitation of unused capacity. One major
example is the public mobility infrastructure: taking advantage of
the widespread use of smart phones and their capabilities for
running real-time applications, it is possible to design new,
smarter transportation systems based on the sharing of cars or
minivans, effectively providing services that could replace public
transportation with the on-demand qualities of individual mo-
bility or taxis (5). However, although this option has been pro-
posed in the past, municipal authorities, city residents, and other
stakeholders may be reluctant to invest in it until its benefits have
been quantified (6). This is the goal of the present paper.
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At the basis of a shared taxi service is the concept of ride sharing
or carpooling, a long-standing proposition for decreasing road
traffic, which originated during the oil crisis in the 1970s (6).
During that time, economic incentives outbalanced the psycho-
logical barriers on which successful carpooling programs depend:
giving up personalized transportation and accepting strangers in
the same vehicle. Surveys indicate that the two most important
deterrents to potential carpoolers are the extra time requirements
and the loss of privacy (7, 8). However, the lack of correlations
between socio-demographic variables and carpooling propensity
(8), the design of appropriate economic incentives (9), and recent
practical implementations of taxi-sharing systems in New York City
(http://bandwagon.io) give ample hope that many social obstacles
might be overcome in newly emerging “sharing economies” (10, 11).

Besides psychological considerations, it is fundamental to un-
derstand the logistic limitations of realistic taxi-sharing systems,
which is our focus here. From a theoretical perspective, trip
sharing is traditionally seen as an instance of “dynamic pickup
and delivery” problems (12, 13), in which a number of goods or
customers must be picked up and delivered efficiently at specific
locations within well-defined time windows. Such problems are
typically solved by means of linear programming, in which
a function of the system variables is optimized subject to a set
of equations that describe the constraints. Whereas linear
programming tasks can be solved with standard approaches of
Operations Research or with constraint programming (14), their
computational feasibility heavily depends on the number of
variables and equations, e.g., the pickup and delivery time windows
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of each customer, used to describe the problem at hand. Most
previous taxi studies have therefore focused on small-scale routing
problems, such as within airport perimeters (15, 16). Large urban
taxi systems, in contrast, involve thousands of vehicles performing
hundreds of thousands of trips per day. A first step toward practical
taxi ride-sharing systems is ref. 17, where the authors present the
design of a dynamic ride-sharing system inclusive of a taxi dis-
patching strategy and fare management. Due to computational
reasons trip sharing in ref. 17 is decided based on a heuristic ap-
proach tailored to the specific taxi dispatching strategy at hand.
Our approach, by contrast, is the development of a framework
which enables investigation in general terms the fundamental
tradeoff between the benefit and the passenger discomfort induced
by taxi-sharing systems at the city level, as an example from a wide
class of spatial sharing problems.

Here we introduce the notion of shareability network to model
trip sharing in a simple static way, and apply classical methods
from graph theory to solve the taxi trip-sharing problem in
a provably efficient way. The differences between static trip
sharing as considered herein, and dynamic sharing as considered,
e.g., inref. 17, are discussed in detail in ST Appendix. The starting
point of our analysis is a dataset composed of the records of over
150 million taxi trips originating and ending in Manhattan in
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Fig. 1.

the year 2011 by all 13,586 registered taxis. For each trip, the
record reports the vehicle ID, the Global Positioning System
(GPS) coordinates of the pickup and drop-off locations, and
corresponding times. Pickup and drop-off locations have been
associated with the closest street intersection in the road map of
Manhattan (Materials and Methods). We impose a natural net-
work structure on an otherwise unstructured, gigantic search
space of the type explored in traditional linear programming. To
this end we define two parameters: the shareability parameter £,
standing for the maximum number of trips that can be shared,
and the quality of service parameter A, which stands for the
maximum delay a customer tolerates in a shared taxi service trip,
mathematically equivalent to the notion of “time window” used
in other approaches (13, 17). To ease the analysis, we use the A
formalism; however, when presented in a real implementation to
passengers, it might be psychologically more effective to use the
neutral wording “time window” rather than explicitly mentioning
the maybe more negatively connoted word “delay.” The choice
of defining the quality of service parameter as an absolute time,
instead of as a percentage increase of the travel time, is in line
with similar realizations in the literature (17), and is motivated
by the fact that absolute delay information is likely more
valuable than percent estimation of travel time increase

