
MIT Open Access Articles

A rule-based method for scalable and 
traceable evaluation of system architectures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Selva, Daniel, Bruce Cameron, and Edward F. Crawley. “A Rule-Based Method for 
Scalable and Traceable Evaluation of System Architectures.” Research in Engineering Design 25, 
no. 4 (June 12, 2014): 325–349.

As Published: http://dx.doi.org/10.1007/s00163-014-0180-x

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/96923

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/96923
http://creativecommons.org/licenses/by-nc-sa/4.0/


1 

 

 

 

 

 

A Rule-Based Method for Scalable and Traceable Evaluation of System Architectures 

 

 

Daniel Selva 

Post-doctoral associate 

MIT Department of Aeronautics and Astronautics 

77 Massachusetts Ave Room 33-409 

Cambridge, MA 02139 

dselva@mit.edu 

T: (617)-682-6521 

 

Bruce Cameron 

Lecturer 

MIT Engineering Systems Division 

77 Massachusetts Ave Room 31-161b 

Cambridge, MA 02139 

bcameron@mit.edu 

T: (617)-253-8985 

 

Edward F. Crawley 

Full Professor 

MIT Department of Aeronautics and Astronautics 

77 Massachusetts Ave Room 33-413 

Cambridge, MA 02139 

crawley@mit.edu 

T: (617)-253-7510 

 

  



2 

 

Abstract 

Despite the development of a variety of decision-aid tools for assessing the value of a conceptual 

design, humans continue to play a dominant role in this process. Researchers have identified two 

major challenges to automation, namely the subjectivity of value and the existence of multiple and 

conflicting customer needs. A third challenge is however arising as the amount of data (e.g., expert 

judgment, requirements, and engineering models) required to assess value increases. This brings 

two challenges. First, it becomes harder to modify existing knowledge or add new knowledge into 

the knowledge base. Second, it becomes harder to trace the results provided by the tool back to the 

design variables and model parameters. Current tools lack the scalability and traceability required 

to tackle these knowledge-intensive design evaluation problems. This work proposes a traceable 

and scalable rule-based architecture evaluation tool called VASSAR that is especially tailored to 

tackle knowledge-intensive problems that can be formulated as configuration design problems, 

which is demonstrated using the conceptual design task for a laptop. The methodology has three 

main steps. First, facts containing the capabilities and performance of different architectures are 

computed using rules containing physical and logical models. Second, capabilities are compared 

with requirements to assess satisfaction of each requirement. Third, requirement satisfaction is 

aggregated to yield a manageable number of metrics. An explanation facility keeps track of the 

value chain all along this process. This paper describes the methodology in detail, and discusses in 

particular different implementations of preference functions as logical rules. A full-scale example 

around the design of Earth observing satellites is presented.  

 

Keywords Conceptual design, design evaluation, requirement traceability, rule-based systems. 

 

1 Introduction 

A common goal of architecting and conceptual design is to make the high-level design decisions 

that will define the main functions, the forms that will perform these functions, and the 

relationships between these forms and with the surrounding context. The role of architectural 

decisions and their influence on engineering systems and products has been extensively studied 

(Crawley et al., 2004; Ulrich, 1995). Part of their importance has been quantified: 1) 70-80% of 

the lifecycle cost is usually fixed after the conceptual design phase; 2) the cost of repairing design 

defects also usually increases at least by a factor of three after this phase (Haskins, 2006; Smith & 

Reinertsen, 1997). Although the conceptual design and system architecting communities seem to 

be different, they certainly use similar tools and methods for exploring the design or architectural 

space. The work presented in this paper, introducing the VASSAR methodology (for Value 

Assessment of System Architectures using Rules),applies to both processes.  

 

The importance of conceptual design and architecting has fostered interest in developing 

computational tools to support it (Campbell, Cagan, & Kotovsky, 1999; Chandrasekaran, 1989; 

Hauser & Clausing, 1988; Koo, Simmons, & Crawley, 2009; Radovcic & Remouchamps, 2002; 

Shah & Rogers, 1993; Suh, 1998; Ziv-Av & Reich, 2005). Some emphasis has been recently put 

into the development of flexible tools that can tackle a variety of problems and can be reused from 

project to project, such as BOSS-Quattro (Radovcic & Remouchamps, 2002) or FIPER (Rohl et 

al., 2000). Our work shares this concern, but applies to a different subset of design problems, 

namely system architecture problems, as will be described in Section 3.1. 

 

A simple task analysis reveals the advantages of incorporating computational tools to conceptual 

design: humans are creative, have common sense, and have the ability to look at a conceptual 

design holistically; conversely, they can only consider a limited set of designs due to 

computational limitations, and have judgment biases due to their expertise. Computers have much 

higher computational power and can ensure rigor and consistency, but they lack creativity and the 

ability to see the “big picture”. Therefore, the optimum level of automation in conceptual design is 

a compromise between a completely automatic process and a completely manual process 

(Parasuraman, Sheridan, & Wickens, 2000). Despite its importance, and the variety of 

computational tools that exist to support it, the level of automation of conceptual design is still 

relatively low. Stewart’s claim in the early 1990‘s that computational methods do a good job at 

solving “operational problems”, but they are still far from solving real-life “messes”, is still largely 

applicable (Stewart, 1992).  

 

Conceptual design consists of two main processes: design synthesis and design evaluation. Forty 

years after the first attempts to automate the design synthesis process, only certain classes of well-
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formulated design problems can be efficiently solved. Some instances of catalog design (Carlson-

Skalak, White, & Teng, 1998) and configuration design problems (Schreiber et al., 2000) are now 

tractable. Very few successful applications of automatic design synthesis can be found for more 

open-ended problems, outside of these classes of problems.   

 

Automating the design evaluation task has its own set of challenges. Thurston highlighted 

subjectivity as one of the biggest challenges (Thurston, 1991). The value of a design is subjective 

because capabilities and performance are not perceived equally by different customers. Thurston 

used the term value functions for the mapping between objective capabilities/performance and 

subjective value. This term is consistent with the decision analysis literature (Stewart, 1992). Other 

terms used to designate these functions include preference functions (Malen & Hancock, 1995) or 

class functions (Messac & Ismail-Yahaya, 2002). This subjectivity brings a certain degree of 

uncertainty to the data that the tool needs to manipulate, thus rendering any computation more 

complex. Techniques to handle subjective information often rely on the use of utility theory (Von 

Neumann & Morgenstern, 1944) or fuzzy sets (L. A. Zadeh, 1965).  

 

Another important challenge, also identified in previous work by (Thurston, 1991) and (Malen & 

Hancock, 1995), is the presence of multiple and often contradicting objectives, which eliminates 

the uniqueness property of the underlying optimization problem (Pareto, 1896). Much has been 

written on methods to approach multiple criteria decision making problems. An old but still very 

good overview is provided in (Stewart, 1992). Two major strategies exist to tackle multiple criteria 

decision making: methods that transform the original problem into a single-criteria decision 

making problem by combining all attributes in some form, and methods that find the non-

dominated set of designs.  

 

Within the first category, value or utility-based approaches are the most common. In value-based 

approaches, single-attribute preferences are elicited through the use of certainty equivalents and 

lotteries, or pairwise comparisons. Then, they are normalized and combined through arithmetic 

operators, typically addition or multiplication. Multi-attribute utility theory is the most widely used 

of these strategies, especially in its additive form (Keeney & Raiffa, 1976). The Analytic 

Hierarchy Process also uses an additive value function, but the weights have different meanings 

and they are usually computed as the eigenvector of a reciprocal matrix containing the pairwise 

comparisons between all elements (Saaty, 1977, 1990). Other approaches in this first category 

include: a) sorting the attributes in order of priority and using a lexicographic criterion (Fishburn, 

1974); b) optimizing the worst case attribute (min-max approach) (de Condorcet, 1785); c) 

minimizing some distance metric of the design to a “goal” or “reference” state (e.g., target 

performance, utopia point), such as in goal programming (Charnes & Cooper, 1957; Ignizio, 

1983), or in the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (Lai, 

Liu, & Hwang, 1994).  

 

In the second category, there exist different algorithms to find the non-dominated set: a) weighted 

sum methods (de Weck & Kim, 2004; L. Zadeh, 1963), where non-dominated points are obtained 

one by one by solving single-objective optimization problems with different combinations of 

weights; b) normal methods such as the normal boundary intersection method (Das & Dennis, 

1998) and the normal constraint method (Messac, Ismail-Yahaya, & Mattson, 2003), which are 

based on the recursive search for non-dominated points in locally normal directions to the 

boundary of the current non-dominated set; c) constraint programming methods, in which a 

constraint satisfaction solver such as KodKod is used instead of an optimizer to progressively find 

better and better solutions; d) methods based on heuristic and meta-heuristic algorithms such as the 

non-dominated sorting genetic algorithm (Deb, Pratap, Agarwal, & Meyarivan, 2002), or 

variations such as the NSGA-PSA that increases the diversity of the approximate Pareto frontier 

by partitioning the frontier in clusters and picking one point from each cluster (Salomon et al., 

2014). Recent work in conceptual design optimization is also exploring the definition of a set-

based Pareto frontier (S-Pareto front) which defines the notion of dominance for concepts (i.e. sets 

of solutions) as opposed to individual solutions (Mattson & Messac, 2003).  

