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Full dimensional Franck-Condon factors for the acetylene Ã 1Au—X̃ 1�+
g

transition. I. Method for calculating polyatomic linear—bent vibrational
intensity factors and evaluation of calculated intensities for the gerade
vibrational modes in acetylene

G. Barratt Parka)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 12 May 2014; accepted 26 August 2014; published online 3 October 2014)

Franck-Condon vibrational overlap integrals for the Ã 1Au—X̃ 1�+
g transition in acetylene have been

calculated in full dimension in the harmonic normal mode basis. The calculation uses the method of
generating functions first developed for polyatomic Franck-Condon factors by Sharp and Rosen-
stock [J. Chem. Phys. 41(11), 3453–3463 (1964)], and previously applied to acetylene by Watson
[J. Mol. Spectrosc. 207(2), 276–284 (2001)] in a reduced-dimension calculation. Because the tran-
sition involves a large change in the equilibrium geometry of the electronic states, two different
types of corrections to the coordinate transformation are considered to first order: corrections for
axis-switching between the Cartesian molecular frames and corrections for the curvilinear nature of
the normal modes at large amplitude. The angular factor in the wavefunction for the out-of-plane
component of the trans bending mode, ν ′′

4 , is treated as a rotation, which results in an Eckart con-
straint on the polar coordinates of the bending modes. To simplify the calculation, the other de-
generate bending mode, ν ′′

5 , is integrated in the Cartesian basis and later transformed to the con-
strained polar coordinate basis, restoring the conventional v and l quantum numbers. An updated
Ã-state harmonic force field obtained recently in the R. W. Field research group is evaluated. The
results for transitions involving the gerade vibrational modes are in qualitative agreement with ex-
periment. Calculated results for transitions involving ungerade modes are presented in Paper II of
this series [G. B. Park, J. H. Baraban, and R. W. Field, “Full dimensional Franck–Condon factors
for the acetylene Ã 1Au—X̃ 1�+

g transition. II. Vibrational overlap factors for levels involving ex-
citation in ungerade modes,” J. Chem. Phys. 141, 134305 (2014)]. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4896532]

I. INTRODUCTION

The Ã 1Au(C2h)—X̃1�+
g (D∞h) transition in acetylene

has been the subject of extensive spectroscopic and theo-
retical investigation. In the 1950s, Ingold and King1, 2—and
later Innes3—performed the first detailed analysis of the band
structure. They showed that a linear to trans-bent geometry
change takes place upon excitation from the D∞h ground state
to the C2h excited state. Acetylene was the first molecular sys-
tem in which a qualitative change in geometry and symmetry
accompanying an electronic excitation was proven by spec-
troscopic methods. Since that time, both the X̃ and Ã states of
acetylene have been spectroscopically characterized in great
detail.4–37

In spite of the wealth of data available, it has been chal-
lenging to make quantitative predictions for Ã—X̃ spectral
intensities. Although the Franck-Condon principle has long
guided the interpretation of vibrational intensity factors, the
calculation of FC factors for polyatomic molecules remains
challenging—especially in cases where there is a large change
in equilibrium geometry and a qualitative change in symmetry
between the states in question. The multidimensional nature

a)Electronic mail: barratt@mit.edu

of the polyatomic vibrational problem not only introduces
interactions between the degrees of freedom on each poten-
tial energy surface, but it also complicates the transforma-
tion between the coordinates of the two states. So, in addition
to the shift of origin and frequency scaling that are familiar
from diatomic molecules, polyatomic molecules also exhibit
Duschinsky rotation,38 as a result of the non-diagonal (and in
general nonlinear) transformation between the normal mode
coordinates. Furthermore, for transitions involving a change
from linear to bent reference configurations, there is an in-
herent interplay between vibrational and rotational degrees of
freedom, because vibrational angular momentum of the linear
state correlates with rotation in the bent state, and the number
of vibrational degrees of freedom typically used to describe
the linear and bent configurations is different.

Due to the importance of FC factors in polyatomic
molecules, numerous approaches have been taken by vari-
ous authors. Reference 39 provides a list of citations. There is
no consensus on the best general formulation of the problem
and most authors have tailored their methods to the molecular
transition at hand. The most common approaches involve vari-
ations on the method introduced by Sharp and Rosenstock,40

which involves direct integration of harmonic wavefunctions
obtained by the method of generating functions.

0021-9606/2014/141(13)/134304/18/$30.00 © 2014 AIP Publishing LLC141, 134304-1
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Relatively little attention has been paid to the calcula-
tion of FC factors for systems involving linear to bent ge-
ometry changes. Smith and Warsop41 pointed out the need
for inclusion of rotational coordinates in linear to bent tran-
sitions, but they did not address the problem further. Kovner
et al.42 calculated Franck-Condon factors for the 1B2 →1 �+

g

transition in CO2 in full dimension. For the degenerate bend-
ing mode of the linear molecule, these authors use degener-
ate bending wavefuctions, which are separable into a radial
factor (a generalized Laguerre polynomial that depends on
v, l, and the radial coordinate ρ) and an angular factor (de-
pending on l and the polar angle φ). They include the radial
factor in the vibrational integral, but they treat the angular
factor as part of the rotational integral, and they successfully
calculate rovibrational intensity factors by approximating the
bent state as a symmetric top. The research groups of Vac-
caro co-workers have successfully applied methods, based
on Lie algebra formalisms,43 to the bent-linear transition in
HCP.44

After the pioneering works of Ingold, King, and Innes,
several authors considered the one-dimensional Franck-
Condon factors for the trans-bending progression of the acety-
lene Ã—X̃ transition.2, 41, 45 More recently, Watson has cal-
culated reduced-dimension Franck-Condon overlaps for the
three gerade vibrational modes by extending the method of
Sharp and Rosenstock40 to treat a linear-to-bent transition,
including axis-switching effects.46 Watson’s treatment of the
vibrational and rotational degrees of freedom are analogous
to those used by Kovner et al.,42 but in the case of linear
molecules with more than three atoms, more than one pair
of degenerate modes contributes to out-of-plane vibration. In
general, one of the vibrational degrees of freedom may be
treated as a rotation, but factoring out this degree of free-
dom rotates the angular coordinate of each degenerate vi-
bration. We will discuss this problem in detail in Sec. II D,
and consequences for the full-dimensional Franck-Condon
propensities will be discussed in Paper II72 of this series.
Weber and Hohlneicher47 have calculated multi-dimensional
Franck-Condon factors for the acetylene Ã—X̃ transition,
but their calculation constrains the molecule to planarity, so
they have not considered a number of the symmetry prop-
erties and propensity rules that we investigate here in our
full-dimensional treatment. They have also rotated the lin-
ear molecule to the CC-axis of the trans-bent configurations,
so their calculation is inconsistent with Watson’s treatment
of axis-switching effects.46, 48 To our knowledge, the work
presented here is the first publication of a full-dimensional
Franck-Condon calculation for a tetra-atomic molecule un-
dergoing a linear-to-bent geometry change.

II. METHODOLOGY FOR THE CALCULATIONS

A. Vibrational intensity factors: Dependence
of the electronic transition dipole moment on nuclear
coordinates

In the Born-Oppenheimer approximation, the intensity
factor Sev accompanying a dipole-allowed vibronic transition

is proportional to

Sev ∝
∑

α=a,b,c

|〈� ′
vib|〈� ′

el|μα|� ′′
el〉|� ′′

vib〉|2. (1)

In Eq. (1), the rotational and spin contributions to the dipole
transition moment are assumed to be separable and have been
factored out of the integral. �vib and �el are the vibrational
and electronic parts of wavefunction, and single and double
primes are used to denote the upper and lower electronic
states, respectively. The summation is over the a, b, and c
molecular frame axis components of the dipole moment, μ.
If we treat the electronic wavefunctions in the adiabatic Born-
Oppenheimer basis, then the components of the integral over
the electronic degrees of freedom may be written as

〈� ′
el|μα|� ′′

el〉 =
∫

drel � ′
el(rel, q)μα� ′′

el(rel, q), (2)

where rel represents the coordinates of the electrons and q
represents the nuclear coordinates. It is important to note that
the Born-Oppenheimer electronic wavefunctions �el(rel, q)
are functions of both the electronic and nuclear coordinates,
because they are defined parametrically as functions of nu-
clear coordinates. Since the integral in (2) is performed only
over the electronic degrees of freedom, but the integrand de-
pends on both the electronic and nuclear degrees of freedom,
the resulting electronic transition moment is a function of q,
and we may say that (2) is a “partial” integral rather than a
complete overlap integral over all degrees of freedom. The
electronic transition moment may be expanded in terms of the
normal mode coordinates of one of the electronic states,

〈� ′
el|μα|� ′′

el〉 = μ
(0)
α (el′, el′′) +

∑
k

μ
(k)
α (el′, el′′)qk

+1

2

∑
k,k′

μ
(k,k′)
α (el′, el′′)qkqk′ + . . . , (3)

where the subscript k labels the normal modes. In many cases,
the integral in Eq. (1) accumulates over a limited range of
nuclear geometries over which 〈� ′

el|μα|� ′′
el〉 is approximately

constant. In such a case, the contributions from higher-order
terms in Eq. (3) are small compared to the contribution from
μ

(0)
α (el′, el′′) and may be ignored. The electronic transition

dipole moment may then be separated from the vibrational
part of the overlap integral in Eq. (1), and the intensity is pro-
portional to the square of the familiar Franck-Condon overlap
integral, multiplied by a constant electronic factor,

Sev ∝
∑

α

∣∣μ(0)
α (el′, el′′)

∣∣2|〈� ′
vib|� ′′

vib〉|2. (4)

Familiar symmetry arguments show that the integral in
Eq. (2) has a non-zero leading term (i.e., the transition is
“electronically allowed”) if we set q to zero and see that
�(� ′

el) ⊗ �(� ′′
el) ⊃ �(μα).

In the case of acetylene, the Ã—X̃ transition is electroni-
cally allowed in the lower symmetry point group C2h common
to both states, because �(�Ã) ⊗ �(�X̃) = Au ⊗ Ag , which
contains �(μc) = Au. However, the transition is electroni-
cally forbidden in the higher symmetry point group D∞h of
the ground electronic state, because the Ã 1Au state corre-
lates with 1�−

u at the linear configuration and it does not have
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FIG. 1. The value of 〈�Ã|μ
c
|�X̃〉 obtained from the reduced-dimension cal-

culation in Ref. 49 is plotted as a function of q ′′
2 and q ′′

4 . The normal mode
coordinates shown are the dimensionless rectilinear coordinates described in
Sec. III. Because the reduced-dimension calculation held the CH bond length
fixed to its equilibrium value in the Ã state, the projection of the data onto the
q ′′

2 coordinate is an approximation that ignores the dependence of q ′′
2 on the

CH bond length.

the correct symmetry to form a totally symmetric product
with the X̃1�+

g state via any of the possible representations
of the linear dipole moment operator (	u or �+

u ). Therefore,
〈� ′

el|μ|� ′′
el〉 approaches zero at the linear configuration and its

dependence on nuclear coordinates may not be ignored.
We may take the expansion in Eq. (3) about the linear

X̃-state equilibrium geometry and employ the X̃-state normal
mode coordinates, q′′. Since both sides of the equation must
have the same symmetry, it is straightforward to determine
which terms have the correct symmetry to be non-vanishing.
The symmetry of the left-hand side is (from Eq. (2))

�(〈�Ã|μc|� ′′
X̃〉) = �el(Ã) ⊗ �(μc) ⊗ �el(X̃)

= �−
u ⊗ 	u ⊗ �+

g

= 	g. (5)

Since the trans-bending mode, ν ′′
4 , is the only normal mode

with πg symmetry, μ(4′′)
c (el′, el′′)q ′′

4 is the only first-order term
in the expansion of the electric transition dipole moment
about the linear geometry.