Shareability networks translate spatiotemporal sharing problems into a graph-theoretic framework that provides efficient solutions. (A) Example of

seven trips, Ty,..., T7, requested and to be shared in Manhattan, New York City. (B) Construction of shareability network for k = 2. Trips that could potentially
be shared are connected, given the necessary time constraints to hold which we assume here to be the case. Trips 1 and 4 cannot be shared because the total
length of the best shared route would be longer than the sum of the single routes. Likewise, trip 7 is an isolated node because it cannot possibly be shared
with other trips. (C) Maximum matching of the shareability network gives the maximum number of trip pairs, i.e., the maximum number of shared trips.
(D) Implementation (routing) of the maximum matching solution. (E) Alternatively, maximum weighted matching of the shareability network gives the
solution with the minimal total travel time, which in this case leads to a different solution than unweighted maximum matching. Here only two pairs of trips
are shared, but the amount of travel time saved, given by the sum of link weights of the matching, 30 + 16, is optimal. (F) Implementation (routing) of the
weighted maximum matching solution. (G) k sharing and taxi capacity. Each of the three cases involves a number of trips T; to be shared, but ordered
differently in time t. (Top) This case corresponds to a feasible sharing according to our model with k = 2, and the trips can be accommodated in a taxi with
capacity >2. (Middle) This case corresponds to a model with k = 3 because three trips are combined, but the three trips can be combined in a taxi with capacity = 2
because two of the trips are nonoverlapping. (Bottom) This case corresponds to k = 3, but here a taxi capacity >3 is needed to accommodate the combined trips.
Here we are assuming one passenger per trip, in line with the data reported in ref. 18, according to which the average number of passengers per trip is 1.3.
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for potential customers of a shared taxi service. Further, let
T, =(01,d;,1%,13), i=1...k be k trips where o; denotes the origin
of the trip, d; the destination, and t;’,t? the starting and ending
times, respectively. We say that multiple trips 7; are shareable if
there exists a route connecting all of the o; and d; in any order
where each o; precedes the corresponding d;, except for config-
urations where single trips are concatenated and not overlapped
like 01 — dy — 0, = d>, such that each customer is picked up and
dropped off at the respective origin and destination locations
with delay at most A, with the delay computed as the time dif-
ference to the respective single, individual trip. Imposing
a bound of k on shareability implies that the k trips can be
combined using a taxi of corresponding capacity (Fig. 1G). De-
ciding whether two or more trips can be shared necessitates
knowledge of the travel time between arbitrary intersections in
Manhattan, which we estimated using an ad hoc heuristic (S
Appendix, Fig. S2 and Table S1).

For the case k = 2, the shareability network associated with
aset 7 of trips is obtained by assigning a node T for each trip in
7, and by placing a link between two nodes 7; and T; if the two
trips can be shared for the given value of A (Fig. 1 A and B). The
value of A has a profound impact on topological properties of
the resulting shareability network. Increasing A capitalizes on
well-known effects of time-aggregated networks such as densi-
fication (19, 20), capturing the intuitive notion that the more
patient the customers, the more opportunities for trip sharing
arise (Fig. 2 A and B). For values of k > 2, the shareability
network has a hypergraph structure in which up to k nodes can
be connected by a link simultaneously. Because of computa-
tional reasons, the shareability parameter k has a substantial
impact on the feasibility of solving the problem. A solution is
tractable for k = 2, heuristically feasible for k = 3, whereas it
becomes computationally intractable for k > 4 (SI Appendix). This
constraint implies that taxi-sharing services, and social-sharing
applications in general, will likely be able to combine only a limited
number of trips. However, as we show below, even the minimum
possible number of trip combinations (k = 2) can provide immense
benefits to a dense enough community like the city of New York.