 

Due to these challenges and to the superior ability of humans to holistically assess the goodness of 

a design, previous work has suggested keeping the human in the loop for the design evaluation 

process. These methods are sometimes called interactive methods. For example, the Geoffrion-

Dyer-Feinberg algorithm asks the user to provide local trade-offs, in the vicinity of a solution 
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(Geoffrion, Dyer, & Feinberg, 1972). Kurtoglu and Campbell applied this idea to design and 

developed the Designer Preference Model (DPM), a tool that automatically synthesizes designs 

using grammar rules, presents the designs to the user for evaluation, and generates a preference 

model based on user assessments (Kurtoglu & Campbell, 2009). Avigad et al used a mix of 

objective set-based pareto ranking information and subjective concept-level human preferences to 

find what they call the objective-subjective front (Avigad & Moshaiov, 2009). 

 

All in all, conceptual designers are not left without methods to choose from when approaching a 

particular problem. Despite the controversy that there has been around the usefulness or even the 

validity of some design methods, we concur with the recent editorial in this journal that scientism 

and praxis are complementary, not mutually exclusive, and that the research community should 

continue to explore both rigorous theory and tools that are seen to work empirically (Reich, 2010).  

 

This research addresses mostly what we believe is a limitation of current tools, namely that they 

lack the level of effectiveness, scalability, and traceability required to be applied to large, real-life 

complex system architecting problems. We believe that, for conceptual design and system 

architecture, the best strategy to achieve these goals is to use an evolutionary optimization 

algorithm augmented with a knowledge-based system and direct user interaction in a model-based 

multi-agent framework. In this work, we focus on the use of the knowledge-based systems (KBS) 

to support the evaluation process. In particular, we encode expert knowledge as rules, which have 

been shown in the past to represent conflicting and subjective information (Bellman & Zadeh, 

1970; R. R. Yager, 1977; Zimmerman, 1983).  

 

The development of rule-based systems started with the work by Newell and Simon, who 

demonstrated that the way in which humans solve problems could be expressed using IF-THEN 

logical rules (Newell & Simon, 1972). Based on that observation, Feigenbaum and Buchanan 

created the first truly successful rule-based system in the field of medical diagnosis, called 

MYCIN (Buchanan & Shortliffe, 1984). After a great early success, work on rule-based systems 

stalled in the 1970’s, in part due to the release of the Lighthill report (Lighthill, 1973), which gave 

a pessimistic view of artificial intelligence (AI) in general and rule-based expert systems (RBES) 

in particular, leading to funding cuts in AI labs around the world, and the subsequent “rebirth” of 

the field as knowledge-based systems (KBS). Lighthill argued that RBES were unlikely to ever 

become the world-changing technology that many though they would be. However, the 

development of many rule-based systems continued, with substantial success (Hart, Duda, & 

Einaudi, 1978; McDermott, 1982).In retrospective, RBES or KBS in general have been very 

successful in tackling a large variety of problems in science and engineering, and not so successful 

in solving general problems (Durkin, 1990). This work focuses on two goals for which RBES have 

shown great potential: increasing the traceability and scalability of a knowledge-intensive process 

such as the design evaluation process. 

 

Note that the emphasis on traceability is not new. Work on requirements traceability abounds in 

the literature, especially in software systems. Spanoudakis et al used a rule-based system to 

generate traceability relations between documents containing requirements and use cases in natural 

language (Spanoudakis, Zisman, Pérez-Miñana, & Krause, 2004). Spanoudakis’ work is similar to 

ours not only in the emphasis on traceability and the use of rules, but also in that they used rules 

that trace relationships between requirements and objects, and rules that trace relationships 

between requirements. Both these types of traceability rules are present in VASSAR, which has 

other rules for purposes different from traceability.  

 

The remainder of this paper is organized as follows. In Sect. 2, a review of related work is 

conducted, focusing on design evaluation methodologies, and on applications of rule-based 

systems to other aspects of system and product development. In Sect. 3, the methodology is 

presented in detail using the conceptual design of a laptop as a working example. In Sect. 4, an 

example is presented where the methodology is applied to the conceptual design of a complex 

system, namely a constellation of remote sensing satellites. Finally, in Sect. 5, some conclusions 

and lines for future research are outlined.  

 

2 Related Work 

2.1. Classical design evaluation methodologies 
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Previous attempts at automating design evaluation can be classified in two broad classes: those 

based exclusively on objective information, and those that incorporate subjective information such 

as customer preferences. Objective tools include simulation tools, which are extensively used in all 

phases of product development: Computational Fluid Dynamics (CFD), Finite Element Models 

(FEM), and other ad-hoc simulation tools. Taguchi’s method is another well-known example of 

objective design evaluation method (Taguchi, Elsayed, & Hsiang, 1989). Taguchi’s method is 

based on the premise that product value, which is identified as product quality, is maximized when 

undesired variations in customer attributes due to variations in the manufacturing process are 

minimized.  

 

Subjective methods are often based on the principles of value chain analysis (Donaldson, Ishii, & 

Sheppard, 2006), which essentially state that a product has value because it satisfies customer 

needs. Subjective methods can be further divided in qualitative and quantitative methods. 

Examples of qualitative methods dealing with subjective information include the Pugh matrix 

(Pugh, 1991) and the House of Quality (HoQ) (Hauser & Clausing, 1988). In the Pugh matrix, 

different design concepts are qualitatively compared to a reference design according to a set of 

design criteria using a 3-level grading scale (better than the reference, comparable to the reference, 

worse than the reference). Scores for all attributes are then simply added for each design 

alternative, typically assigning values of +1, 0, and -1 respectively. In the House of Quality, the 

effect of engineering characteristics on customer attributes is typically assessed using scores of 1, 

3, and 9. The House of Quality is augmented with a variety of information about coupling between 

engineering characteristics, relative importance of customer attributes, and customer perceptions 

of the product with respect to the competition amongst others. Other qualitative approaches rely on 

the use of semantic qualifiers and fuzzy logic to model customer preferences, as suggested by 

(Park & Han, 2004) and (Gologlu & Mizrak, 2011).  

 

Quantitative subjective tools use the methods for multi-criteria decision making described in the 

previous section. Multi-attribute utility theory has been extensively applied to conceptual design 

and architecting (Ross, Hastings, Warmkessel, & Diller, 2004). The Analytic Hierarchy Process 

and variants such as the Analytic Network Process are also prevalent in the concept evaluation and 

selection literature (Armacost, Componation, Mullens, & Swart, 1994; Dobias, 1990; Mon, Cheng, 

& Lin, 1994).   

Finally, some design evaluation methodologies combine physical models (objective information) 

with customer preferences (subjective information) (Malen & Hancock, 1995). Another example 

of this is Ziv-av’s and Reich’s Subjective Objective System for generating optimal product 

concepts (a.k.a. SOS). SOS and VASSAR are both used to explore the space of design concepts 

given a predetermined set of building blocks - i.e., configuration design. Their motivation stems 

from two common needs: to deal with subjective and objective information to evaluate a concept, 

and to deal with couplings or interactions between building blocks. However, the main motivation 

for VASSAR, which drove the framework choice towards a knowledge-based system, was to 

ensure the traceability of the score, i.e. to produce a set of explanations in addition to a score 

behind each concept. This does not seem to be a major driver for SOS. As a result, SOS and 

VASSAR address their goals in fundamentally different ways. SOS is a matrix-based method, like 

the house of quality, design structure matrices, or what we call the Campaign-level Science 

Traceability Matrix (Seher, 2009), a precursor to VASSAR. Interactions between building blocks 

are captured in a set of adjacency matrices - in the case of SOS, one for each layer. This makes 

value computation efficient - value in a layer can be computed by using the layer’s adjacency 

matrix to define an inner product in the space of designs, and the resulting quadratic optimization 

problem can be efficiently solved.  

 

On the other hand, VASSAR makes the choice of sacrificing some speed to ensure traceability of 

the evaluation. Interactions between building blocks are modeled as individual rules with the 

closure property in the capabilities space, i.e., capabilities are modified or created by these 

“emergence rules”. The effect of these new capabilities on requirement satisfaction is simulated in 

a subsequent step using a different set of rules, which facilitates reuse of knowledge (capabilities, 

emergence, and requirements) by virtue of the principle of separation of concerns. 

 

In addition to that, SOS seems to be restricted to binary design vectors, which forces a constrained 

knapsack problem formulation for the optimization problem. While the concept enumeration part 

of VASSAR has not been the focus of this paper, VASSAR allows more flexibility in the 
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definition of the concept enumeration problem. Essentially, the concept space is defined by an 

arbitrary decision graph, where nodes are decisions of different types (knapsack, partitioning, 

permuting, assignment, etc) and edges indicate logical pre- and post-conditions between decisions 

(for example, a partitioning decision over the result of a knapsack decision). 

 

The price to pay for this explicit simulation of emergent capabilities and traceability is of course 

computational time, mostly driven by the explicit simulation of emergent capabilities. However, 

we have also developed a methodology to make the process more efficient by pre-computing a set 

of N-to-1 matrices containing the interactions (capabilities + emergence) between different subsets 

of building blocks under different environments. These matrices are then used in real time to 

retrieve (instead of simulate) the emergent capabilities of a certain design. An additional layer of 

inter-subset emergence rules can be run at this point, before checking capabilities against 

requirements and producing a score. 

 

All in all, we believe that the differences between SOS and VASSAR can be reduced to a trade-off 

between computational efficiency vs model expressiveness and traceability. Considering this a 

single-axis continuous trade-off, SOS and VASSAR would be on different parts of the spectrum, 

and therefore they can be seen as complementary tools. 