Higher-order terms in Eq. (3) with πg symmetry may
also contribute to the integral in Eq. (1), but ab initio
calculations49, 50 have shown that over the range of geome-
tries relevant to the Ã—X̃ transition, the electronic transition
dipole moment is approximately linear in q ′′

4 and indepen-
dent of displacement in other modes. The authors of Ref. 49
kindly shared the raw data from their reduced-dimension cal-
culation, performed at the EOM-CCSD level of theory. The
dependence of the electronic transition dipole moment on q ′′

2
and q ′′

4 obtained from the calculation is shown in Figure 1.
From the reduced-dimension data, it was possible to estimate
the dependence of 〈�Ã|μc|�X̃〉 on the lowest-order terms in
q ′′

2 and q ′′
4 (Table I).

In the current work, we ignore higher-order vibra-
tional corrections to the electronic transition dipole mo-
ment, and we assume that the vibrational intensity factors are

TABLE I. Lowest-order contributions of q ′′
2 and q ′′

4 to the polynomial ex-
pansion of 〈�Ã|μ

c
|�X̃〉 = ∑

n,m
c
nm

(q ′′
2 )n(q ′′

4 )m, obtained from a fit to the
reduced-dimension calculation from Ref. 49, plotted in Figure 1. Second-
order terms in q ′′

2 were omitted because their contribution was negligible.
Values in parentheses represent 2 standard deviations in the uncertainty of
the last digit of the fit parameter. The RMS error of the fit to the 256 grid
points shown in Figure 1 was 0.0025 D.

n m cnm (Debye)

0 1 0.0138(7)
1 1 − 0.0026(2)
0 3 0.00109(7)
1 3 8.3(6) × 10-5

proportional to

Sev ∝ |〈� ′
vib|q ′′

4 |� ′′
vib〉|2. (6)

Watson has shown that including a factor of q ′′
4 in intensity

calculations produces better agreement with experimental ab-
sorption data for the Ã(v′

3) ← X̃(00) progression (see Table 1
of Ref. 46).

B. Nuclear-coordinate dependence of the electronic
transition dipole moment in the diabatic picture

It was pointed out to the author by Dr. Josh Baraban that
there is an alternative way to describe the dependence of the
electronic transition dipole moment on nuclear coordinates
using electronic wavefunctions in the diabatic basis. Because
the diabatic formulation provides additional insight into the
origins of the transition strength, it is presented here briefly.
Let �el represent a diabatic electronic wavefunction with D∞h
symmetry. �el has no explicit dependence on nuclear coor-
dinates, but there may be vibronic interactions that couple
electronic states of different symmetry. The X̃ (�+

g ) state may
have electronically allowed dipole transitions to states of �+

u

or 	u symmetry. There are no vibrational modes with the
correct symmetry to allow a first-order vibronic interaction
between the Ã (�−

u ) state and higher-lying �+
u states, but

interactions between the Ã state and higher-lying 	u states
(such as the C̃ state) may be vibronically mediated by the q ′′

4
(πg) vibration. If we assume such an interaction takes place
via a matrix element, H12 ∝ q ′′

4 + . . ., (the ellipsis indicates
higher-order vibrational terms with πg symmetry that we will
ignore), then we may write

|�Ã〉 = a|�(�−
u )〉 + bq ′′

4 |�(	u)〉, (7)

where the a and b mixing coefficients are obtained from di-
agonalization of the vibronic interaction matrix, and the b co-
efficient also contains the proportionality of H12 to q ′′

4 . The
integral in Eq. (1) may then be written as

Sev = |〈� ′
vib|(a∗〈�(�−

u )| + b∗q ′′
4 〈�(	u)|)μc|�X̃〉|� ′′

vib〉|2

= b2|〈�(	u)|μc|�X̃〉|2|〈� ′
vib|q ′′

4 |� ′′
vib〉|2. (8)

Because the diabatic wavefunctions do not depend explicitly
on nuclear coordinates, the electronic and vibrational parts of
the integral are separable and the first term in the electronic
integral vanishes by symmetry. The vibrational q ′′

4 term that
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mediates the vibronic transition is treated in the vibrational
integral and we obtain the same result as in Eq. (6).

When viewed in the diabatic picture, it becomes clear
that the vibronic mechanism by which the Ã—X̃ becomes
electronically allowed is the same mechanism that causes the
vibronic distortion of the Ã-state equilibrium along the πg
trans-bend coordinate. The dependence of 〈�Ã|μc|�X̃〉 on nu-
clear coordinates can be directly related to the vibronic dis-
tortion of the Ã-state equilibrium because both effects arise
from the same matrix element, H12. In the literature, depen-
dence of electronic transition strength on nuclear coordinates
(Herzberg-Teller coupling) is often attributed to two seem-
ingly different phenomena: (1) q-dependence of the electronic
transition dipole moment between the upper and lower elec-
tronic states, or (2) intensity borrowing from vibronic in-
teractions. As illustrated by the above example, these two
explanations are in fact equivalent descriptions of the same
phenomenon, viewed in the basis of (1) adiabatic electronic
wavefunctions, or (2) diabatic electronic wavefunctions.

C. Coordinate transformation

Because the normal mode coordinates in the ground and
excited states (q′′ and q′) are defined differently, � ′′

vib(q′′) and
� ′

vib(q′) are usually given as functions of different sets of
variables. In order to evaluate (6) as an overlap integral, a
coordinate transformation must be performed to convert the
excited-state normal coordinates q′ into ground state coordi-
nates q′′. Because the Ã—X̃ transition in acetylene involves a
large change in equilibrium geometry between the two elec-
tronic states, there are nonlinear contributions to the coordi-
nate transformation. We will consider two different types of
corrections. First, we will examine the effects of axis switch-
ing between the Cartesian molecular frames of the two states.
Next, we examine effects that arise from the curvilinear na-
ture of the normal modes. Either of these corrections might
be expected to become important at large displacement along
bending coordinates.

1. Axis-switching effects

In the case of acetylene, axis-switching effects48 accom-
pany the Ã—X̃ transition because the trans↔linear geome-
try change rotates the orientation of the principal axes about
the c-axis, and rotation about the c-axis is totally symmetric
in the C2h point group. Axis-switching effects are most fa-
miliar in cases where they give intensity to nominally forbid-
den rovibronic transitions. For example, axis switching in the
Ã—X̃ transition of acetylene gives rise to nominally for-
bidden a-type transitions.51 However, because axis switch-
ing enters into the coordinate transformation, it also plays a
role in vibrational intensity factors and its effects should be
considered.52

In deriving the coordinate transformation appropriate to
the acetylene Ã—X̃ transition, Watson includes the effects of
axis switching through linear terms in q′′.46 However, Wat-
son’s discussion is terse. Therefore, we include some detail
about the effects of axis switching on the transformation. In

general, the molecular coordinates obeying one set of Eckart
conditions may be written in terms of another according to

r′
e + ρ′ = �(r′′

e + ρ′′)

ρ′ = �r′′
e − r′

e + �ρ′′, (9)

where re and ρ are length 3N vectors that give the equilibrium
position of each nucleus and the displacement of each nu-
cleus from equilibrium, respectively, expressed in the Carte-
sian principal axis system that satisfies the Eckart conditions
for each respective electronic state. Single- and double-primes
are used to label the upper and lower electronic states, respec-
tively. The Eckart rotation matrix or “axis-switching” matrix
� in Eq. (9) rotates the principal axis system that obeys the
lower state Eckart conditions onto the axis system that obeys
the upper state Eckart conditions. The Eckart conditions are
satisfied by

QT ≡ l̃Tm1/2ρ = M−1/2
∑

i

miρi = 0, (10)

QR ≡ l̃Rm1/2ρ = I−1/2
∑

i

mi(re,i × ρi) = 0, (11)

where the subscript i labels the nuclei, M = ∑
imi is the total

mass, and I is the diagonal moment of inertia tensor for the
principal axes. The 3N × 3N diagonal matrix m weights the
Cartesian coordinates by the nuclear masses, and l̃R and l̃T
represent the linearized transformations from mass-weighted
Cartesian displacements to rotational and translational coor-
dinates, respectively. Throughout this paper, we will use the
tilde to denote matrix transposition. The translation of the
center of mass may be rigorously separated from other de-
grees of freedom by condition (10), but the separation of rota-
tional and vibrational coordinates provided by condition (11)
is only approximate. Furthermore, because the Eckart con-
ditions (10) and (11) that determine the principal axes are a
function of the instantaneous geometry, � depends on q′′ and
Eq. (9) is—in general—a nonlinear transformation.

We may write the transformation (9) in terms of vibra-
tional normal mode coordinates using the standard coordinate
transformations defined in Ref. 53,

Q = L−1
0 Beρ. (12)

Here, Be = (∂S/∂ρ)|ρ=0 transforms Cartesian displacements

to “linearized” internal coordinates, S, and L−1
0 transforms

the S coordinates to normal mode coordinates of dimension√
mass · distance. Because the Be matrix is defined in terms of

infinitesimal curvilinear displacements from a reference equi-
librium geometry, Q is a linear combination of Cartesian dis-
placements for each nucleus. In this paper, we use scaled di-
mensionless normal mode vibrational coordinates q defined
according to

q = γ1/2Q, (13)

where γ is a diagonal scaling matrix with elements γ k
= hcωk/¯2. (ωk is the harmonic frequency of the kth normal
mode.) We insert (12) to obtain

q = γ1/2L−1
0 Beρ

= γ1/2 l̃m1/2ρ. (14)
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We have introduced the substitution l = m−1/2B̃eL̃−1
0 . l̃ is the

3N × nvib matrix that transforms mass-weighted Cartesian co-
ordinates to normal mode vibrational coordinates, and nvib is
the number of vibrational degrees of freedom being consid-
ered.