With the shareability network, classical algorithms for solving
maximum matching on graphs (21, 22) can be used to determine
the best trip-sharing strategy according to two optimization criteria:
() maximizing the number of shared trips, or (i7) minimizing the
cumulative time needed to accommodate all trips. To find the best
solution according to (i) or (i), it is sufficient to compute a maxi-
mum matching or a weighted maximum matching on the shareability
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Fig. 2. Shareability networks densify with longer time aggregation,

increasing sharing opportunities. This exemplary subset of the share-
ability network corresponds to 100 consecutive trips for values of (A) A =
30 sand (B) A = 60 s. Open links point to trips outside the considered set
of trips. Isolated nodes are represented as self-loops. Node positions are
not preserved across the networks. A similar, although visually not in-
sightful, densification effect is observed in shareability networks ob-
tained when k = 3.
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network, respectively (Fig. 1 C and E, Materials and Methods). Be-
cause a shared trip can be served by a single taxi instead of two, the
number of shared trips can be used as a proxy for the reduction in
number of circulating taxis. For instance, an 80% rate of shared trips
translates into a 40% reduction of the taxi fleet. Other important
objectives such as total system cost and emissions are reasonably
approximated by criterion (ii).

Results

Using a maximum value of A = 10 min and all trips performed in
New York City in the year 2011, the resulting shareability net-
work has more than 150 million nodes and over 100 billion links.
We first consider trip-sharing opportunities under a model in
which the entire shareability network is known beforehand, and
maximum matchings are computed on the entire network. This
omniscient Oracle approach models an artificial scenario in
which trip-sharing decisions can be taken considering not only
the current taxi requests, but also all future ones, serving as
a theoretical upper bound for sharing opportunities. In practice,
the Oracle model is useful to assess the benefits of social-sharing
systems where bookings are placed well ahead of time (Fig. 34).
Because of this foreknowledge, even with the low and reasonable
value of A = 2 min, the average percentage of shareable trips is
close to 100% (Fig. 3B).

In practical systems however, the Oracle approach is of limited
use, as only trip requests issued in a relatively short time window
are known at decision time, corresponding to a small time-slice
of the shareability network. In the following, we therefore focus
on trip-sharing opportunities in a realistic model in which the
trip-sharing decision for a trip 7 considers only trips that start
within a short interval around its starting time 7. More formally,
we retain in the shareability network only links connecting trips
T; and T; such that ‘tlo —tj’| <4, where § is a time window pa-
rameter. This Online model is representative of a scenario in
which a customer, using an “e-hailing” application, issues a taxi
request reporting pickup and drop-off locations, and after the
small time window & receives feedback from the taxi manage-
ment system on whether a shared ride is available. This param-
eter is fundamental in the Online model: the larger §, the more
trip-sharing opportunities can be exploited, for the same reasons
of network time aggregation as with A (SI Appendix, Fig. S3).
However, 6 should be kept reasonably small to be acceptable by
a potential customer, and to allow real-time computation of the
shared trip matching (SI Appendix). Therefore, in what follows,
we set 6 = 1 min.

As expected, reducing the time horizon § from practically
infinite in the Oracle model to 1 min in the Online model con-
siderably reduces trip-sharing opportunities for low values of A.
For instance, when A = 1 min, the Oracle model allows sharing of
94.5% of the trips, but the Online model only less than 30%.
However, the situation is much less penalizing for the Online model
when the delay parameter is increased within reasonable range.
When A =5 min, the Online model can exploit virtually all avail-
able trip-sharing opportunities (Fig. 3B). Concerning saved travel
time, results are similarly promising (Fig. 3D). When A = 5 min, we
can save 32% of total travel time with the Online model, compared
with 40% savings in the optimal Oracle model. Note that our
method only concerns the sharing of nonvacant trips, but these
make up the majority of taxi traffic (18, 23). In fact, the fraction of
time during which taxis are serving customers corresponds to the
high value of about 75% of the on-service time of a taxi (SI Ap-
pendix, Fig. S1). Accounting for the effect of empty trips thus would
approximately reduce the total travel time savings from 40% and
32% to the still substantial values of 30% and 24% in the Oracle
and Online model, respectively.