 

In general, most design methodologies work well for design problems that use knowledge bases of 

limited size. However, real life conceptual design problems are becoming more and more 

knowledge-intensive: nowadays, it would not be unusual for a design tool to require large 

databases containing thousands of customer requirements (Wnuk, Regnell, & Schrewelius, 2009), 

or hundreds of engineering models, for a complex system. This fact raises two problems: a) it 

becomes hard to add or modify knowledge to these knowledge bases; b) it becomes hard to trace 

the results of the tool (i.e., the value of the design) back to the driving customer requirements and 

engineering characteristics. 

 

This work proposes an architecture evaluation tool that leverages the natural traceability and 

scalability of rule-based systems to alleviate these two problems. The rules engine also facilitates 

the use of fuzzy sets to model customer preferences, and the use of simple rules to model complex 

emergent behavior (Wolfram, 2002) that is often at the origin of value delivery (Crawley et al., 

2004).  

  

2.2. Knowledge-based design methods 

VASSAR uses a rule-based system, but many alternative methods and architectures exist for 

expert systems. A relatively recent survey of expert systems methods between 1995 and 2004 

identified ten expert systems methods, including rule-based systems, neural networks, fuzzy expert 

systems, object-oriented approaches (including frame-based systems), case-based reasoning, 

intelligent agents, ontologies, and databases among others (Liao, 2005).  

 

Multiple examples can also be found that combine several methods. For instance, Bonczek et al 

combine first-order logic with database techniques to enhance decision support (Bonczek, 

Holsapple, & Whinston, 1981).  

 

In complex knowledge-based systems, knowledge is organized in clusters that are often called 

modules or agents. For example, when designing a satellite, an agent can take on the role of 

designer of one of the subsystems, such as propulsion or attitude determination and control. 

Similarly, VASSAR has different types of rules for computing capabilities, assessing requirement 

satisfaction, and simulating emergent behavior, all of which can be seen as independent agents.  

 

Different multi-agent architectures differ in their way of handling communication between agents. 

A traditional way of communication between agents is directly connected architectures, where 

connections between agents are static and predefined in a data flow diagram. Examples of this 

paradigm can be found in the CommonKADS knowledge templates (Schreiber et al., 2000). 

CommonKADS has a template for configuration design that consists in three main steps executed 

iteratively: propose-verify-revise. CommonKADS also contains a template for a general 

assessment task, but there is no template for design evaluation. 
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Indirectly connected architectures such as blackboard architectures appeared in the 1970’s with 

systems such as Hearsay-II (Erman & Hayes-Roth, 1980), and flourished (Engelmore & Morgan, 

1988) in part as a reaction to the rigidity of directly connected architectures. In blackboard 

architectures, there are several independent knowledge sources that know the conditions under 

which they can contribute to the problem (trigger conditions) and how to solve a specific part of it. 

There is also a central repository, the blackboard, that acts as common interface for all modules to 

communicate. Finally, there is a central moderator that decides which path to choose among all 

possible paths (Nii, 1986). Blackboard architectures were considered by Feigenbaum as the most 

flexible architecture for a knowledge-based system (Engelmore & Morgan, 1988), since the 

blackboard acts as a common interface that enables the independent evolution of knowledge 

sources.  

 

Blackboard architectures are conceptually similar to rule-based systems: the working memory 

could be the blackboard; the rules could be the knowledge sources. However, knowledge sources 

are typically more complex than single rules in rule-based systems, closer to modules in rule-based 

systems. In other words, a knowledge source could itself be implemented as a rule-based system 

(Corkill, 2003). Thus, blackboard architectures go one step further in the direction of flexibility 

than rule-based systems. An example of a blackboard system applied to design is Fenves et al’s 

knowledge-based system for automatic control of standards of structural design in CAD programs 

(Fenves & Garrett, 1986). Fenves et al’s use of rules for standard verification is similar to our 

requirement rules, but the intent is quite different: Fenves used a Boolean assessment of standard 

satisfaction, whereas we provide a quantitative or semi-quantitative evaluation for individual 

requirements, and a combination of weighted averages and logical operators for aggregation of 

requirement satisfaction.  

 

More recently, the emphasis has been on multi-agent architectures such as MadKit’s Agent-Group-

Role (Gutknecht & Ferber, 2001). In MadKit, agents can communicate directly with each other 

without going through a central repository. Corkill proposed that blackboard architectures are 

more appropriate than agent-based architectures when agents are to collaborate closely, due to the 

unnecessary performance penalty paid by agent interaction, whereas multi-agent architectures are 

more appropriate for large, distributed applications with long-lived, loosely coupled agents 

(Corkill, 2003). An example of design tool with an agent-based architecture is A-design (Campbell 

et al., 1999).  

 

2.3. Rule-based systems for design 

The idea of using logical rules in computer programs to model the expert problem solving process 

was first developed by Ed Feigenbaum at Stanford (Feigenbaum, Buchanan, & Lederberg, 1971; 

Lindsay, Buchanan, & Feigenbaum, 1993), based on findings by Carnegie Mellon’s cognitive 

psychologists Allen Newell and Herbert Simon that expert knowledge is best modeled in chunks 

that can be represented in the form of if-then statements (Newell & Simon, 1972). Since then, rule-

based systems have been applied to virtually every discipline of science and engineering (Clancey, 

1987; Dincbas, 1980; Duda, Gaschnig, & Hart, 1979; Durkin, 1990; McDermott, 1982).  

 

The use of rule-based systems is not new in formal design methodologies. Different forms of rule-

based systems have been used for design synthesis (Antonsson & Cagan, 2001; Stiny, 1980). In 

design evaluation, rule-based systems have been used in the past for some aspects of both value 

assessment (Gologlu & Mizrak, 2011; Park & Han, 2004), and cost assessment (Mauchand, Siadat, 

Bernard, & Perry, 2008).  

 

This work proposes a common rule-based methodology for both value and cost assessment. The 

framework bridges previous work by (Gologlu & Mizrak, 2011; Mauchand et al., 2008; Thurston, 

1991) by encoding both performance evaluation using rules and cost assessment as rules, and 

pushes forward in the direction of increased scalability and traceability of architecture evaluation 

tools, in order to facilitate the use of these tools for large, knowledge-intensive design problems.  

 

3 A Rule-Based Method for Scalable and Traceable Design Evaluation 

This section introduces a rule-based methodology for a scalable, traceable, and customer-centric 

conceptual design evaluation tool. We call this methodology VASSAR (Value ASsessment of 
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System Architectures using Rules)
1
. The VASSAR methodology leverages the communicative 

power of logical rules as data structures, the natural recursivity of functional languages, and the 

traceability and scalability of rules engines, to efficiently incorporate a large quantity of expert 

knowledge into conceptual design evaluation. A laptop design problem is used as a simple 

example to illustrate the methodology. The methodology is then applied to the large-scale problem 

of a constellation of Earth Observing satellites in Sect. 4.  

 

3.1. Applicability 

It is important to note that the VASSAR methodology was developed to be used in a typical 

system architecture framework, where the elements of the system architecture and their 

relationships are sampled from a finite and predetermined set of alternatives. This limitation arises 

from the fact that rules need to be created linking architectural elements to capabilities and 

performance. System architecture problems are closest in nature to design configuration problems 

where all design variables are discrete or categorical. These problems usually involve optimization 

over spaces of subsets, partitions, permutations, matchings, and more generally any kind of graph. 

An in-depth discussion of the classes of architecture problems that can be tackled with VASSAR 

is provided in (Selva, 2012) (chapter 2). Thus, VASSAR is not applicable to other types of design 

problems, especially those involving a large number of continuous variables, such as shape, 

structure, or aerodynamic optimization problems. 

  

3.2. Data Structures 

Rule-based systems use two fundamental data structures to store data in working memory, namely 

facts and rules. Facts are lists of unordered pairs (slot value) that contain information about the 

problem at hand. Rules consist of a left-hand side (LHS) containing a set of conditional elements, 

and a right-hand side (RHS) containing a set of actions. A rule-based system works by matching 

all facts to the LHS of rules in working memory and creating activation records for each match. At 

each iteration, the inference engine takes all current activations, decides which rule to fire next, 

and executes the actions in the RHS of this rule. Typically, actions on the RHS include asserting 

other facts, i.e., adding new facts into working memory, which then match other rules.  

 

In addition to facts and rules, VASSAR uses fuzzy numbers to handle inexact reasoning in both 

customer attributes and engineering characteristics. Fuzzy numbers are easier to elicit from experts 

than traditional utility functions. Our fuzzy numbers are simple implementations of Zadeh’s fuzzy 

sets that use triangular membership functions and center-of-gravity “defuzzyfication”. For 

example, the level at which a certain customer attribute is satisfied is encoded using a fuzzy 

number, according to the membership functions illustrated in Fig. 1. In addition to these fuzzy 

numbers, crisp values of 0% and 100% satisfaction are also possible for extreme cases in which 

there is no uncertainty concerning the satisfaction of the requirement. This is useful to encode 

“utopia” and “show-stopper'” scenarios.  

 
Fig. 1: Membership functions used for customer attributes 

                                                           

1
 An earlier version of the VASSAR methodology was presented at the 2013 IEEE Aerospace 

Conference (Selva & Crawley, 2013), although that paper focused on the implications for space 

system architecting.  
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A conceptual design or architecture is represented as a fact where slots represent design decisions. 

An example of a fact containing the conceptual design of a laptop in a catalog design environment 

is provided below. 

 

Laptop Architecture Fact 

Id: Laptop-1 

Processor: QUAD-2.2GHz-64bit-6M 

RAM: 16GB-DDR3-1600MHz 

Hard-disk: SSD-256GB 

Optical-drive: HDD-1TB-7200RPM 

Graphics Unit: 2GB-GDDR5-128bit 

Battery: 9C-65WHr 

Screen: FHD-15in-COLORSEN 

 

In this example, a laptop is defined eight attributes, one of which is an identification string.   