The 3N × 3N matrix that transforms Cartesian coordi-
nates to the 3N-dimensional vector of normal vibrational, ro-
tational, and translational coordinates according to⎡

⎢⎣
Q

QR

QT

⎤
⎥⎦ =

⎡
⎢⎣

l̃

l̃R
l̃T

⎤
⎥⎦m1/2ρ (15)

is a unitary transformation,53 so

[
l lR lT

]
⎡
⎢⎣

Q

QR

QT

⎤
⎥⎦ = m1/2ρ. (16)

We may now write the coordinate transformation (9) in terms
of normal coordinates by substituting (15) and (16) for ρ′ and
ρ′′ to obtain⎡

⎢⎣
Q′

Q′
R

Q′
T

⎤
⎥⎦ =

⎡
⎢⎣

l̃′

l̃′R
l̃′T

⎤
⎥⎦m1/2(�r′′

e − r′
e)

+

⎡
⎢⎣

l̃′�l′′ l̃′�l′′R l̃′�l′′T
l̃′R�l′′ l̃′R�l′′R l̃′R�l′′T
l̃′T�l′′ l̃′T�l′′R l̃′T�l′′T

⎤
⎥⎦

⎡
⎢⎣

Q′′

Q′′
R

Q′′
T

⎤
⎥⎦. (17)

We enforce the Eckart conditions by setting QR = QT = 0 for
both states to obtain the set of equations

q′ = (γ′)1/2 l̃′[�m1/2r′′
e − m1/2r′

e] + (γ′)1/2 l̃′�l′′(γ′′)−1/2q′′,
(18)

l̃′R�
[
m1/2r′′

e + l′′(γ′′)1/2q′′] = 0. (19)

We have used the fact that l̃′Rm1/2r′
e = 0 because the equilib-

rium geometry satisfies the Eckart condition (11). Equation
(18) is the desired (nonlinear) coordinate transformation. The
first term in Eq. (18) accounts for the difference in equilib-
rium geometry of the upper and lower states and the second
term accounts for displacement of molecular geometry away
from the lower state equilibrium. Equation (19) enforces the
rotational Eckart condition (11) for each state. Equation (19)
may be used to define � as a function of q′′. We have omitted
the equation for the translational Eckart condition, obtained
from the third row of Eq. (17). It is trivially zero since condi-
tion (10) ensures that the origin of the principal axis system
for each state is at the center of mass.

In order to expand the transformation (18) to first-order
in q′′, we define

� = �e(E + �1(q′′)), (20)

where E is the unit matrix. �e is the axis-switching matrix that
satisfies Eq. (19) at the lower state equilibrium and the depen-
dence of the axis rotation on q′′ is contained in �1. For small

displacements, we may use the infinitesimal rotation matrix,

�1 ≈

⎡
⎢⎣

0 d�c −d�b

−d�c 0 d�a

d�b −d�a 0

⎤
⎥⎦. (21)

Note that the effect of �1 operating on a vector r may be
written as a cross product

�1r = r × d
→
�, (22)

where d
→
� is the vector 〈d�a d�b d�c〉. Thus by the definition

in (11), the rotation of the equilibrium Cartesian coordinates
�1m1/2re is related to the rotation matrix l̃R by

�1m1/2re = m1/2re × d
→
�

= Ie
1/2lRd

→
�, (23)

where Ie denotes the moment of inertia tensor at the equi-
librium configuration. We now substitute Eqs. (20), (22), and
(23) into the Eckart condition (19) for the transformation and

solve for d
→
�, noting that l̃′R�em1/2r′′

e = 0, because the �e ro-
tation satisfies the upper state Eckart conditions for q′′ = 0:

d
→
� = − [

l̃′R�e(Ie
′′)1/2lR

′′]−1 [
l̃′R�el′′(γ ′′)1/2q′′

+ l̃′R�e�1l′′(γ ′′)1/2q′′]. (24)

The second term in (24) is O[(q′′)2] and may be ignored in
the first-order expansion.

We now substitute (20) and (24) into the coordinate trans-
formation (18), and use the relation (23) to obtain (noting that
the factors of (I′′

e )1/2 cancel)

q′ = δ(a-s) + D(a-s)q′′ + O[(q′′)2], (25)

δ(a-s) = (γ ′)1/2
[
l̃′�em1/2r′′

e − l̃′m1/2r′
e
]
, (26)

D(a-s) = (γ ′)1/2
[
l̃′�el′′ − l̃′�el′′R(l̃′R�el′′R)−1 l̃′R�el′′

]
(γ ′′)−1/2,

(27)

O[(q′′)2]≈(γ ′)1/2 l̃′�e[E+l′′R(l̃′R�el′′R)−1 l̃′R�e]�1l′′(γ ′′)−1/2q′′.
(28)

The δ(a-s) vector gives the upper state normal mode coordi-
nates at the equilibrium geometry of the lower state (the shift
of origin), and may have nonzero elements for totally sym-
metric normal modes in the point group common to both
states. The D(a-s) matrix describes (to first order) the trans-
formation of lower state normal mode coordinates to upper
state normal mode coordinates. It is block-diagonal with re-
spect to the symmetries of the normal modes. Off-diagonal
elements allow “Duschinski rotation” between normal modes
of the same symmetry.38 The “(a-s)” superscript denotes that
the transformation takes into account first-order corrections
for axis-switching. The first term in (27) gives the zero-order
projection of the ground-state normal modes onto the basis
of the excited-state normal modes after rotating the equilib-
rium ground-state principal axes into the excited-state Eckart
frame. The second term is a first-order correction term for the
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FIG. 2. The rectilinear internal coordinate S� H1C1C2
stretches the bond

lengths in acetylene, while the curvilinear internal coordinate S̄ � H1C1C2
changes only the HCC bond angle while other bond angles and lengths re-
main constant.

dependence of the Eckart conditions on the instantaneous ge-
ometry. Equations (25)–(27) are equivalent to Eqs. (8)–(10) of
Ref. 46. Higher order corrections to the transformation aris-
ing from the terms in (28) are considered by Özkan,52 but will
be ignored in the present work.

2. Curvilinear effects

The normal mode coordinates Q, defined by Eq. (12),
are rectilinear in the sense that displacement along any given
mode (all other normal mode displacements held constant),
results in straight-line motion of each nucleus in the molec-
ular coordinate frame. This is because each normal mode
is defined as a linear combination of “linearized” internal
coordinates, S. A classic paper by Hoy, Mills, and Strey54

describes the transformation to the true curvilinear internal
coordinates (which we will denote S̄), defined in terms of the
bond lengths and angles. As shown in Figure 2, the rectilinear
bending coordinate S� H1C1C2

stretches the C—H bond at large
displacements from the linear equilibrium.

In many cases, it is useful to work with rectilinear normal
coordinates because they provide a convenient simplification
of the kinetic energy operator,

Tkin = 1

2

dS̃
dt

(
B̃−1

e mB−1
e

) dS
dt

= 1

2

dQ̃
dt

dQ
dt

.

As we will see below, curvilinear coordinates do not afford
the same simplification and their use comes at the price of
higher-order terms in the kinetic energy operator. Neverthe-
less, for problems involving large amplitude bending motion,
it is sometimes simpler to work in the basis of curvilinear nor-
mal modes. For example, Borrelli and Peluso55, 56 have shown
that the use of curvilinear coordinates has a profound simpli-
fying effect on the coordinate transformation for the V ← N

transition in ethylene, which involves a 90◦ twist along the
torsional coordinate. The reason for this simplification is that
curvilinear coordinates reduce cross-anharmonicities intro-
duced between stretching and bending coordinates, as illus-
trated in Figure 2.

The potential energy may be expanded in either coordi-
nate system,

V = 1

2

∑
ij

f ij SiSj + 1

6

∑
ijk

f ijkSiSjSk

+ 1

24

∑
ijkl

f ijklSiSjSkSl . . . (29)

= 1

2

∑
ij

φij S̄i S̄j + 1

6

∑
ijk

φijkS̄i S̄j S̄k

+ 1

24

∑
ijkl

φijkl S̄i S̄j S̄kS̄l . . . . (30)

In general, the coefficients in the two expansions are differ-
ent. However, because the leading quadratic terms that deter-
mine the harmonic force field depend only on infinitesimal
displacements, for which S and S̄ are identical, φij = f ij, and
we see that in the harmonic limit the coordinate systems are
interchangeable and the distinction is moot. However, at large
displacements from equilibrium, curvilinear coordinates of-
ten provide a simpler description of the potential energy be-
cause the potential energy surface of most molecules tends to
be steepest along directions that stretch or contract the bond
lengths. As a result the force field naturally tends to send
nuclei along curved bending trajectories, and the curvilinear
cross-anharmonicities φijk. . . may be much smaller in magni-
tude than f ijk. . . .

Several authors have discussed approximate methods for
using curvilinear coordinates in the Franck-Condon coordi-
nate transformation.57–59 The transformation from curvilinear
S̄ to rectilinear Q is nonlinear.

S̄i = Lr
i Qr + 1

2
Lrs

i QrQs + 1

6
Lrst

i QrQsQt + . . . , (31)

where Lr
i = (∂S̄i/∂Qr )|S̄=0 are elements of the L0 matrix de-

fined in Sec. II C 1, and higher-order components of the L ten-
sor define the nonlinear transformation. We may define curvi-
linear normal coordinates, Q̄, by truncating the expansion in
(31),

S̄i = Lr
i Q̄r , or Q̄ ≡ L−1

0 S̄. (32)

As shown by Capobianco and co-workers,58 the quantum
vibrational Hamiltonian may then be written as

Ĥ = Ĥ
(c-l)
0 + �Tkin + Vkin(Q̄) + �V (Q̄), (33)

where Ĥ
(c-l)
0 is the harmonic Hamiltonian written in curvilin-

ear normal coordinates,

Ĥ
(c-l)
0 = −¯

2

2

∑
r

∂2

∂Q̄2
r

+ 1

2

∑
r

ω2
r Q̄

2
r , (34)

and the remaining terms are

�Tkin = ¯
2

∑
jk

∂2

∂Q̄j ∂Q̄k

− ¯
2

2

∑
jk

∂

∂Q̄j

gjk(Q̄)
∂

∂Q̄k

, (35)
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Vkin(Q̄) = 5¯

32g2

∑
jk

gjk

∂g

∂Q̄j

∂g

∂Q̄k

− ¯
2

8g

∑
jk

∂gjk

∂Q̄j

∂g

∂Q̄k

− ¯
2

8g

∑
jk

gjk

∂2g

∂Q̄j ∂Q̄k

, (36)

and �V (Q̄) collects the anharmonic potential energy terms.
gjk(Q̄) and g are the matrix elements and the determinant,
respectively, of

g = L−1
0 B(Q̄)m−1B̃(Q̄)l̃−1

0 . (37)

In (37), B(Q̄) is the transformation B(Q̄) = (∂S̄/∂ρ), which
depends on the instantaneous vibrational coordinates. The
zero order expansion of gjk(Q̄) in the second term of (35)
is unity and cancels the first term, so that the leading term of
�Tkin is third-order in the position and momentum operators.