Is it possible to even further improve efficiency by increasing
the number k of shareable trips? When k = 3, the shareability
network becomes a shareability hypernetwork, for which

Santi et al.
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Fig. 3. Benefits of trip sharing. (A) Street network of Manhattan, and examples of two trips that can be shared under the omniscient Oracle model, but not
under the Online model. The starting time of the red trip is much later than that of the black trip, but in the Online model trip sharing decisions must be taken
within a very short time window § = 1 min to notify customers of trip-sharing opportunities as soon as possible after their order. (B) Percentage of shared trips
as a function of the trip time delay A in the Oracle and in the Online model for the two considered optimization criteria of maximizing shared trips (max trips)
and minimizing total travel time (min time), when up to k = 2 trips can be shared. (C) Shareability as a function of trips per day in the Oracle model. Typical
days in New York City feature around 400,000 trips with near-maximum shareability. Subsampling data by randomly removing vehicles reveals the underlying
saturation curves, fit (dashed lines) by a simple function of type f(x) =Kx" /(1 + Kx") with the two parameters K and n well-known in adsorption processes and
biochemical systems (S/ Appendix). The fast, hyperbolic saturation implies that taxi sharing could be effective even in cities with vehicle densities much lower
than New York, or when the willingness to share is low. (D) Percentage of saved travel time as a function of A for k = 2 and k = 3. Although § is reduced from
practically infinite in the Oracle model to 56 = 1 min in the Online model, saved travel time is well above 30% for A = 300 s, for k = 3 almost reaching the
maximum possible value from the Oracle model with k = 2. (E) Percentage of saved trips as a function of A with k = 2 and k = 3. The theoretically possible
maximum (dashed lines) of 50% for k = 2 and 66.7% for k = 3 are closely approximated. For A < 150 s (dotted line), the benefits of 3-sharing over 2-sharing

are negligible.

maximum matching is solvable only in approximation using
a heuristic algorithm which is computationally feasible for rela-
tively small networks only (24, 25). Because of this methodo-
logical issue and the combinatorial explosion of sharing options,
we calculated the number of shared trips and the fraction of
saved travel time for k = 3 only in the Online model—which by
definition features much smaller shareability networks. Simu-
lations show that increasing the number of shareable trips
k provides noticeable benefits only when the quality of service
parameter A crosses a threshold around A ~ 150 s (Fig. 3 D
and E). When A = 300 s, the number of saved taxi trips is in-
creased from about 50% with k = 2 to about 60% with k = 3,
which is however well below the 66.7% maximum theoretical
percentage of shared trips. This suboptimal result suggests that
the effort for implementing a service for sharing k > 2 trips may
not be well-justified. Further, to become widely accepted, a mul-
tishared taxi service might require vehicles of higher capacity
and/or physically separated, private compartments, possibly in-
flating overhead for k > 2. Because the benefit of multisharing is
not that high, it might not cover these additional expenses.

Santi et al.

Discussion

Our analysis shows that New York City offers ample opportu-
nities for trip sharing with minimal passenger discomfort, with-
out having to resort to a computationally demanding sharing
strategy in which already started trips would be rerouted on the
fly, and that these opportunities are realistic to be implemented
in a new taxi system. From a computational standpoint, the
polynomial runtimes of our algorithms suggest that there should
be no issues with designing systems in which taxi companies
calculate sharing options within 6 = 1 min of the request and
immediately dispatch their taxis. By implementing a system that
is 40% more efficient and affordable, the ultimate goal is to
make taxi systems a more attractive and sustainable mode of
transportation, able to generate increased demand and to satisfy
it with the current or an even higher number of vehicles.