 

Customer satisfaction depends on the capabilities and performance of the design. In the context of 

this paper, we refer to performance as the attributes of a capability. For instance, gaming laptops 

all have the capability of playing resource-consuming video-games, but different gaming laptops 

may fulfill this capability at difference performance levels. Capabilities and performance are 

represented by capability facts. For example, a laptop “portability” capability fact illustrating 

several performance attributes is given below. Note that attributes can be numerical (e.g., 

autonomy is 6.5 hrs), or fuzzy (e.g., weight is “Heavy”). 

 

Laptop Capability (Portability) Fact 

Id: Laptop-1 

Autonomy-hrs: 6.5 

Weight: “Heavy” 

  

Customer preferences are formally captured through requirements. A requirement is represented as 

one or more rules whose LHS matches a certain combination of capabilities facts, and whose RHS 

asserts a requirement satisfaction fact containing the corresponding level of satisfaction. Note that 

requirements can match both numerical and fuzzy attributes. In the case of the laptop, a 

requirement related to portability might be defined by the following rule:  

 

Laptop Requirement Satisfaction Rule 

LHS: Match Laptop Capability (Portability) fact with: 

Id: Laptop-1 

Autonomy-hrs: At least 4.5hrs 

Weight: “Light” or better (e.g., “Ultra-light”) 

 

RHS: Assert Requirement Satisfaction fact with:  

Requirement id: REQ1-1  

Satisfaction level: “Full” 

Satisfied by: arch1.  

 

3.3. First-level decomposition of VASSAR 

Customer-centric design evaluation is based on the premise that the value of a conceptual design 

should capture the ability of that design to meet customer needs. VASSAR takes this approach and 

assesses the value of a concept or architecture in three steps: a) compute the capabilities and 

performance of the architecture using engineering models; b) translate capabilities and 

performance to preference by comparing them with customer requirements; c) aggregate 

requirement satisfaction into a handful of metrics. In parallel of these three processes, an 

explanation facility keeps track of the value chain, and constructs a set of explanations that are 

provided to the user with the value fuzzy number. This process is illustrated in Fig. 2, where boxes 

indicate objects, ovals indicate processes, and arrows illustrate the dependencies between them 

(e.g., the overall flow of information). The circle connector indicates an enabler (e.g., the domain 

knowledge base enables the assertion of the capabilities of the architecture).  
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Fig. 2: First-level decomposition of the VASSAR methodology 

3.4. Level-2 model of VASSAR 

In this subsection, the four processes of the VASSAR methodology are described in more detail. 

 

3.4.1. Step 1: Compute Capabilities 

Capabilities can be computed from design decisions using domain knowledge in the form, for 

example, of physics laws or engineering models. The process of computing capabilities can be 

decomposed into five main processes, as illustrated in Fig. 3: a) asserting architectural facts; b) 

inheriting attributes from upper to lower levels of the hierarchy of form decomposition; c) 

computing basic capabilities; d) computing performance; e) computing emergent capabilities. Each 

of these steps is described in more detail below. Double arrows on Fig. 3 represent situations in 

which a process modifies an existing set of facts, as opposed to creating a new set of facts. 

 

 
Fig. 3: Zoom-in on Step 1: Compute capabilities 

a) Asserting architectural facts: First, the process takes a conceptual design or architecture and 

asserts all the corresponding system, subsystem, and component facts using a set of rules labeled 

as manifest rules.  The current version of VASSAR is limited to a 3-level form decomposition 

nomenclature (system, subsystems, and components) following INCOSE's recommendation 

(Haskins, 2006). Two levels may be sufficient for simple conceptual design problems. For 

example, in the case of a laptop, the subsystem level is probably unnecessary: the system is the 

laptop, and examples of components are the hard-disk and the processor.  

 

b) Inheriting attributes: Subsystem and component facts created through manifest rules typically 

have many slots (attributes) empty, because not all properties are directly set by design variables. 

For example, given an architecture such as arch1 that has a QUAD-2.2GHz-64bit-6M processor, a 

component fact will be asserted by manifest rules that has the Id field set to QUAD-2.2GHz-64bit-

6M, and the rest of attributes (e.g., CPU speed, cache size, number of bits) empty. These attributes 

are inherited in the second step by attribute inheritance rules. There are two main types of 

attribute inheritance: a) direct inheritance from upper levels of the architectural hierarchy, e.g., the 

architecture id property is inherited from the architecture fact to the subsystem or component facts; 

b) direct inheritance from a database of fixed parameters such as components characteristics, e.g., 

the amount of memory of a video card is imported from a database of video cards. 
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c) Computing basic capabilities: The third step is the assertion of an initial set of capability facts 

through the application of capability rules. These capability rules have the following structure: “IF 

there is a certain combination of components with certain attributes, THEN assert a certain 

capability.” For example, a rule asserting the capability of a laptop to play video-games is 

provided below. 

 

Laptop Capability Rule 

LHS: Match Laptop Architecture Component (RAM) fact with: 

Parent: arch1 

Id: Id_Comp_RAM 

Memory-GB: Larger than 8 

 

        Match Laptop Architecture Component (Graphics Unit) fact with: 

Parent: arch1 

Id: Id_Comp_GPU 

Memory-GB: Larger than 2 

 

        Match  Laptop Architecture Component (Screen) fact with: 

Parent: arch1 

Id: Id_ Comp_Screen 

Size-in: At least 17 

 

RHS: Assert Capability (Gaming) fact with:  

Parent: arch1. 

By: combination of Id_ Comp_RAM, Id_ Comp_GPU, Id_ Comp_Screen. 

 

d) Computing performance: Performance rules fill out attributes of capability facts (e.g., 

portability, gaming), typically by combining information from different architectural facts (e.g. 

RAM, graphics unit). For example, the weight of the laptop is directly copied from the Laptop 

Architecture fact to the Portability Capability fact, and the expected performance of a laptop in a 

complex simulation depends on several attributes from the Processor Component fact (speed), the 

RAM Component Fact (total memory, speed) and the Hard-disk Component fact (speed). 

Performance rules only fire when all the attributes that they need for the computation are available, 

i.e., when they have been inherited or computed by other performance rules. 

 

e) Computing emergent capabilities: Emergence rules are responsible for asserting new 

capabilities from combinations of existing capabilities. Their structure is the following: “IF there is 

a certain combination of capabilities with certain performance, THEN assert a new capability with 

a new performance”. An example of emergence rule is provided below. 

 

Laptop Emergence Rule 

LHS: Match Capability (Portability) fact with:  

Parent: arch1. 

Id: Id_Capa_Porta 

Autonomy-hrs: More than 4h 

Weight: “Light” or Better  

 

        Match Laptop Capability (Touch-Screen) fact with: 

Parent: arch1 

Id: Id_Capa_Touch 

Writing-recognition: Yes 

Screen-fold-down: Yes 

 

RHS: Assert Capability (Class-Notes-Taking) fact with:  

Parent: arch1. 

By: combination of Id_ Capa_Porta, Id_Capa_Touch. 

 

Note that the two last processes of computing emergent capabilities and performance do not occur 

sequentially: the performance of both basic and emergent capabilities is computed as the required 
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attributes become available; emergent capabilities are asserted as their required capabilities with 

the required performance attributes are asserted; this runs iteratively in a loop until no more 

emergent capabilities can be asserted, and all performance attributes that can be calculated have 

been calculated.  

 

3.4.2. Step 2: Compute Requirement Satisfaction 

Thurston and Messac amongst others noted that capabilities do not linearly translate into value 

(Messac & Ismail-Yahaya, 2002; Thurston, 1991). For example, the benefit of more computational 

power in a laptop does not increase linearly with computational power. Instead, the relationship 

between capabilities and requirement satisfaction may exhibit discrete steps (e.g., the ability to run 

a specific program), saturation effects (e.g., we get no marginal benefit from adding more 

computational power after a certain level because we are limited by the performance of other 

elements such as the operating system), and non-linear continuous multiplicative envelopes (e.g., a 

concave envelope capturing decreasing marginal benefit). These effects are captured by functions 

that map performance to satisfaction. These functions have received different names in the past, 

namely value functions (Thurston, 1991), class functions (Messac & Ismail-Yahaya, 2002), or 

preference functions (Malen & Hancock, 1995). From now on we adopt Malen’s nomenclature and 

refer to them as preference functions. In the VASSAR methodology, preference functions are 

expressed in the form of requirement satisfaction rules that capture these discrete steps, saturation 

effects, and non-linear continuous envelopes. Requirement satisfaction rules look for combinations 

of capability facts and assert requirement satisfaction facts, as illustrated in Fig. 4. Section 4 delves 

deeper into different approaches to model preferences using rules. 

 

 
Fig. 4: Zoom-in on Step 2: Compute preferences 

3.4.3. Step 3: Aggregate Requirement Satisfaction 

The preference domain is hyperdimensional because there is at least one dimension per 

requirement, and a complex system can easily contain several hundreds or even thousands of 

requirements. Dominated architectures can easily be eliminated by means of Pareto analysis, but 

this is unlikely to reduce the size of the tradespace by much because, in general, the size of the 

non-dominant set increases with the number of metrics. In particular, full satisfaction of one 

requirement is sufficient to make an architecture non-dominated. Hence, the problem remains of 

choosing between non-dominated architectures that have very different requirement satisfaction 

sets. In other words, the dimensionality of this domain needs to be reduced in order to be able to 

make a decision concerning the preferred architectures. This requires the use of subjective 

information capturing customer preferences. 