In the basis set of the eigenfunctions of Ĥ
(c-l)
0 ,

the coordinate transformation between q̄′′ = (γ ′′)1/2Q̄′′ and
q̄′ = (γ ′)1/2Q̄′ is given by

q̄′ = D(c-l)q̄′′ + δ(c-l), (38)

D(c-l) = (γ ′)1/2(L′
0)−1(L′′

0)(γ ′′)−1/2, (39)

δ(c-l) = (γ ′)1/2(L′
0)−1(ζe

′′ − ζe
′), (40)

where ζe
′ and ζe

′′ are the equilibrium values of the internal
coordinates in the upper and lower state, respectively, about
which the displacements S̄ = ζ − ζe are defined, and the su-
perscript (c-l) indicates that the transformation is performed
in the basis of curvilinear harmonic oscillators. A transforma-
tion is given conveniently in terms of the Cartesian l matrices
by Reimers,57

δ(c-l) = (γ ′)1/2 l̃′m
−1/2

B̃′
0(B′

0m−1B̃′
0)−1, (41)

D(c-l) = (γ ′)1/2 l̃′m
−1/2

B̃′
0(B′

0m−1B̃′
0)−1/2

× (B′′
0m−1B̃′′

0)−1/2B̃′′
0m−1/2l′′(γ ′′)−1/2. (42)

Both of the transformations that we have presented—
(25)–(28) and (38)–(42)—are analogous to Eq. (10) of Sharp
and Rosenstock,40 in the limit of small displacements. If the
displacement in equilibrium geometry between the two elec-
tronic states is small then � ≈ E, and axis switching effects
do not enter into the coordinate transformation. Similarly, if
only small displacements along the normal mode coordinates
are considered, then the curvilinear q̄ are equivalent to the
rectilinear q and l̃′l′′ ≈ (L′

0)−1(L′′
0). The reader should be cau-

tioned that the paper by Sharp and Rosenstock contains ty-
pographical errors.40 Care must be taken to correct the er-
rors when applying equations from that paper. Some of the
errata have been published in Ref. 60. Corrected versions of
key equations from Ref. 40 are also printed in Ref. 47.

D. Coordinate transformation for bent—
linear transitions

Some additional complications are presented by the
Ã—X̃ transition in acetylene because the ground state has a
linear equilibrium geometry while the electronically-excited

Ã-state is trans-bent. In the most familiar formulation of the
rovibrational Hamiltonian, states with nonlinear equilibrium
geometry are treated with 3 rotational degrees of freedom and
3N − 6 vibrational degrees of freedom, while states with lin-
ear equilibrium geometry are treated with 2 rotational degrees
of freedom and 3N − 5 vibrational degrees of freedom. In this
formulation for linear molecules, the 3-dimensional moment
of inertia tensor is singular and all angular momentum about
the a-inertial axis arises from vibration.

For the current problem of full-dimensional Franck–
Condon factors in the acetylene Ã—X̃ system, it is more con-
venient to formulate the X̃-state Hamiltonian in terms of 3
rotational degrees of freedom and 3N − 6 vibrational degrees
of freedom. Watson has discussed in detail the formulation of
the rovibrational kinetic energy operator for this case, and the
reader is referred to Ref. 61.

The (x, y) sub-block of I is trivially diagonal in the lin-
ear configuration. Therefore, in the conventional treatment in-
volving only two rotations, the χ Euler angle is not defined.
Rotation of the molecular orientation around the z-axis is in-
stead achieved by a rotation of the polar coordinates of each of
the degenerate bending modes, qt, which are defined relative
to the x and y axes by

qu
tx = ρt cos φu

t , (43)

qu
ty = ρt sin φu

t , (44)

where t is an index that labels the bending vibrational modes,
and the u superscript signifies that the polar coordinates are
unconstrained. To add a third rotational degree of freedom
(restoring χ ), a constraint must be placed on the vibrational
coordinates so that the total number of degrees of freedom
remains constant. In general, the constraint may be accom-
plished by choosing a nonlinear reference configuration, qref,
and then restricting the polar coordinates φt of the degenerate
bending modes to locate the x and y axes such that the (x, y)
block of the moment of inertia tensor is diagonal. This allows
reintroduction of the χ Euler angle to give constrained polar
angles φt according to

φt = φu
t − χ. (45)

In the case of a linear–nonlinear transition, the natural
choice of reference configuration is the equilibrium geometry
of the nonlinear state, so for the current problem, we choose
as the reference configuration the trans-bent Ã-state equilib-
rium geometry. The off-diagonal element of the (x, y) block of
I is

Ixy = −
∑

i

mirixriy, (46)

where (rix, riy) is the (x, y) position of the ith nucleus in the
trans-bent reference configuration (and the orientation of the
x and y axes are to be defined by the constraint). Only the
trans- and cis-bending modes (ν ′′

4 and ν ′′
5 , respectively)

have amplitude in the (x, y) plane, and furthermore, the
displacement along the ungerade cis bend, q ′′

5 , is zero at the
centrosymmetric Ã-state equilibrium. Therefore, q ′′

4 will be
the only contribution to rix and riy. Since the requirement
Ixy = 0 satisfies the Eckart conditions, we have from Eq. (16)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

18.101.16.179 On: Wed, 08 Oct 2014 16:34:32



134304-8 G. Barratt Park J. Chem. Phys. 141, 134304 (2014)

m
1/2
i rix = l′′ix,4(γ ′′

4 )−1/2q ′′
4x and m

1/2
i riy = l′′iy,4(γ ′′

4 )−1/2q ′′
4y ,

so

Ixy = −q ′′
4xq

′′
4y

∑
i

(
l′′ix,4l

′′
iy,4

γ ′′
4

)
= 0, (47)

or, from Eqs. (43) and (44)

−1

2
ρ ′′

4 sin 2φ4 = 0. (48)

Equation (48) has more than one solution, but it is conven-
tional to choose y to correspond with the out-of-plane c-axis
in the trans C2h configuration, so we choose the solution
φ4 = 0, (or q ′′

4y = 0), which gives

χ = φu
4 , (49)

φ5 = φu
5 − χ. (50)

The resulting constraint ensures that displacement along
q ′′

4 must lie in the plane of the equilibrium geometry of the
trans-bent Ã state. Note that constraining φ4 to zero and
restoring the χ Euler angle is equivalent to removing the
exp (il4φ4) factor from the two-dimensional harmonic oscilla-
tor wavefunction and including it instead in the rotational inte-
gral. Hence, the (v − l)/2 radial nodes of the two-dimensional
harmonic oscillator wavefunction for mode ν ′′

4 are included in
the vibrational FC factor, but the angular factor is not. On the
other hand, φ5 is not constrained to zero, so it will contribute
both a radial and angular factor to the vibrational integral.
This leads to important propensity rules and symmetry con-
siderations for the vibrational overlap integrals, which will be
discussed in Paper II72 of this series. Some of these considera-
tions have been neglected by other authors because they have
not considered the problem of linear-to-bent transitions in full
dimension.

The rotational integral may be evaluated from the μc ma-
trix elements. Formulas for rotational strength factors for lin-
ear to bent transitions are given in Ref. 62. In the current
work, we ignore rovibrational interactions and we are primar-
ily interested with the vibrational intensity factors rather than
the distribution of that intensity between the rotational states
within each vibrational band, so we have ignored the rota-
tional integral.

E. Method of generating functions

1. General case for nonlinear molecules

The method of generating functions used by Sharp and
Rosenstock for calculating Franck-Condon overlap integrals
makes use of the exponential generating function for Hermite
polynomials (denoted Hv(q))

exp (2sq − s2) =
∑

v

Hv(q)sv

v!
. (51)

To generate properly normalized wavefunctions 〈q|v〉 of the
dimensionless variable q = (hcω/¯2)1/2Q, we use

∑
v

〈q|v〉sv

√
v!

= π− 1
4 exp

(
−1

2
q2 +

√
2sq − 1

2
s2

)
, (52)

〈q|v〉 = π− 1
4

(
1

2vv!

) 1
2

exp

(−q2

2

)
Hv(q). (53)

Equation (52) states that if we take the exponential function
on the right-hand side and expand it as a polynomial of the
dummy variable s, then we obtain the Harmonic oscillator
wavefunctions as coefficients. Any desired Harmonic oscil-
lator wavefunction, 〈q|v〉, may be obtained by collecting the
coefficient of s to the desired power. The factor of

√
v! in the

denominator is required in order to achieve the properly nor-
malized wavefunction given in Eq. (53). Note that in Eq. (52),
s has been scaled by a factor of 2−1/2 to achieve the factor of
2(−v/2) in the normalization constant of Eq. (53).

To generate an nvib-dimensional harmonic oscillator
wavefunction in the product basis, 〈q|v〉 = ∏

k〈qk|vk〉, we
may write Eq. (52) in terms of the vector q and use a dummy
vector s of length nvib,

∑
v

〈q|v〉∏
k

s
v

k

k∏
k

(vk!)1/2
= π−nvib/4 exp

(
−1

2
q̃q +

√
2s̃q − 1

2
s̃s

)
,

(54)

where k is an index that labels each mode and the summation
over v on the left-hand side denotes summation over each vk .

To obtain the overlap integral in Eq. (4), we wish to cal-
culate

〈� ′
vib|� ′′

vib〉 =
∫ ∣∣∣∣ ∂q′

∂q′′

∣∣∣∣
1
2

dq′′ 〈v′|q′〉〈q′′|v′′〉, (55)

where
∫

dq′′ is shorthand for
∫ ∞
−∞ . . .

∫ ∞
−∞

∏
k dq ′′

k . The
|∂q′/∂q′′| represents the determinant of the matrix of partial
derivatives with components Dij = ∂q ′

i/∂q ′′
j . It is included

because the transformation q′ = Dq′′ + δ need not be unitary,
and the wavefunction � ′

vib(q′) must therefore be renormal-
ized by the Jacobian determinant for integration with respect
to q′′: ∫

dq′|� ′
vib(q′)|2 = 1 (56)

∫ ∣∣∣∣ ∂q′

∂q′′

∣∣∣∣ dq′′|� ′
vib(q′′)|2 = 1 (57)

det (D)
∫

dq′′|� ′
vib(q′′)|2 = 1. (58)

We define renormalized excited-state wavefunctions
�

′(rn)
vib (q′′) = √

det (D) � ′
vib(q′′), so that

∫
dq′′∣∣� ′(rn)

vib (q′′)
∣∣2 = 1. (59)

We obtain a generating function G for Eq. (55) by taking
the product of Eq. (54) for the ground and excited states and
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performing the integral with respect to dq′′:

G =
∑
v′,v′′

〈v′|v′′〉 ∏
k′,k′′

(sk′)v
′
k′ (tk′′)v

′′
k′′

∏
k′,k′′

[(v′
k′!)(v′′

k′′!)]1/2

=
(

det D
πnvib

) 1
2
∫

dq′′ exp

(
−1

2
q̃′q′ +

√
2 s̃q′ − 1

2
s̃s

)

× exp

(
−1

2
q̃′′q′′ +

√
2 t̃q′′ − 1

2
t̃t

)
. (60)

We have used sk′ as the dummy variable for the excited state
modes and tk′′ as the dummy variable for the ground state
modes. We substitute q′ = Dq′′ + δ to obtain

G =
(

det D
πnvib

) 1
2

exp

(
−1

2
δ̃δ +

√
2s̃δ − 1

2
s̃s − 1

2
t̃t
)

×
∫

dq′′ exp [−q̃′′Aq′′ + (
√

2s̃D +
√

2t̃ − δ̃D)q′′].