To assess to what extent our results could be generalized to
cities with lower taxi densities than New York, or to account for
situations where willingness to share or where market penetra-
tion of an accompanying software application is low, we studied
how the number of shareable trips in a given day changes as
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a function of the total number of trips (Fig. 3C). The average
number of daily trips in New York is highly concentrated around
400,000. Hence, we have generated additional low-density sit-
uations by subsampling the dataset, randomly removing increasing
fractions of vehicles from the system (Materials and Methods). The
resulting shareability values are excellently fit by saturation curves
of the form f(x) =Kx" /(1 + Kx"). These curves are well-known to
describe binding processes in biochemical systems, providing an
interesting link to general pairing problems (SI Appendix). At
around 100,000 trips, or 25% of the daily average, we already
reach saturation and near-maximum shareability. This fast satu-
ration suggests that taxi-sharing systems could be effective even in
cities with taxi fleet densities much lower than New York.
Future work should aim to assess in more detail the psycho-
logical limitations of taxi sharing, to understand the conditions
and appropriate incentive systems under which individuals are
willing to be seated in the same vehicle. This includes the design
of suitable faring systems aimed at fairly distributing the eco-
nomic benefits of sharing between drivers and customers, such as
the one proposed in ref. 17. Moreover, the sharing analysis should
be extended to other cities to better understand the generaliz-
ability of the results, and if possible, to measure and incorporate
currently unknown data such as the actual search or waiting times
of passengers who are trying to find an empty taxi, or the number
of passengers that are being transported per vehicle. Finally, the
framework of shareability networks could be used to study more
generally other social sharing scenarios (26) such as ride sharing
of cars, bikes, etc. or the communal use of equipment which is
characterized by considerable unit cost and infrequent use,
stimulating new forms of sharing and models of ownership (10).

Materials and Methods

Trip Data. The dataset contains origin-destination data of all 172 million trips
with passengers of all 13,586 taxicabs in New York during the calendar year of
2011. There are 39,437 unique driver IDs in the dataset, which corresponds to
2.9 drivers per taxi on average. The dataset contains a number of fields from
which we use the following: medallion ID, origin time, destination time,
origin longitude, origin latitude, destination longitude, and destination
latitude. Times are accurate to the second; positional information has been
collected via GPS technology by the data provider. Out of our control are
possible biases due to urban canyons which might have slightly distorted the
GPS locations during the collection process (27). All IDs are given in anony-
mized form; origin and destination values refer to the origins and destina-
tions of trips, respectively.

Map Data and Map Matching. To create the street network of Manhattan we
used data from www.openstreetmap.org. We filtered the streets of Manhattan,
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selecting only the following road classes: primary, secondary, tertiary, residen-
tial, unclassified, road, and living street. Several other classes were deliberately
left out, such as footpaths, trunks, links, or service roads, as they are unlikely to
contain delivery or pickup locations. Next we extracted the street intersections
to build a network in which nodes are intersections and directed links are roads
connecting those intersections (we use directed links because a nonnegligible
fraction of streets in Manhattan are one-way). The extracted network of street
intersections was then manually cleaned for obvious inconsistencies or redun-
dancies (such as duplicate intersection points at the same geographic positions),
in the end containing 4,091 nodes and 9,452 directed links. This network was
used to map match the GPS locations from the trip dataset. We only matched
locations for which a closest node in the street intersection network exists with
a distance less than 100 m. Finally, from the remaining 150 million trips we
discarded about 2 million trips that had identical starting and end points, and
trips that lasted less than 1 min.

Maximum Matching of Shareability Networks. Given a graph G = (V, E), a
matching M in G is a set of pairwise nonadjacent edges. A maximum
matching is a matching that contains the largest possible number of
edges. A weighted maximum matching is a matching in which the sum of
edge weights is maximal. In the context of shareability networks, max-
imum matching solves optimizing the number of shared trips, whereas
weighted maximum matching minimizes the cumulative time needed to
accommodate all trips if the weights on the shareability network are
taken as the travel time that is saved by sharing. Given that shareability
networks are sparse, for the case k = 2 maximum matching and weighted
maximum matching can be solved in polynomial times O(ny/n) and O(n?
log n) (22), respectively, where n is the number of nodes in the network.
For higher dimensions, k > 2, fast approximations to the optimal sol-
utions exist (24), which however become computationally unfeasible for
k > 3. For details see S/ Appendix.

Subsampling of Vehicles. To assess to which extent our results could be
generalized to cities with lower taxi densities than New York, or to situations
where willingness to share is low, we have generated additional low-density
situations by subsampling our dataset, randomly removing various fractions
of vehicles from the system in the following way: For each day in the dataset,
we randomly selected a percentage c of the taxis in the trace, and deleted
the corresponding trips from the dataset. We varied ¢ from 95% down to
1%, generating a number of trips per day as low as 1,962. Note that by
subsampling the vehicles we filter both taxis and the trips which represent
the demand.
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