 

Hence, the last step of the methodology is the reduction of the dimensionality of the preference 

domain through aggregation of requirement satisfaction into objective satisfaction, and then into 

customer or more generally user satisfaction. Again, a 3-level hierarchy is assumed for satisfaction 

(user needs, objectives, and requirements). This two-step aggregation process requires the 

elicitation of a list of objectives and requirements from different users, and reduces the 

dimensionality of the preference domain (i.e., the number of metrics) from the number of 

requirements to the number of users. For example, in the case of the laptop, one could imagine a 

family with three members with conflicting requirements, who only has resources to buy one high 

performance laptop or perhaps two lower performance laptops, and therefore need to come up with 

an optimal conceptual design for their computation needs. In this case, a possible hierarchy of 

users-objective-requirements is illustrated below. 

 

Mathematically, requirement aggregation rules reduce the dimensionality of the satisfaction space 

by using aggregation functions. Aggregation functions combine arithmetic and logical operators. 

The simplest and most commonly used arithmetic operator is the weighted average. For example, 

the satisfaction of a user is given by a weighted average of the satisfaction of its objectives. More 
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sophisticated arithmetic operators are also possible (see for example Yager's ordered weighted 

averaging operator, or Fortin's gradual numbers (Fortin, Dubois, & Fargier, 2008; R. Yager, 

1988)). Logical operators can also be utilized to express preferences of the type, such as the at-

least-n-out-of-k condition: “the stakeholder is satisfied if 3 or more of their 4 objectives are 

satisfied.”  

 

 

 
Fig. 5: Hierarchy showing customers, objectives, and requirements for the laptop example 

The number of metrics can be further reduced to 1 if the relative importance of users to a central 

stakeholder is introduced. The relative importance of users (e.g., Parent1, Parent2, Child) can be 

formally computed by applying quantitative stakeholder analysis techniques, such as Cameron and 

Crawley’s stakeholder networks (Cameron, 2008). If this third aggregation step is applied, the 

fuzzy number that is obtained represents the value of the system architecture to the central 

stakeholder. The entire process is illustrated in Fig. 6. 

 

 
Fig. 6: Zoom-in on Step 3a: Aggregate preferences 

 

3.4.4. Step 4: Prepare Explanations 

The VASSAR methodology provides a set of explanations that accompany the fuzzy value metric. 

This is central to the methodology, as it satisfies one of its key requirements, namely that of 

showing traceability of the value chain. 

  

Explanation rules keep track of the entire value chain by extracting information from architectural 

facts, capability facts, requirement satisfaction facts, objective satisfaction facts, and stakeholder 

satisfaction facts, as illustrated in Fig. 7.  
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Fig. 7: The explanation facility extracts information from different points of the process and prepares 

explanations that accompany the results. 

3.5. Some Notes on Preference Functions and Requirement Satisfaction Rules 

Previous work by Messac amongst others has looked at different forms for preference functions 

(Messac & Ismail-Yahaya, 2002). In VASSAR, preference functions are embedded in requirement 

satisfaction rules. In the following paragraphs we discuss different implementations for 

requirement satisfaction rules for these different types of preference functions. We start by 

discussing single-attribute preference functions, and then discuss different strategies to generalize 

to multiple attributes.  

 

 

3.5.1. Implementation of Rule-Based Single-attribute Preference Functions 

The simplest possible single-attribute preference function is an identity function. This implies a 

perfectly linear relationship between capabilities and satisfaction. For example, one could argue 

that the preference function for the weight of a laptop is linear, so that Laptop 1 weighing half as 

much as another Laptop 2 provides twice as much value to its customers. However, this approach 

is often too simplistic in practice and is rarely useful. 

 

Single-step preference functions adequately capture cases in which preferences are driven by a 

single threshold value. For example, two requirements on the portability of a laptop may read “the 

laptop shall weigh less than 3 lb”, and “its maximum dimension shall not exceed 12 in”. This type 

of requirements can be modeled as step functions, where value is zero below the threshold level 

and 1 at or beyond the threshold level. Single-step preference functions are very simple to 

implement using one rule per requirement (see Fig. 8). Note in particular that it is easy to include a 

short sentence providing the justification behind this threshold. This information can readily be 

used by an explanation facility to explain to the user why a certain requirement is satisfied. 

Moreover, many requirements in practice consist of a single threshold value. One threshold is 

however not sufficient to capture complex preference functions.  

 

An arbitrary continuous preference function can capture any subtlety in the mapping of the multi-

dimensional performance attribute space to the one-dimensional requirement satisfaction space. 

Continuous preference functions are also easy to model with one rule, where the performance 

attribute is matched in the left-hand side of the rule (LHS) and the continuous function is used in 

the right-hand side of the rule (RHS) to transform to value (see Fig. 8). However, continuous 

satisfaction functions have two disadvantages: a) their development requires eliciting large 

amounts of information for stakeholder requirement; b) they are less suited to directly feed 

information to an explanation facility. Indeed, the explanation facility would have to infer local 

information from the overall global information about the shape of the continuous preference 

function.  
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Multi-step preference functions, defined by a set of thresholds and a set of corresponding 

preference values, are a good compromise between single-step functions and arbitrary continuous 

functions. First, many system requirement documents express requirements using a target value 

and a threshold value, which suggests the use of bi-step preference functions (N=2). Second, they 

are easy to implement by using one rule per threshold. Third, maintaining one rule per threshold 

maintains the suitability for the explanation facility. And finally, continuous preference functions 

can be approximated by multi-step preference functions to an arbitrary degree of fidelity by 

increasing the number of thresholds. In particular, any of Messac's class functions can be modeled 

(Messac & Ismail-Yahaya, 2002). From our experience modeling six different aerospace systems 

in this framework, we have found that in practice, it is very rare that more than five thresholds are 

needed to capture the main features of a preference function.  

 

 
Fig. 8: Rule-based implementation of single-step (upper), multi-step (center), and continuous (lower) 

single-attribute preference functions 

3.5.2. Extension to Multiple Attributes 

One approach to extend this analysis to multiple attributes is to simply use single-attribute 

preference functions and perform the combination at the satisfaction level. For example, in the 

preceding example, two different rules and preference functions could be used for weight and 

maximum dimension. This is equivalent to deferring the treatment of multiple attributes to Step 3 

(Aggregating preferences). However, this approach assumes some degree of independence 

between attributes. In reality, this might be an incorrect assumption, because the preference 

function of an attribute may depend on the value of another attribute. For example, the threshold 

for weight may depend on the maximum dimension of the system, and vice-versa. Additional rules 

would be required to handle these couplings. 

   

Instead, multi-dimensional preference functions can be used to take into account several attributes 

simultaneously. The drawback of this approach is that it could potentially require many rules to 

cover all cases, i.e., all possible combinations of values of the attributes. For example, assuming a 

3-level preference function for weight and maximum dimension leads to 9 possible performance 

scenarios. A multi-dimensional preference function would thus require in principle 9 rules, one per 

scenario. The one-dimensional preference function would require 2 rules (one per attribute), plus 

as many rules as needed in order to account for all the trade-offs between attributes.  
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An important remark concerning this methodology is that one rule covers one particular case (e.g., 

the nominal case in which weight and maximum dimension are all at or above the desired level for 

those attributes). If any of these conditions is not met (i.e., if any of the attributes is below the 

desired level), this rule will not fire. If no other rules expressing full or partial satisfaction of this 

requirement are fired, it will be considered that the architecture provides a null (0%) satisfaction of 

that requirement. Therefore, it is important to cover all necessary cases for each requirement.  

 

One could think that this would lead to an infeasible number of requirement satisfaction rules 

capturing all possible degraded cases. In practice however, we have found from conversations with 

experts that one rule describing the conditions for full satisfaction plus a handful of partial 

satisfaction rules can cover all realistic cases for a given set of attributes.  

 

In practice, the choice between single-attribute preference functions and multi-dimensional 

preference functions is problem-specific and depends on factors such as the number and coupling 

between attributes.  

 

3.6. Comparison with other rule-based evaluation frameworks 

We mentioned in the literature review that this is not the first attempt to use knowledge-based 

systems to support the conceptual design phase. We believe, however, that the rule-based 

VASSAR architecture with capability, requirement, emergence, aggregation, and explanation 

rules, and macros that write rules based on the contents of a database facilitates scalability and 

traceability. This is discussed further in this section.   

 

3.6.1. Scalability 

Scalability of rule-based systems in the sense of ease of change comes mainly from the fact that 

the expert knowledge is physically separated from the rest of the code, so it can be modified and 

updated independently of the rest of the code. Adding more rules is as simple as loading another 

text file containing the additional rules. No other steps are necessary as long as: a) all the modules 

and templates used in the new rules are defined in the system; b) the new rules correctly specify 

their pre-conditions with respect to other rules. The organization of the rules in different modules 

further facilitates this task. 

 

The scalability of our tool in particular is also supported by an automatic programming module 

that reads input information from a spreadsheet and automatically writes rules of different types. 

For example, in one particular project, we automatically generated 2,000+ requirement rules by 

reading the requirements from a spreadsheet. 

 

Scalability can also be understood as the ability to handle very large problems, which is related to 

performance. The performance of a naïve rule-based system is O(RF^P), where R is the number of 

rules, F is the number of facts, and P is the average number of patterns in the rules. However, the 

performance of Jess, which uses an improved version of the Rete algorithm, is closer to O(RFP), 

so it grows linearly with the size of the working memory. This increases scalability because the 

user can arguably tackle larger problems with a pure rule-based system architecture than with a 

multi-agent architecture that has overhead for handling communication and coordination between 

agents. 