(61)

We have made the substitution A = 1
2 (E + D̃D), where E is

the nvib × nvib identity matrix. The integral in Eq. (61) can
be solved by changing coordinates to the basis that diago-
nalizes A and evaluating the resulting one-dimensional Gaus-
sian integrals. Note that A is a symmetric matrix and there-
fore guaranteed to be diagonalizable by an orthogonal matrix.
Let V be the orthogonal matrix that diagonalizes A such that
ṼAV = �, (� is diagonal), and let y be the transformation of
q′′ under V so that Ṽq′′ = y. Since V is orthogonal (and uni-
tary), the Jacobian determinant of the transformation is unity
and dq′′ = dy.

Substituting q′′ = Vy, we obtain

G =
(

det D
πnvib

) 1
2

exp

(
−1

2
δ̃δ +

√
2s̃δ − 1

2
s̃s − 1

2
t̃t
)

×
∫

dy exp (−ỹ�y + w̃y), (62)

where we have substituted w̃ = (
√

2s̃D + √
2t̃ − δ̃D)V. Since

� is diagonal, the integral in (62) may be evaluated as a prod-
uct of one-dimensional Gaussian integrals:

G =
(

det D
πnvib

) 1
2

exp

(
−1

2
δ̃δ +

√
2s̃δ − 1

2
s̃s − 1

2
t̃t

)

×
nvib∏
i

∫
dyi exp

(−�iiy
2
i + wiyi

)

=
(

det D
πnvib

) 1
2

exp

(
−1

2
δ̃δ +

√
2s̃δ − 1

2
s̃s − 1

2
t̃t

)

×
nvib∏
i

√
π

�ii

exp

(
w2

i

4�ii

)

=
(

det D
det �

) 1
2

exp

(
−1

2
δ̃δ +

√
2s̃δ − 1

2
s̃s − 1

2
t̃t
)

× exp

(
1

4
w̃�−1w

)
.

After some algebra, we find

1

4
w̃�−1w = 1

4
(
√

2s̃ − δ̃)(2E − B−1)(
√

2s − δ)

+ 1√
2

(
√

2s̃ − δ̃)X−1t + 1

2
t̃A−1t, (63)

where we have made the substitutions

B = 1

2
(E + DD̃) = DAD−1 = (2E − DA−1D̃)−1, (64)

X = 1

2
(D̃ + D−1) = AD−1 = D−1B, (65)

and where E represents the nvib × nvib identity matrix. We also
note that det � = det A because the determinant is invariant
under a unitary transformation. The final expression for G is

G =
∑
v′,v′′

〈v′|v′′〉 ∏
k′,k′′

(sk′)v
′
k′ (tk′′)v

′′
k′′

∏
k′,k′′

[(v′
k′!)(v′′

k′′!)]1/2

=
(

1

det X

) 1
2

exp

(
−1

4
δ̃B−1δ

)

× exp

[
1

2
s̃(E − B−1)s − 1

2
t̃
(
E − A−1

)
t + s̃X−1t

+ 1√
2

s̃B−1δ − 1√
2
δ̃X−1t

]
. (66)

This is in agreement with the equation obtained by Watson46

and the corrected version of the equation obtained by Sharp
and Rosenstock.40, 60

2. Generating function for the full-dimensional
acetylene Ã—X̃ system

Watson has derived a generating function for the gerade
modes of the acetylene Ã—X̃ system.46 It is our goal here to
extend Watson’s work to obtain a full-dimensional treatment.
Watson treats the doubly degenerate bending mode ν ′′

4 in the
(v, l)-basis and integrates the wavefunction in polar coordi-
nates, ρ4, φ4. He makes use of the generating function√

ρt

π
exp

{
−1

2
ρt + 1√

2
ρte

iφ
t su + 1√

2
ρte

−iφ
t su−1 − 1

2
s2

}

=
∑
v

t
,l

t

〈ρtφt |vt lt 〉sv
t ul

t{
2v

t

[
1
2 (vt + lt )

]
!
[

1
2 (vt − lt )

]
!
}1/2 . (67)

In Eq. (67), lt is a signed quantity (−vt ≤ lt ≤ vt ) so the right-
hand side is not a polynomial in the dummy variable u. The
wavefunctions obtained from this generating function may be
written explicitly as

〈ρtφt |vt lt 〉 = (−1)(3v
t
+l

t
)/2

√
π

([
1
2 (vt − lt )

]
![

1
2 (vt + lt )

]
!

)1/2

× ρ
(l

t
+1/2)

t e−ρ2
t /2L

l
t
1
2 (v

t
−l

t
)
(ρ2

t )eil
t
φ

t , (68)

where Lα
n(x) represents the associated Laguerre polynomial.

Note that Eq. (68) differs from the form of the wavefunction
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given in most textbooks by a factor of ρ
1/2
t . This factor is in-

cluded to normalize the wavefunctions with respect to inte-
gration over polar coordinates,

∫ ∫
dρtdφt 〈v′

t l
′
t |ρtφt 〉〈ρtφt |vt lt 〉 = δv′

t ,vt
δl′t ,lt

. (69)

To obtain a generating function for the Franck-Condon
overlap integrals of doubly degenerate bending modes in the
linear ground state of acetylene, we may substitute the left-
hand side of Eq. (67) for the appropriate normal mode dimen-
sions in the second exponential of Eq. (60). In treating the ger-
ade modes, Watson makes use of the Euler angle constraint
φ4 = 0 and makes the substitution u4 = exp (iψ4), which sim-
plifies the resulting integral. The factor of exp (iφu

4 ) is treated
as part of the rotational wavefunction.

In the full-dimensional treatment of FC factors for the
Ã—X̃ acetylene transition, however, there are two doubly de-
generate bending modes that must be treated, ν ′′

4 and ν ′′
5 . If we

were to use a generating function for the ν ′′
5 wavefunctions of

the type presented in Eq. (67), we would have to integrate over
φ5 and the exponential term in the integral would no longer
be separable into a product of one-dimensional Gaussian in-
tegrals. Therefore, in order to simplify the integral in the cur-
rent work, we choose to represent ν ′′

5 in the (vx, vy) basis and
to use generating functions of the type presented in Eq. (52).
We leave ν ′′

4 in the (v, l) basis to take advantage of the simpli-
fications afforded by the Euler angle constraint on φ4. Finally,
we include an extra factor of ρ ′′

4 to capture the linear depen-
dence on ρ ′′

4 of the transition dipole moment, as in Eq. (6).
The resulting generating function is

G= (det D)1/2
∫

dq′′π−5/4 exp

(
−1

2
Q̃′′Q′′+

√
2T̃ Q′′−1

2
T̃ T

)

×π−1/2(ρ ′′
4 )3/2 exp

(
−1

2
(ρ ′′

4 )2 + 2√
2
ρ ′′

4 t4 cos ψ4 − 1

2
t2
4

)

×π−3/2 exp

(
−1

2
q̃′q′ +

√
2s̃q′ − 1

2
s̃s

)

=
∑

v′,v′′,l′′4

〈v′|v′′, l′′4 〉 ∏
k′,k′′

s
v′

k′
k′ t

v′′
k′′

k′′

(v′
1!v′

2!v′
3!v′

4!v′
5!v′

6!)1/2(v′′
1 !v′′

2 !v′′
3 !v′′

5x!v′′
5y!)1/2

× cos l′′4 ψ4{
2v′′

4
[

1
2 (v′′

4 + l′′4 )
]
!
[

1
2 (v′′

4 − l′′4 )
]
!
}1/2 , (70)

where

dq′′ = dq ′′
1 dq ′′

2 dq ′′
3 dρ ′′

4 dq ′′
5xdq ′′

5y,

Q̃′′ = (q ′′
1 , q ′′

2 , q ′′
3 , q ′′

5x, q
′′
5y),

T̃ = (t1, t2, t3, t5x, t5y),

and q̃′ and s̃′ are (1 × 6) row vectors with one element for
each excited-state normal mode. The limits of integration with
respect to dρ ′′

4 are (0, ∞), and all other limits of integration
are (−∞, ∞). After substituting q′ = Dq′′ + δ into Eq. (70),

we obtain

G = π−13/4(det D)1/2
∫

dq′′(ρ ′′
4 )3/2

× exp

[
− q̃′′Aq′′ + (−δ̃D +

√
2s̃D +

√
2T̃)q′′

−1

2
δ̃δ +

√
2s̃δ − 1

2
s̃s − 1

2
t̃t

]
, (71)

where

q̃′′ = (q ′′
1 , q ′′

2 , q ′′
3 , ρ ′′

4 , q ′′
5x, q

′′
5y), (72)

t̃ = (t1, t2, t3, t4, t5x, t5y), (73)

T̃ = (t1, t2, t3, t4 cos φ4, t5x, t5y). (74)

The integral in Eq. (71) differs from the one in Eq. (60)
because it includes a factor of (ρ ′′

4 )3/2, and the limits of inte-
gration with respect to ρ ′′

4 are (0, ∞). These considerations
make it difficult to perform the change of variables as we
did in Sec. II E 1. As mentioned in Sec. II A, the electronic
transition dipole moment for the Ã—X̃ transition in acety-
lene vanishes at the linear configuration, so most of the over-
lap integral accumulates at configurations away from linearity
(ρ ′′

4 �= 0). Following Watson, we can use Laplace’s approxi-
mation for the integral in Eq. (71), as follows. If h(x) and g(x)
are real-valued functions and g(x) has a single absolute maxi-
mum at x0 in the domain of integration, F, g(x0) = max[g(x)],
then∫

F

dx h(x) exp (Mg(x))

≈
(

2π

M

) n
2
(

1

| det [Hg(x0)]|
) 1

2

h(x0) exp (Mg(x0)), (75)

where M is a real number, n is the length of the vector x, and
Hg(x0) is the Hessian matrix of second derivatives of g(x),
evaluated at x0. Equation (75) is valid in the limit M → ∞
and is an exact solution for the Gaussian case where h(x) is
constant, g(x) is quadratic with negative second partial deriva-
tives, and the limits of integration are (−∞, ∞) for all vari-
ables. Laplace’s approximation is a good strategy for the inte-
gral in Eq. (71) because it would provide the exact solution if
it were not for the (ρ ′′

4 )3/2 factor and the limits of integration
with respect to ρ ′′

4 , so in a sense it is an approximation only for
a single coordinate. Furthermore, because the Franck-Condon
overlap is expected to accumulate mostly at bending geome-
tries intermediate to the Ã- and X̃-state equilibria, we expect
this approximation to be valid with respect to the ρ ′′

4 coordi-
nate.