 

Furthermore, both the Jess rule-based system and the framework presented are very easy to 

incorporate in a parallel computation environment, which we have done in all our projects. 

Multiple Rete objects can be created, initialized with the rules, and then used by any number of 

workers to evaluate architectures in parallel (the object just needs to be reset every time it receives 

a new architecture). 

 

3.6.2. Traceability 

It is often mentioned in textbooks that rule-based systems offer natural traceability, since the 

simple sequence of rules that were executed traces the reasoning process of the system (Giarratano 

& Riley, 2004).  

 

However, the key to the traceability of VASSAR comes from an ad-hoc module, namely 

explanation rules. Explanation rules keep track of all the important - and only the important - 

events that occur during execution, and generate explanation facts with that information. These 
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explanation facts are later used by an explanation facility to provide both graphical and text-based 

explanations to the user on demand. 

 

For example, the user can ask: a) to see how a certain capability and performance emerges from 

the interaction of subsystem and components interfaces and characteristics; b) to see the 

traceability of how (i.e., by which combination of capabilities) a particular requirement was 

satisfied by a certain design; c) to see how an overall score decomposes into stakeholder, objective 

and requirement satisfaction.  

 

Ultimately, this traceability increases the confidence the user has on the tool.  

  

3.7. Validation 

Verification and validation (V&V) of a decision support tool is challenging because there is rarely 

a truth value with which the output of the tool can be compared. Still, V&V  is a critical aspect of 

any decision support tool, and substantial effort was put into the V&V of the VASSAR 

framework.  

 

In V&V, one typically differentiates between validation (the tool does the right thing) and 

verification (the tool does what it is supposed to do correctly). Verification of the tool was largely 

done by comparison to other automatic decision support tools based on general purpose 

frameworks, namely Matlab and in some aspects Excel.  

 

Validation of decision support tools is always challenging, especially when the tool is applied to a 

current problem for which the solution is not known. The approach that we took for validation is 

two-fold. First, we applied the tool to a well-known retrospective case study, namely the NASA 

Earth Observing System designed in the 1980’s. The results that we found were compared to the 

literature and reviewed in detail with a senior manager at NASA that was in charge of developing 

that program in the 1980’s. Results were found to be consistent with the literature, and the 

reviewer also found the results consistent.  

 

To give a specific example, the tool predicted the assignment of correctly predicted the assignment 

of 12 instruments to spacecraft based on measurement synergies, conflicts, and cost, with only one 

difference from the chosen assignment. Specifically, the tool predicted that a certain atmospheric 

chemistry instrument in the EOS program should fly in a different spacecraft than it actually did. 

The tool identified that this one instrument would increase science return through synergies 

between instruments and would decrease cost through a down-grade in one of the launch vehicles 

required. Our expert confirmed these arguments, and explained that the instrument was in fact 

originally slated to fly as described in the tool (information that was not publicly available). The 

instrument in question was an international instrument, and there was a hard constraint at the time 

to fly that instrument in the first spacecraft, even though that was a suboptimal decision in terms of 

science and cost. (All this is explained in detail in (Selva, 2012), chapter 6). 

The framework has also been used for projects in communications satellites. In this case, results 

have been presented and discussed in detail with NASA personnel, and they have always found 

them satisfactory in terms of fidelity. We found that the traceability feature of the tool plays a 

crucial role in helping users gain trust in its ability to generate useful results. 

 

While the tool has been mostly applied to problems in the aerospace domain, we are confident that 

it is useful for any system architecture problem that can be expressed by means of a decision graph 

following the description provided in Section 3.1. 

 

4 Application to a Knowledge-Intensive Architecting Problem: A Constellation of Soil 

Moisture Monitoring Satellites 

We emphasized earlier the importance of the applicability of a design evaluation tool to 

knowledge-intensive problems. In this section, we apply VASSAR to a soil moisture remote 

sensing satellite mission. This hypothetical mission would combine instruments that are similar to 

real instruments flown or to be flown in American and European missions. This example was 

designed to highlight some of the difficulties that systems engineers find to apply design 

evaluation methodologies, and to illustrate different features of VASSAR. First, it is a knowledge-

intensive problem, as a large body of expert knowledge is required to assess the worth of an 

architecture (e.g., hydrology, climatology, numerical weather prediction, satellite remote sensing, 
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and so forth). Second, a large portion of the value delivered by such a mission is scientific value, 

which contains elements of subjectivity and is hard to model in traditional design evaluation 

methodologies presented in Sect. 2. Finally, this system has a complex value chain loop with clear 

examples of emergent behavior that actually drives an important part of the value delivery. This 

will test the ability of VASSAR to provide traceability of the value chain.  

 

4.1. Instrument description 

Five instruments are considered in this example, namely: a) an L-band polarimetric radiometer that 

we call LRADIO, based on the design of NASA's SMAP mission (Entekhabi, 2010); b) an L-band 

synthetic aperture radar (LSAR), also based on an instrument on the SMAP mission (Entekhabi, 

2010); c) an X-band polarimetric radiometer (XRADIO), based on NPOESS/CMIS (Gasster & 

Flaming, 1998); d) an infrared multispectral radiometer (IR) based on NPOESS/VIIRS (Welsch & 

Swenson, 2001); e) a hypothetical P-band polarimetric synthetic aperture radar (PSAR), such as 

the one proposed for BIOMASS (Heliere et al., 2009). The characteristics (mass, power, data rate, 

performance) that we assumed for these instruments are provided in the Appendix. 

 

4.2. Architecture tradespace 

Although the work presented in this paper focuses on design evaluation, this section presents a 

complete tradespace exploration problem including enumeration and evaluation of a finite set of 

architectures. For this example, we chose to represent an architecture as the set of decisions laid 

out in Table 1. The set of possible architectures is given by:  

             ∑(
 
 
)    ( )

 

   

       

where       is the number of possible architectures, and     ( ) is the nth Bell number.  

 
Table 1: Architectural decisions and range of values 

Decision Range of values 

Payload 

selection 

Any combination of the 5 instruments described in the payload description 

subsection (31 combinations excluding the empty set) 

Payload-to-

spacecraft 

allocation 

Any partition of the payload set into spacecraft (between 1 and 52 combinations, 

depending on       ) 

#satellites per 

plane 

[1,2] 

Orbit altitude {400;600;800} 

Orbit type {polar; sun-synchronous (SSO) dawn-dusk (DD); SSO morning (AM)} 

 

4.3. Stakeholder requirements 

Five stakeholder groups or panels were identified for this example, labeled as follows: weather, 

climate, ecosystems, water, and applications. All five panels were initially considered equally 

important; a case with non-uniform weights is considered later in the sensitivity analysis. Note that 

the panels' relative weights could be obtained through a formal method such as the one proposed 

by Cameron and Crawley (Cameron, 2008).  The specific objectives of each panel, as well as their 

relative ranking, are provided in the Appendix. 

 

4.4. Capability rules 

Nominal instrument capabilities are presented in the Appendix. However, architectural decisions 

can affect these instrument capabilities in non-trivial ways that are encoded in logical rules. For 

example, temporal resolution and spatial resolution both depend on the orbital parameters. Data 

quality also depends on the orbital parameters. Below are a few examples of situations in which 

data quality is severely compromised due to orbital parameters. 

 

 Lighting conditions: Visible and near-infrared instruments (namely the corresponding 

channels of the infrared radiometer) cannot work in sun-synchronous orbits with pre-dusk 

local times of the ascending/descending node because they cannot gather enough light. 

 

 Image distortion: Side-looking instruments cannot work at low altitudes because image 

distortion becomes unacceptable. 
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4.5 Performance rules 

Performance rules were added in this example to compute measurement attributes such as spatial 

and temporal resolution from instrument characteristics and orbital parameters. For example, the 

spatial resolution    of a side-looking microwave imager of aperture D and frequency f with an 

off-nadir angle of   flying at an altitude   can be approximated by the following rule-of-thumb 

 

     (   (  
 

   
)     (  

 

   
)) 

 

4.6. Emergence rules 

Emergent behavior plays a key role in value delivery to stakeholders. We describe in this 

subsection a few examples of emergent behavior (both in science and cost) that were implemented 

in this case study. 

 

 Data disaggregation schemes: The high accuracy, low spatial resolution soil moisture 

dataset provided by LRADIO can be combined with the lower accuracy, higher spatial 

resolution dataset provided by LSAR to produce a new high accuracy, medium spatial 

resolution dataset.  

 

 Sample averaging: In any dataset, part of the non-systematic error can be reduced by 

averaging samples in time or space, thus effectively creating a new dataset that trades 

accuracy against spatial or temporal resolution. 

 

 Level-4 data products: A level-4 net carbon ecosystem exchange dataset can be created 

from the combination of a level-3 soil moisture dataset and several ancillary products, 

namely land surface temperature, vegetation state, and landcover status.  

 

 Multispectral measurements: infrared and microwave snow and ice cover datasets can be 

combined to produce new, multispectral, more accurate datasets.  

 

 Sharing a common dish: The L-band radar and radiometer can share a common antenna 

thus effectively reducing the total mass of the system. 

 

 Learning Curve: If several identical satellites are developed and fabricated, the marginal 

cost of the second and subsequent units is lower than the cost of the first unit due to 

learning. 

 

4.7. Results 

The set of 3,636 architectures was evaluated using VASSAR. The benefit portion is based on the 

set of requirements described in the Appendix. The cost portion is based on a cost model described 

in the Appendix. The point science scores and lifecycle cost estimates for all these architectures 

are shown on Fig. 9. These numbers are obtained from defuzzyfying the fuzzy values. Non-

dominated architectures are highlighted in red. 
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Fig. 9: Science score vs cost estimate for the 3,636 architectures. Diamonds represent non-dominated 

architectures. 

 

4.7.1. Tradespace analysis 

The main goal of any system architecting tool is to gain insight into the “shape” of the tradespace, 

i.e., what the main trades are, whether there are families of architectures, and so forth. We observe 

several features just by looking at the tradespace in Fig. 9: 

 

 A very large number of architectures get a science score of 0. This happens when an 

architecture does not meet one or more requirements that are defined as critical to provide 

value, or when the instruments are put in environments where they cannot operate. An 

example of the latter is when a side-looking instrument is put at 400km, resulting in a too 

large image distortion. 

 

 No architecture gets a perfect science score of 1. This is due to the existence of  

unresolvable conflicting requirements. In this particular case, most of the observations 

require a SSO in order to get rid of diurnal variations in radiance. However, a small 

subset of requirements that concern oceanography or cryospheric measurements are 

ideally taken in true polar, non-SSO orbits, in order to avoid tidal aliasing 

(oceanography), or to obtain a better coverage of the polar regions (cryosphere). Since it 

is impossible to be in a polar and SSO orbit simultaneously, some value is going to be 

lost no matter what decision is made. 

 

 We observe clusters of architectures that achieve the same science score at different costs. 

This is a typical behavior in architectural tradespaces, that has its origins in the non-linear 

mapping between capabilities and satisfaction, namely in the quantization of satisfaction 

levels. In other words, slightly different performances may be perceived as equivalent in 

terms of satisfaction by stakeholders.  

 

4.7.2. Use of explanation facility 

The explanation facility provides support for more advanced analysis of the tradespace. Examples 

of the features of the explanation facility are listed below: 

 

 Text-based support: The explanation facility provides detailed explanations of the scores 

of an architecture in text format as required by the user. An example of such information 

is provided in Table 2. 
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Table 2: Example of text-based explanations for science score 

Architecture #3 achieves a score of 0.8730 because: 

 

Subobj CLI2-2 (meas “3.4.1 Ocean surface wind speed”) gets a score of 0.5 (loss of 0.010 

value) because: 

 

Attribute orbit-inclination gets a score of “Half” because of SSO orbit does not 

provide adequate tidal 

sampling (polar orbit required) 

 

Subobj ECO2-1 gets a score of 0 because: 

 

No measurement of parameter “2.3.3 Carbon net ecosystem exchange NEE” is 

found (requires multispectral measurements) 

 

Subobj WAT3-1 (meas “4.2.4 snow cover”) gets a score of 0.415 (loss of 0.013 value) 

because: 

 

Attribute Accuracy gets a score of “Most” because of Insufficient accuracy 

(Missing multispectral combination 

of sensors) 

 

Attribute orbit-inclination gets a score of “Half” because SSO orbit does not 

provide adequate coverage of 

polar regions (polar orbit required) 

 

Subobj WAT4-1 (meas “4.3.2 Sea ice cover”) gets a score of 0.2075 (loss of 0.018 value) 

because: 

 

Attribute Accuracy gets a score of Some because of Insufficient accuracy 

(Missing multispectral combination 

of sensors) 

 

Attribute orbit-inclination gets a score of “Half” because of SSO orbit does not 

provide adequate coverage of 

polar regions (polar orbit required) 

 

Subobj WEA1-1 (meas “2.3.2 soil moisture”) gets a score of 0.83 (loss of 0.020 value) 

because: 

 

Attribute Horizontal-Spatial-Resolution gets a score of “Half” because of 

insufficient HSR to meet future 

NWP grid size (4km required, [4,12]km achieved) 

 

 Basic graphic-based support: The explanation facility can provide information about one 

or more architectures on the tradespace just by clicking on the corresponding points on a 

chart. For example, we can obtain the details of the non-dominated architectures in Fig. 9 

by clicking on them, as shown in Table 3.  Note that all non-dominated architectures have 

800km dawn-dusk SSO, and they are monolithic architectures (all instruments are put 

onto a single spacecraft). These are thus dominating features. The exact payload 

composition and the number of satellites in the constellation (1 or 2) vary across the non-

dominated set. Note the absence of the IR instrument on non-dominated architectures. 

This is due to the fact that it has a conflicting orbit requirement with the rest of 

instruments, which results in an unfavorable science-cost trade. In other words, adding 

the IR instrument to the suite would require flying the instrument in an AM orbit instead 

of a dawn-dusk orbit, which would negatively impact both the science output of the other 

instruments and the cost of the platform.  
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Table 3: Details of non-dominated architectures from Fig. 7. 

Arch# Payload 
Instrument 

allocation 

Orbit 

altitude 
Orbit type 

#sats per 

plane 

669 

LRADIO 

XRADIO 

PSAR 

[1;1;1] 800 SSO-DD 2 

586 
LRADIO 

PSAR 
[1;1] 800 SSO-DD 2 

811 
LRADIO 

PSAR 
[1;1] 800 SSO-DD 1 

2592 
LRADIO 

PSAR 
[1] 800 SSO-DD 2 

5 PSAR [1] 800 SSO-DD 1 

3605 
LSAR 

LRADIO 
[1] 800 SSO-DD 1 

3627 LSAR [1] 800 SSO-DD 1 

696 LRADIO [1] 800 SSO-DD 2 

810 LRADIO [1] 800 SSO-DD 1 
 

The tool can also highlight the regions of the tradespace that correspond to a particular 

combination of architectural decisions. For example, Fig. 10 highlights all architectures in 

which the number of satellites per plane is 1. It is easy to see on this chart that it is 

impossible to achieve the maximum achievable science score with only one satellite per 

plane, due to unsatisfied temporal resolution requirements. 

 

 
Fig. 10: Architectures with one satellite per plane highlighted 

 Advanced graphic-based support: The explanation facility can also provide more 

advanced support, such as automatic detection of common architectural features in a 

particular region of the tradespace. For example, if we ask the explanation facility to 

study the region in which science is in the [0.01; 0.2] interval, the tool compares the 

attributes of the architectures in this region and detects that most of the architectures have 

polar, non-SSO orbits, as shown in Fig. 11.  
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Fig. 11: Effect of orbit inclination on science and cost 

4.7.3. Fuzzy results 

We emphasized earlier the large uncertainty in the system architecting process, and the importance 

of being able to deal with fuzzy numbers in the rule-based system. It is important to note that 

conceptually, we are using fuzzy numbers for two different purposes: capturing uncertainty and 

capturing fuzziness or ambiguity. Uncertainty refers to statistical uncertainty or randomness, 

whereas fuzziness refers to non-statistical uncertainty or vagueness. Treating statistical uncertainty 

with interval analysis provides less information than treating it with probability distribution 

functions. Put it simply, we only get the boundaries of the probability density function, without 

any information about its shape. In this example, we are using fuzzy numbers to represent 

statistical uncertainty in cost, and non-statistical uncertainty in science. Fig. 12 shows the 

magnitude of the uncertainty for the architectures on the Pareto frontier of Fig. 9. The sources of 

uncertainty for cost are mostly the standard errors from the cost estimating relationships used in 

the cost estimation model. The sources of uncertainty for science in this example are the use of 

fuzzy scores to assess requirement satisfaction (each requirement is satisfied at one of five fuzzy 

levels as explained in the section describing fuzzy numbers). 

 
Fig. 12: Fuzzy Science vs fuzzy lifecycle cost for nondominated architectures (uniform weights) 

It is important to note that different architectures have different levels of uncertainty. Uncertainty 

in cost is similar in relative terms (not in absolute terms) across the tradespace because the 

standard errors of the cost estimating relationships are similar in magnitude (Apgar, 2011). 

However, uncertainty in science is not homogeneous because a fully satisfied requirement is 
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encoded as a fuzzy number with mean one and zero width, and a critical requirement that is not 

satisfied is encoded as a fuzzy number with mean zero and zero width. Thus, for the same score, 

different uncertainty levels are possible: if the score comes from satisfying a few requirements 

fully and completely missing the rest, uncertainty will be very low; conversely, if the score comes 

from satisfying all or most of the requirements at an intermediate level (e.g., “Most” or “Some”), 

the uncertainty will be much larger.  

 

4.7.4. Sensitivity Analysis 

There are several ways of conducting a sensitivity analysis in VASSAR. The most straightforward 

is simply rerunning the tool with different sets of parameters. In this section we provide two 

examples of this type of sensitivity analysis: one concerning the capabilities of PSAR to measure 

soil moisture, and the other one concerning the relative importance of the stakeholder panels. 

 

A major source of uncertainty in this piece of analysis is the ability of the PSAR to provide useful 

measurements of soil moisture, which has not yet been proven. The appeal of PSAR measurements 

of soil moisture is that of increased soil and vegetation penetration due to the lower frequency. 

However, most of the signal at this frequency comes from soil roughness, which makes the soil 

moisture retrieval challenging (Chalmers University of Technology, 2004). Hence the question of 

whether this instrument will be able of producing useful measurements of soil moisture is a 

legitimate one, and it may be interesting to run a pessimistic scenario where the instrument does 

not have this capability. The details of the non-dominated architectures under this scenario are 

provided in Table 4.  

 
Table 4: Details of non-dominated architectures when P-band SAR cannot measure soil moisture 

(uniform weights). 