We apply Eq. (75) to the integral in Eq. (71), letting
h(x) = (ρ ′′

4 )3/2, M = 1, and g(x) equal the argument of the
exponential in Eq. (71). We first find the value of q′′ that max-
imizes g. We note that since A is a symmetric matrix,

∂

∂q′′ q̃′′Aq′′ = 2Aq′′. (76)
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We differentiate the exponential in (71) to obtain

∂

∂q′′

[
−q̃′′Aq′′ + (−δ̃D +

√
2s̃D +

√
2T̃)q′′

−1

2
δ̃δ +

√
2s̃δ − 1

2
s̃s − 1

2
t̃t
]∣∣∣∣

q′′
0

= 0

−2Aq′′
0 − D̃δ +

√
2D̃s +

√
2T = 0. (77)

Thus,

q′′
0 = 1

2
A−1(−D̃δ +

√
2D̃s +

√
2T). (78)

The value of ρ ′′
4 at the maximum of the argument of the ex-

ponential is the fourth element of the vector equation (78),

(ρ ′′
4 )0 = [q′′

0]4 =
[

1

2
A−1(−D̃δ +

√
2D̃s +

√
2T)

]
4

. (79)

We can now substitute Eqs. (78) and Eq. (79) into Eq. (75),
noting that Hg(q′′

0) = 2A. After some algebra, we obtain

G = π− 1
4 (det X)−

1
2 (ρ ′′

4 )3/2
0

× exp

[
1

2
s̃(E − B−1)s − 1

2
t̃t + 1

2
T̃A−1T + s̃X−1T

+
√

2

2
s̃B−1δ −

√
2

2
δ̃X−1T − 1

4
δ̃B−1δ

]

=
∑

v′,v′′,l′′4

〈v′|v′′, l′′4 〉 ∏
k′,k′′

(sk′)v
′
k′ (tk′′)v

′′
k′′

(v′
1!v′

2!v′
3!v′

4!v′
5!v′

6!)1/2(v′′
1 !v′′

2 !v′′
3 !v′′

5x!v′′
5y!)1/2

× cos l′′4 ψ4{
2v′′

4
[

1
2 (v′′

4 + l′′4 )
]
!
[

1
2 (v′′

4 − l′′4 )
]
!
}1/2 . (80)

This equation has the same form as that derived by Wat-
son (Eq. (29) of Ref. 46), except for the definitions of s, t,
and T. Also, we have not included the factor of (2 − δl′′4 ,0),
which Watson uses to account for the degeneracy of states
with |l′′4 | = ±l′′4 . In the current work, we are interested apply-
ing our Franck-Condon calculation to cases in which states
differing only in ± parity may be resolved or in which transi-
tions to only one of the parity components is allowed.

3. Change of basis for ν′′
5

The generating function in Eq. (80) calculates overlap in-
tegrals for the cis-bending mode ν ′′

5 in the |v′′
5x, v

′′
5y〉 basis, but

for most spectroscopic applications, we wish to work in the
|v′′

5 , l′′5 〉 basis. A state in the |v′′
5 , l′′5 〉 basis may be expressed

as a linear combination of states in the |v′′
5x, v

′′
5y〉 basis with

v′′
5x + v′′

5y = v′′
5 ,

|{α′′}, v′′
5 , l′′5 〉 =

v′′
5∑

i=0

ci |{α′′}, v′′
5x = v5 − i, v′′

5y = i〉, (81)

where {α′′} represents a given set of values for all other quan-
tum numbers of the state. Therefore, the Franck-Condon over-
lap integral in the |v′′

5 , l′′5 〉 basis may be expressed as a lin-
ear combination of Franck-Condon overlap integrals in the

TABLE II. Normal mode labels for X̃-state acetylene. The harmonic vibra-
tional frequencies (taken from Ref. 26) were determined from experiment
after deperturbing the anharmonic resonances.

Mode Description Symmetry ω/cm−1

ν′′
1 Symmetric stretch σ+

g 3397.12
ν′′

2 CC stretch σ+
g 1981.80

ν′′
3 Antisymmetric stretch σ+

u 3316.86
ν′′

4 Trans bend πg 608.73

ν′′
5 Cis bend πu 729.08

|v′′
5x, v

′′
5y〉 basis with the same coefficients:

〈v′|{α′′}, v′′
5 , l′′5 〉 =

v′′
5∑

i=0

ci〈v′|{α′′}, v′′
5x = v′′

5 − i, v′′
5y = i〉.

(82)

The coefficients ci may be obtained by applying 2-
dimensional harmonic oscillator raising and lowering oper-
ators found in many quantum mechanics textbooks, such as
Ref. 63. Briefly, the coefficients may be obtained by expand-
ing the operator equation

|v, l〉 = 1√
[(v + l)/2]![(v − l)/2]!

(
â
†
x + iâ

†
y

)(v+l)/2

×(
â
†
x − iâ

†
y

)(v−l)/2|0, 0〉, (83)

and evaluating terms on the right-hand side according to(
â
†
x

)n
x
(
â
†
y

)n
y |0, 0〉 =

√
nx!ny! |nx, ny〉. (84)

III. CALCULATION OF COORDINATE
TRANSFORMATION PARAMETERS FOR
THE Ã—X̃ SYSTEM OF ACETYLENE

The normal mode frequencies and symmetries of the X̃
and Ã states are summarized in Tables II and III. Parameters
for the X̃-state equilibrium geometry and harmonic force field
used in the evaluation of the coordinate transformation were
taken from Halonen et al. (“Model II” of the paper).65 In order
to reproduce the results of Watson, we first used the Ã-state
geometry and harmonic force field from Tobiason et al.66 Us-
ing these force fields, we obtained elements for the gerade
block of D(a-s) and δ(a-s) that agree with those obtained by
Watson to within a phase factor of ±1.46 The phase factor

TABLE III. Normal mode labels for Ã-state acetylene. The harmonic vi-
brational frequencies (taken from Ref. 64) were determined from experiment
after deperturbing the anharmonic resonances.

Mode Description Symmetry ω/cm−1

ν′
1 Symmetric stretch ag 3052.1

ν′
2 CC stretch ag 1420.9

ν′
3 Trans bend ag 1098.0

ν′
4 Torsion au 787.7

ν′
5 Antisymmetric stretch bu 3032.4

ν′
6 Cis bend bu 801.6
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FIG. 3. The labeling of the acetylene nuclei and the orientation of the prin-
cipal inertial axis system used in the construction of l matrices. The c-axis
points out of the page towards the viewer. The equilibrium geometries used
in the calculation are also shown.

of ±1 reflects the fact that Watson uses a different phase con-
vention for the columns of the l matrices. The choice of phase
convention will not affect the magnitude of individual Franck-
Condon factors between harmonic oscillator basis states, but
may affect the relative signs of the overlap integrals. There-
fore, if we wish to be able to calculate interference effects
arising from admixture of harmonic oscillator basis states in-
volved in the initial and final states of a given transition, we
must ensure that the phase convention used to define the nor-
mal modes given by the columns of the l matrix is consis-
tent with the phases used to determine the signs of the ma-
trix elements between the basis states. In the current work,
we have chosen the columns of l′′ to be consistent with the
parameters of the X̃-state effective Hamiltonian reported by
Herman and co-workers21, 23 and expanded by Jacobson and
co-workers.24, 28, 67 The columns of l′ are chosen to have pos-
itive overlap with the corresponding columns of l′′. We have
chosen l′′R and l′R so that positive displacement corresponds to
right-handed rotation around the axes as defined in Figure 3.

Recent spectral analysis published since the Tobiason
et al. force field66 has uncovered new parameters relevant
to the force field of the Ã-state of acetylene. Most notably,

the fundamental frequencies ν ′
1 of 12C2H2 (Ref. 34) and ν ′

2
and ν ′

3 of 13C2H2 (Ref. 64) have been found and a com-
plete set of 12C2H2 xij cross anharmonicities has now been
determined.30, 34–36, 68–70 Jiang et al. have recently reported an
updated force field for the Ã-state that takes the large amount
of new data into account.64 We have used the updated force
field from “Fit Method I” in Ref. 64 (Column 1 of Table 6 in
the reference) in our determination of the coordinate transfor-
mations reported below.

The l matrices (Tables IV and V) were obtained by diag-
onalizing the FG matrix as described by Wilson, Decius and
Cross,53 and the lR matrices are calculated from

(lR)iα,β =
∑
γ δ

eαγ δm
1/2
i (re)iδ(Ie

−1/2)γβ, (85)

where the i subscript refers to the ith nucleus, Greek letter
subscripts refer to Cartesian directions, eαγ δ is the antisym-
metric unit tensor, and Ie is the moment of inertia tensor
evaluated at the equilibrium geometry. The equilibrium
Eckart rotation matrix is then obtained by solving Eq. (19)
at the equilibrium X̃-state geometry (q′′ = 0). That is,

l̃′R�em1/2r′′
e = 0. (86)

In order to illustrate the effects of axis-switching and
curvilinear modes on the coordinate transformation, we first
report the zeroth-order transformation (Table VI), obtained
from

δ(0) = (γ ′)1/2 [
l̃′m1/2r′′

e − l̃′m1/2r′
e
]
, (87)

D(0) = (γ ′)1/2 l̃′l′′(γ ′′)−1/2. (88)

Next, we report corrections to the zeroth-order transfor-
mation. The coordinate transformation with first-order cor-
rection for axis-switching effects is calculated from Eqs. (26)
and (27), and the parameters are tabulated in Table VII. The
geometry change results in an equilibrium Eckart rotation of

TABLE IV. Elements of the l′′ and l′′R matrices for the X̃ state of acetylene evaluated using the force field of Ref. 65.

l′′ l′′R

q ′′
1 q ′′

2 q ′′
4b q ′′

3 q ′′
5b q ′′

5c R′′
a (q ′′

4c) R′′
b R′′

c

aH1
− 0.6420 − 0.2964 0 − 0.6791 0 0 0 0 0

bH1
0 0 0.5520 0 0.6792 0 0 0 − 0.4419

cH1
0 0 0 0 0 0.6792 0.5520 0.4419 0

aC1
0.2964 − 0.6420 0 0.1968 0 0 0 0 0

bC1
0 0 − 0.4419 0 − 0.1968 0 0 0 − 0.5520

cC1
0 0 0 0 0 − 0.1968 − 0.4419 0.5520 0

aC2
− 0.2964 0.6420 0 0.1968 0 0 0 0 0

bC2
0 0 0.4419 0 − 0.1968 0 0 0 0.5520

cC2
0 0 0 0 0 − 0.1968 0.4419 − 0.5520 0

aH2
0.6420 0.2964 0 − 0.6792 0 0 0 0 0

bH2
0 0 − 0.5520 0 0.6792 0 0 0 0.4419

cH2
0 0 0 0 0 0.6792 − 0.5520 − 0.4419 0
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TABLE V. Elements of the l′ and l′R matrices for the Ã state of acetylene evaluated using the force field of Jiang et al.64

l′ l′R

q ′
1 q ′

2 q ′
3 q ′

5 q ′
6 q ′

4 R′
a R′

b R′
c

aH1
− 0.4757 − 0.1970 0.4539 − 0.4804 0.4812 0 0 0 − 0.1695

bH1
0.4811 0.0150 0.3787 0.4801 0.4804 0 0 0 − 0.3535

cH1
0 0 0 0 0 0.6792 0.6036 0.3683 0

aC1
0.1630 − 0.6750 − 0.0836 0.1392 − 0.1391 0 0 0 0.1035

bC1
− 0.1251 − 0.0720 − 0.3789 − 0.1391 − 0.1392 0 0 0 − 0.5792

cC1
0 0 0 0 0 − 0.1968 − 0.3683 0.6036 0

aC2
− 0.1629 0.6751 0.0836 0.1392 − 0.1391 0 0 0 − 0.1034

bC2
0.1252 0.0721 0.3789 − 0.1391 − 0.1392 0 0 0 0.5793

cC2
0 0 0 0 0 − 0.1968 0.3683 − 0.6036 0

aH2
0.4758 0.1971 − 0.4539 − 0.4804 0.4812 0 0 0 0.1696

bH2
− 0.4810 − 0.0150 − 0.3787 0.4801 0.4793 0 0 0 0.3535

cH2
0 0 0 0 0 0.6792 − 0.6036 − 0.3683 0

−2.143◦ about the c-axis. The coordinate transformation in
the basis of curvilinear normal mode coordinates is calculated
from Eqs. (41) and (42), and the parameters are tabulated in
Table VIII.

Inspection of the parameters tabulated in Tables VI–
VIII reveals the relative magnitudes of the corrections to the
zeroth-order coordinate transformation. Axis-switching has a
relatively strong effect (∼10%) on the shift of origin for ν ′

1,
and a weaker effect on the Duschinsky rotation of in-plane vi-
brational modes. The first order correction term (the second
term in Eq. (27)) only affects the Duschinsky rotation in the
totally symmetric ag block of D, because rotation about the
c-axis has the same symmetry as ag vibration, which leads
to a first-order interaction between axis switching and ag vi-
bration. The first order correction decreases the Duschinsky
rotation between trans bend and symmetric stretch by about
5% and increases Duschinsky rotation between trans bend and
C–C stretch by about 3%.

The use of curvilinear coordinates, on the other hand, ap-
pears to have a much more profound impact on the coordinate
transformation. The rectilinear displacement vectors δ(0) and
δ(a-s) both exhibit a large displacement along the symmetric
C—H stretch coordinate, q ′

1, even though the equilibrium ge-
ometries of the Ã and X̃ states have nearly identical C—H

TABLE VI. Elements of the zeroth order Duschinsky matrix D(0) and dis-
placement vector δ(0) for the Ã—X̃ transition of acetylene calculated by
Eqs. (87) and (88) from the l matrices from Tables IV and V (using the force
fields of Ref. 65 for the X̃ state and Ref. 64 for the Ã state.)

D(0)

q ′′
1 q ′′

2 q ′′
4b q ′′

3 q ′′
5b q ′′

5c δ(0)

q ′
1 0.8081 0.0415 1.5628 0 0 0 − 4.3103

q ′
2 − 0.1303 0.8490 0.0857 0 0 0 − 2.1803

q ′
3 − 0.3764 − 0.1134 0.9754 0 0 0 − 6.2585

q ′
5 0 0 0 0.6672 1.424 0 0

q ′
6 0 0 0 − 0.3428 0.7324 0 0

q ′
4 0 0 0 0 0 1.0275 0

bond lengths (Figure 3). The use of curvilinear coordinates
removes displacement along q̄ ′

1 almost entirely. The reason
for the displacement in the rectilinear stretching coordinate is
that the rectilinear bending coordinate q ′

3 stretches the C—H
bond. The result is that in order to arrive at the linear X̃-state
equilibrium from the trans-bent Ã-state equilibrium it is nec-
essary to straighten the molecule by a negative displacement
in q ′

3 and then contract the elongated C—H bond by a negative
displacement in q ′

1. The small value of δ
(c-l)
1 is consistent with

the experimental observation that there is very little Franck-
Condon activity in ν ′

1. Furthermore, the rectilinear coordinate
transformations (Tables VI and VII) exhibit a large Duschin-
sky rotation between the bending and C—H stretch coordi-
nates in both the ag block (D1′,4b′′ ) and the bu block (D5′,5b′′ ),
whereas the use of the curvilinear harmonic basis decreases
these off-diagonal elements of the Duschinsky matrix by al-
most two orders of magnitude.

IV. EVALUATION OF CALCULATED FC INTENSITIES
FOR THE GERADE MODES

We first evaluate FC intensities for transitions involving
only gerade vibrational modes. The results are compared with

TABLE VII. Elements of the Duschinsky matrix D(a-s) and displacement
vector δ(a-s) for the Ã—X̃ transition of acetylene, with first-order corrections
for axis switching, are calculated from equations Eqs. (26) and (27), evaluated
using the l and lR matrices from Tables IV and V.

D(a-s)

q ′′
1 q ′′

2 q ′′
4b q ′′

3 q ′′
5b q ′′

5c δ(a-s)

q ′
1 0.7571 0.0718 1.4347 0 0 0 − 3.931

q ′
2 − 0.1104 0.8396 0.1247 0 0 0 − 2.257

q ′
3 − 0.3497 − 0.1244 1.0154 0 0 0 − 6.321

q ′
5 0 0 0 0.6917 1.3700 0 0

q ′
6 0 0 0 − 0.3297 0.7593 0 0

q ′
4 0 0 0 0 0 1.0275 0
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TABLE VIII. Elements of the Duschinsky matrix D(c-l) and displacement
vector δ(c-l) for the Ã—X̃ transition of acetylene, performed in the basis of
harmonic wavefunctions of curvilinear normal mode coordinates, are calcu-
lated from equations Eqs. (41) and (42), evaluated using the l matrices from
Tables IV and V.

D(c-l)

q̄ ′′
1 q̄ ′′

2 q̄ ′′
4b q̄ ′′

3 q̄ ′′
5b q̄ ′′

5c δ(c-l)

q̄ ′
1 0.9215 0.1805 0.0144 0 0 0 0.1021

q̄ ′
2 − 0.0916 0.8404 − 0.0893 0 0 0 − 0.9681

q̄ ′
3 − 0.0084 0.0431 1.3240 0 0 0 − 7.400

q̄ ′
5 0 0 0 0.9427 − 0.0733 0 0

q̄ ′
6 0 0 0 0.0176 1.0350 0 0

q̄ ′
4 0 0 0 0 0 1.0275 0

experiment and with the calculation by Watson.46 Transitions
involving ungerade modes will be considered in Paper II72 of
this series.

A. v ′
3 ← 0 progression

The most prominent feature in the ground state Ã ← X̃
absorption spectrum is the strong Franck-Condon progression
in ν ′

3. Table IX and Figure 4 provide a comparison between
experimental absorption data and calculated relative intensi-
ties using both the Tobiason et al.66 force field and the Jiang
et al.64 force field, and using the three types of coordinate
transformation discussed in Sec. III. The oscillator strengths
in Table IX were calculated according to

f = 4πmecν0-0

3¯e2
|〈� ′

el|μc|� ′′
el〉|2|〈� ′

vib|q ′′
4 |� ′′

vib〉|2, (89)

where ν0-0 is the transition frequency between the ground vi-
brational levels of the two electronic states (in wavenumber
units), me and e are the electron mass and charge and c is the
speed of light. The quantity 〈� ′

el|μc|� ′′
el〉 was estimated by

taking the value of the ab initio electronic transition dipole

FIG. 4. The experimentally observed oscillator strengths from Ref. 2 for the
v′

3 ← 0 progression for the Ã ← X̃ system of acetylene are plotted with the
reported error of 15% (red markers). Calculated vibrational intensity factors
are shown for comparison. The calculated values were obtained using the To-
biason et al.66 force field with the axis-switching transformation in Table VII
(purple dash-dot curve); and the Jiang et al.64 force field with the zero-order
transformation of Table VI (black dashed curve), the axis-switching transfor-
mation of Table VII (green dotted curve), and the curvilinear transformation
of Table VIII. The calculations are scaled to match the experimental fobs for
v′

3 = 1.

moment (plotted in Figure 1) at the geometry q′′
0 (defined in

Eq. (78)) that maximizes the exponential factor in the vibra-
tional overlap integral.

Inspection of the trends in Table IX reveals that the cal-
culations appear to underestimate the absolute magnitude of
the vibrationless 0–0 transition by approximately three orders
of magnitude. The Franck-Condon factor for the 0–0 tran-
sition is sensitively dependent on the displacement in equi-
librium geometry between the two electronic states, and the
equilibrium geometries are far from the geometry q0 that

TABLE IX. Observed oscillator strengths (fobs) for the v′
3 ← 0 progression of the Ã ← X̃ transition of acetylene

and calculated vibrational intensity factors obtained using two different Ã-state force fields and three different
types of coordinate transformation.

Ã-State FF: Tobiason et al.66 Jiang et al.64

Coord. trans.: (a-s)a (0)b (a-s)a (c-l)c

v′
3 fobs

d × 108
fcalc

×1012

fobs/fcalc

×103

fcalc

×1012

fobs/fcalc

×103

fcalc

×1012

fobs/fcalc

×103

fcalc

×1012

fobs/fcalc

×103

0 1.22 0.744 0.977 3.95
1 4.2 19.9 2.11 10.9 3.86 14.0 3.01 49.4 0.849
2 36 158 2.28 77.6 4.64 97.9 3.68 321 1.12
3 145 819 1.77 360. 4.03 447 3.24 1430 1.01
4 510 3103 1.64 1220 4.18 1500 3.41 4930 1.03
5 1200 9170 1.31 3220 3.73 3910 3.07 13970 0.859

Mean: 1.82 4.09 3.28 0.976
SD: 21% 8.7% 8.3% 12%

aCalculated using the coordinate transformation in Eqs. (26) and (27).
bCalculated using the coordinate transformation in Eqs. (87) and (88).
cCalculated using the coordinate transformation in Eqs. (41) and (42).
dValues from Ref. 2. The measurement uncertainty is 15%.
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FIG. 5. The magnitude of the vibrational intensity factor |〈� ′
vib

(v′ = 0)|q ′′
4b|� ′′

vib(v′′ = 0)〉|2 for the vibrationless 0–0 transition is shown as
a function of the displacement in the trans-bending mode δ3′ between the
equilibrium geometries of the Ã and X̃ states of acetylene. All other pa-
rameters of the coordinate transformation are held fixed to the values in
Table VIII. The arrow points to the calculated value of δ

(c-l)
3′ , and the inset

displays a magnified region plotted on a logarithmic scale.

maximizes the exponential factor in the vibrational overlap
integral. Using the curvilinear coordinate transformation in
Table VIII, we find that q0 is located at a displacement of
(q̄ ′′

1 , q̄ ′′
2 , q̄ ′′

4b) = (−0.18, 0.68, 3.17). Because the Ã—X̃ tran-
sition intensity accumulates at geometries involving large-
amplitude displacement in the trans-bending coordinate, q ′

3,
the failure of the calculation to match the experimentally ob-
served oscillator strength is likely due to the fact that the
large-amplitude q ′

3 displacement is not well described in the
harmonic basis. The use of curvilinear normal mode coordi-
nates mitigates the discrepancy, but only by a factor of ∼3–4.
In Figure 5, the vibrational intensity factor for the 0–0 transi-
tion is plotted as a function of δ

(c-l)
3′ with all other parameters

held fixed to the values in Table VIII. The intensity increases
rapidly as the magnitude of δ

(c-l)
3′ decreases. A change in δ

(c-l)
3′

by ∼20% would give rise to a factor of ∼103 increase in inten-
sity. Including higher-order corrections for the anharmonicity
in the trans-bending mode may help to bring the calculation
into better agreement with experiment, but that is beyond the
scope of the current work.

Although the absolute oscillator strength of the 0–0 tran-
sition is underestimated, the trend in the scaled vibrational
intensities for the v′

3 ← 0 progression (shown in Figure 4)
is in good agreement with experiment. The Franck-Condon
factors obtained using the Tobiason et al. force field match
Watson’s calculation, which used the same force field and
coordinate transformation. These intensities increase slightly
too rapidly with v′

3. The trend in intensities calculated with
the Jiang et al. force field seems to provide excellent agree-
ment with experiment, such that it is difficult to distinguish
the traces on the scale plotted in Figure 4. Throughout the rest
of this series of papers, we will use the more recent Jiang force
field.

B. Emission from Ã(2j3k )

Quantitative experimental intensity data are also avail-
able from dispersed fluorescence measurements in the dom-
inant intensity Franck-Condon progressions (2j

mVk
n), where

V refers to quanta in the trans-bending mode v′
3 or v′′

4 .71

Trends in emission intensities from the Ã-state origin, 32,
2131, and 2132 levels are shown in Figure 6, and the calculated
intensities obtained from the coordinate transformations in
Tables VI–VIII are shown for comparison. The dispersed flu-
orescence spectra from Ref. 71 were recorded on a CCD
(charge-coupled device) detector attached to a monachroma-
tor, and the relative intensities in each emission spectrum were
calibrated by dispersing a halogen lamp to the same detector.
Therefore, the relative intensities within each spectrum are
well determined. However, due to variation and fluctuation in
the intensity of the laser power used to excite each spectrum,
the relative intensities between spectra from different Ã-state
vibrational levels was not determined. As a result, the reported
intensities in Ref. 71 are normalized relative to the strongest
transition in each spectrum. For comparison, the calculated
intensities shown in Figure 6 are normalized in the same way,
by setting the strongest calculated vibronic intensity in each
emission spectrum equal to one.

It is evident in Figure 6 that the effects of using curvi-
linear normal mode coordinates are much more profound
than the effects of correcting for axis switching. In fact, the
emission intensities obtained from the axis-switching coordi-
nate transformation (Table VII) are so close in magnitude to
those obtained from the zero-order coordinate transformation
(Table VI) that it is difficult to tell the traces apart in some of
the panels of the figure. The various calculations do a com-
parable job at reproducing the emission trends along v′′

2 . The
zero-order transformation and the axis-switching transforma-
tion correctly locate the node in emission from 2131 and 2132

at v′′
2 = 2, whereas the curvilinear transformation places the

node at v′′
2 = 1. All three calculations underestimate the in-

tensity of the second lobe relative to the first (probably as a
result of anharmonicity), but the curvilinear transformation
performs slightly better at predicting the shape of the overall
intensity envelope along ν ′′

2 progressions.
As one would expect, the curvilinear coordinate trans-

formation notably improves the performance of the calcula-
tion at high quanta in the bending mode, ν ′′

4 . The rectilin-
ear calculations fail to reproduce the emission intensity into
ν ′′

4 above ∼12 quanta of excitation. The reason for this is
that the rectilinear coordinate transformations overestimate
the Duschinsky rotation between q ′

1 and q ′′
4b (see Tables VI

and VII) due to the bend-stretch coupling induced by the
coordinate system (as illustrated in Figure 2). On the other
hand, the curvilinear calculation produces near-quantitative
results up to 22 quanta of bend excitation. This is a remark-
able result, given that this amount of bending energy is almost
enough to reach the acetylene↔vinylindene reaction bar-
rier at ∼15200 cm−1. The experimentally observed Franck-
Condon factors reported in Ref. 71 are based on a polyad fit
model that takes into account fractionation of intensity within
the pure-bending polyads with conserved quantum number
NB = v′′

4 + v′′
5 . Therefore, most of the important resonance
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FIG. 6. Relative emission intensities for a selection of (2j
mVk

n) vibrational transitions of the acetylene Ã → X̃ transition. Emission is shown from the Ã origin
(panels (a) and (b)); 32 (panels (c) and (d)); 2131 (panels (e) and (f)); and 2132 (panels (g) and (h)). The left column of panels displays progressions in v′′

2
(v′′

4 held constant), and the right column of panels displays progressions in v′′
4 (v′′

2 held constant). The choice of which progression to plot was based on the
availability of the most complete set of experimental data for comparison. Experimental intensities from dispersed fluorescence measurements were taken from
Ref. 71 and are displayed as points with 15% uncertainty. The calculated intensities shown are the sum of the squares of vibrational overlap intensities to
|l′′4 | = 0 and |l′′4 | = 2, obtained using the zero-order coordinate transformation in Table VI (dashed black curves), the axis-switching coordinate transformation
in Table VII (green dotted curves), and the curvilinear coordinate transformation in Table VIII (blue solid curves). The observed and calculated intensities in
the emission spectrum from each Ã-state vibrational level are normalized relative to the strongest vibronic transition in the spectrum.
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interactions are already taken into account by the experiment,
and the observed intensities represent the vibrational inten-
sity into the zero-order bright state, which has all of the ex-
citation in the trans-bend. Because the pure-bending polyad
quantum number is known to be approximately conserved up
to at least 22 quanta of bend excitation,27 it is therefore not too
surprising that a harmonic calculation—performed in the cor-
rect basis—reproduces the experimentally observed intensity
pattern.

V. CONCLUSIONS

There are obvious limitations to treating FC factors of the
Ã—X̃ system of acetylene in the harmonic basis, and we do
not expect complete quantitative agreement with experimen-
tal intensities. Because of the large displacement in equilib-
rium geometry between the two states, the harmonic calcu-
lation is unable to reproduce the observed oscillator strength
for the vibrationless 0–0 transition. However, we have shown
that a simple computational method can effectively reproduce
qualitative trends in the spectrum.

We have shown how the methods developed by
Watson46, 48, 61 for calculating Franck-Condon factors for
electronic transitions involving linear↔nonlinear geometry
changes may be generalized to full dimensionality. The
methods outlined in this paper may also be applied to any
linear↔nonlinear transition, provided that most of the value
of the integral does not accumulate at the linear geometry,
where the nvib = 3N − 6 treatment becomes invalid. One of
the components of a degenerate bending mode may always
be chosen to correlate with a-axis rotation in the nonlinear
state. The angular component of this mode may be con-
strained and its l vector may then be moved into lR. To sim-
plify the integration of the generating function, the remaining
degenerate bending modes may be treated in the Cartesian
two-dimensional harmonic oscillator basis, and the resulting
integral will have a form similar to Eq. (70). The basis set
conversion to (v, l) quantum numbers that describe the two-
dimensional harmonic oscillators in polar coordinates may be
performed after the overlap integrals have been calculated.

Furthermore, in π -bonded systems it is very common
to have large-amplitude bending displacements between the
equilibrium geometries of different electronic states. The
reason is that an electronic π* ← π excitation effectively
changes the spn hybridization, which leads to a qualitative
change in equilibrium bond angle. As a result, such electronic
transitions are accompanied by long Franck-Condon progres-
sions in modes involving the displaced bending coordinates.
As demonstrated in this paper, simple methods for working in
curvilinear normal mode coordinates are capable of produc-
ing notable improvement the intensity progressions at high
quanta of bend excitation that occur in these cases.

Finally, our FC calculations have provided a test of the
new force field for Ã-state acetylene reported by Jiang et al.64

The force field takes into account new data that were not pre-
viously available. The new force field appears to produce im-
proved agreement with experiment along the dominant inten-
sity FC progressions.
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52İ. Özkan, J. Mol. Spectrosc. 139(1), 147–162 (1990).
53E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations: The

Theory of Infrared and Raman Vibrational Spectra (McGraw-Hill, New
York, 1955).

54A. R. Hoy, I. M. Mills, and G. Strey, Mol. Phys. 24(6), 1265 (1972).

55R. Borrelli and A. Peluso, J. Chem. Phys. 125(19), 194308 (2006).
56R. Borrelli and A. Peluso, J. Chem. Phys. 139(15), 159902 (2013).
57J. R. Reimers, J. Chem. Phys. 115(20), 9103–9109 (2001).
58A. Capobianco, R. Borrelli, C. Noce, and A. Peluso, Theor. Chem. Acc.

131(3), 1181 (2012).
59R. Borrelli, A. Capobianco, and A. Peluso, Can. J. Chem. 91(7), 495–504

(2013).
60R. Botter, V. H. Dibeler, J. A. Walker, and H. M. Rosenstock, J. Chem.

Phys. 44, 1271–1278 (1966).
61J. K. G. Watson, Mol. Phys. 79(5), 943–951 (1993).
62D. M. Jonas, X. Yang, and A. M. Wodtke, J. Chem. Phys. 97(4), 2284–2298

(1992).
63C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Hermann,

Paris, 1977).
64J. Jiang, J. H. Baraban, G. B. Park, M. L. Clark, and R. W. Field, J. Phys.

Chem. A 117(50), 13696–13703 (2013).
65L. Halonen, M. S. Child, and S. Carter, Mol. Phys. 47(5), 1097–1112

(1982).
66J. D. Tobiason, A. L. Utz, E. L. Sibert, and F. F. Crim, J. Chem. Phys. 99(8),

5762–5767 (1993).
67M. P. Jacobson, J. P. O’Brien, and R. W. Field, J. Chem. Phys. 109(10),

3831–3840 (1998).
68J. H. Baraban, P. B. Changala, A. J. Merer, A. H. Steeves, H. A. Bechtel,

and R. W. Field, Mol. Phys. 110(21–22), 2707–2723 (2012).
69J. H. Baraban, A. J. Merer, J. F. Stanton, and R. W. Field, Mol. Phys.

110(21-22), 2725–2733 (2012).
70J. H. Baraban, personal communication (2014).
71J. P. O’Brien, “Acetylene: Dispersed fluorescence spectroscopy and in-

tramolecular dynamics,” Ph.D. thesis (Massachusetts Institute of Technol-
ogy, 1991).

72G. B. Park, J. H. Baraban, and R. W. Field, “Full dimensional Franck–
Condon factors for the acetylene Ã1Au—X̃1�+
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