Arch# Payload 
Instrument 

allocation 

Orbit 

altitude 
Orbit type 

#sats per 

plane 

1831 

LSAR 

LRADIO 

XRADIO 

PSAR 

[1;1;2;2] 800 SSO-DD 2 

1577 

LSAR 

LRADIO 

PSAR 

[1;1;2] 800 SSO-DD 2 

2948 

LSAR 

LRADIO 

XRADIO 

PSAR 

[1;1;1;2] 800 SSO-DD 1 

2631 

LSAR 

LRADIO 

PSAR 

[1;1;2] 800 SSO-DD 1 

2604 

LSAR 

LRADIO 

PSAR 

[1;2;2] 800 SSO-DD 1 

2592 
LSAR 

LRADIO 
[1;1] 800 SSO-DD 2 

3605 
LSAR 

LRADIO 
[1;1] 800 SSO-DD 1 

3627 LSAR [1] 800 SSO-DD 1 

696 LRADIO [1] 800 SSO-DD 2 

810 LRADIO [1] 800 SSO-DD 1 
 

We note several changes with respect to Table 3. First, the LSAR instrument appears much more 

often because its combination with LRADIO is the only one that can provide soil moisture 

measurements that satisfy the needs of the weather community in terms of both accuracy and 

spatial resolution. The PSAR instrument still appears in the high-cost region of the Pareto frontier, 

because it is the only instrument with the high penetration capability. However, it disappears of the 
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lower cost of the Pareto frontier because the extra science does not compensate the cost of 

developing it for the given stakeholder preferences. It is also noticeable that the high cost non-

dominated architectures have now more than one satellite because architectures flying the two 

SAR on the same platform are dominated (they are too costly). 

 

The second piece of sensitivity analysis models a situation in which the ecosystems panel has 

become three times as important as the other panels. The details about the non-dominated 

architectures in this case are shown in Table 5. This change in stakeholder preferences brings forth 

a major change in the architectural tradespace: the best architectures in the high-science region of 

the tradespace now include the IR instrument, contrary to what happened for uniform weights. In 

order to get the maximum science output out of the IR instrument it is necessary to fly it in an AM 

orbit, which impacts both the science output of other instruments and the cost of the spacecraft. 

 
Table 5: Details of non-dominated architectures when ecosystems panel is 3 times as important as the 

others 

Arch# Payload 
Instrument 

allocation 

Orbit 

altitude 
Orbit type 

#sats per 

plane 

540 

LRADIO 

XRADIO IR 

PSAR [1;2;2;1] 800 SSO-AM 2 

669 

LRADIO 

XRADIO 

PSAR [1;1;1] 800 SSO-DD 2 

586 

LRADIO 

PSAR [1;1] 800 SSO-DD 2 

811 

LRADIO 

PSAR [1;1] 800 SSO-DD 1 

5 PSAR [1] 800 SSO-DD 1 

3605 

LSAR 

LRADIO [1;1] 800 SSO-DD 1 

3627 LSAR [1] 800 SSO-DD 1 

696 LRADIO [1] 800 SSO-DD 2 
 

More advanced variants of this option allow computing the threshold value for a parameter that 

makes the non-dominated set change. For example, the tool determined in this case that when the 

relative weight of the ecosystems panel      remains below 2.59, the best architectures remain 

similar to those presented in Table 3, whereas for          , the best architectures switch to 

those presented in Table 5. Some decision makers find more value in results that provide switching 

points in a certain trade, rather than point scenario analysis.  

 

A second way of conducting a sensitivity analysis with this tool is by encoding any parameter as a 

fuzzy value. For instance, the mass or the accuracy of an instrument can also be encoded as a 

fuzzy number with a certain range of values, and these uncertainties will be propagated to the cost 

and science metrics. An example of the propagation of uncertainty in mass to cost is shown in Fig. 

13. The triangles represent the triangular membership functions for mass and cost. Note that the 

altitudes of these triangles are notional and do not correspond to the values in the axis. The red line 

shows the correspondence between scalar mass and scalar cost through a parametric relationship 

embedded in the tool. 
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Fig. 13: Propagation of uncertainty in payload mass to payload cost 

Finally, a third way to conduct sensitivity analysis with VASSAR is to perform a local search 

around a particular region or architecture and look at how value delivery to stakeholders change 

when each variable is changed. Note that gradients or pseudo-gradients cannot generally be 

defined in this local search process as some of the variables are categorical. Instead, rules are 

created that automatically enumerate all the architectures that differ from the reference architecture 

in just one architectural aspect. For example, an instrument is added to or removed from the 

payload, or the orbit type is changed from SSO-DD to SSO-AM. We used VASSAR to look 

around the architecture #669 from Table 3. Eleven architectures were thus automatically 

enumerated and evaluated. They are shown in Fig. 14. This kind of results can be useful to 

determine the optimal evolution of an architecture, such as in determining an optimal descoping 

option in the event of a downward budget.  

 

 
Fig. 14: Local search around architecture #669 from Table 8. 

 

5 Conclusion 

This paper has presented a design evaluation methodology that incorporates a rule-based expert 

system for increased scalability and traceability of the value chain. Such methodology can be used 

in the context of automatic design or architecture tradespace exploration. After illustrating the 

methodology with the simple example of a laptop, the tool was demonstrated on a complex 

example, namely that of an Earth Observing Satellite System.  

 

The rest of this section is divided in two parts. First, the advantages and disadvantages of 

VASSAR with respect to the state-of-the-art of system architecting tools is discussed. Second, the 

next steps in this research project are outlined. 

 

5.1. Advantages and disadvantages of VASSAR 

The following are advantages (+) and disadvantages (-) of the VASSAR methodology with respect 

to other frameworks: 

  (+) The use of knowledge-based systems decouples the domain-specific knowledge from 

the domain-independent knowledge, which translates into increased scalability and 
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reusability, and facilitates task allocation between system architects and software 

engineers.  

 (+) VASSAR has some degree of commonality with the current trend of having databases 

of lessons learned: it serves as a repository of knowledge to conserve expertise, and it 

also uses the lessons learned in the form of logical rules to evaluate system architectures. 

  (+) VASSAR forces you to articulate the value delivery loop. All requirements are 

directly traceable to stakeholder needs. All capabilities are directly traceable to 

architectural decisions.  

 (+) Communication between different teams (e.g., science and engineering) is facilitated 

through use of logical rules that are easy to understand by people from all backgrounds. 

Indeed, many cognitive psychologists believe that the construct pattern => action is part 

of how the human mind works (Purves, 2010).  

  (+) Traceability of the value delivery loop facilitates more optimal task allocation 

between man (the system architect) and machine (the computational tool). The 

computational tool supports the system architect by evaluating a large number of 

architectures and through the use of the text-based and graphics-based explanation 

facility. The system architect feeds the tool with knowledge, guides the tradespace 

exploration process, and makes all non-objective decisions.  

 (+) VASSAR uses a functional programming language, which facilitates the design of 

recursive algorithms, which are at the core of modeling emergence (Poundstone, 1985), 

which in turn is the origin of value. 

 (-) As noted by Minsky amongst others, logical rules are not suited to express all types of 

expert knowledge (Minsky, 1975).  

 (-) Traceability has a computational price, which is only worth it if the knowledge base is 

large and likely to evolve. If the value chain is simple, or if its traceability is not required, 

existing tools are more efficient.  

 (-) RBES may be slow when the number of rules is very large. As an example, the rule-

based system presented in Sect. 4 has about 1,000 rules and takes on the order of a second 

to evaluate one architecture using a 64-bit quad-core desktop with 12GB of RAM.     

 (-) There is an up-front cost to develop the rule-based system and import the expert 

knowledge. 

 (-) Verification of the knowledge base (e.g., completeness, consistency) is challenging 

and requires extensive testing and/or the development of ad-hoc software. 

 

5.2. Next steps 

 This paper focused on the design evaluation process. Knowledge-based systems can be used in 

other aspects of the architecting process. A similar framework has been created that allows 

automatic enumeration of several canonical types of architectures using rule-based systems (Selva, 

2012) and exploration of the resulting architecture spaces. This framework is continuously being 

improved with more efficient space exploration algorithms for certain classes of architectures.  

 

The extension of VASSAR's explanation facility with more advanced features requires the 

incorporation of a machine learning layer on top of the rule-based system. This type of hybrid 

artificial intelligence tool is seen as a potentially fruitful area of research.  

 

The current VASSAR implementation is restrictive in terms of representation of designs, as they 

need to be represented as lists of pairs (decision value). A more advanced version of the tool could 

allow importing designs expressed in more powerful representation tools such as SysML or the 

Object Process Methodology OPM (Dori, 2002).  

 

The version of the framework presented in the paper uses facts (i.e., pairs of slots and values) as 

the main data structure. While this is sufficient for most applications, the framework would clearly 

benefit from using a richer set of data structures. We are currently working on a version of the 

framework that uses Object Oriented Programming to achieve this goal. In particular Java classes 

are used to define elements, capabilities, decisions, and so forth. The choice of Java was driven by 

the fact that our language of choice for the rule-based system, Jess, allows seamless interaction 

with Java objects. However, given that industry has mostly adopted MBSE tools such as SysML 

for other systems engineering purposes, it makes sense to use these models as data structures 

instead, and we have given some thought to this possibility. The conclusion of our preliminary 
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analysis is that while SysML greatly improves some aspects of the framework, it is insufficient in 

its current implementation to meet the needs of VASSAR. The next few paragraphs discuss why. 

 

Using SysML models as data structures would greatly facilitate the role of manifest, attribute 

inheritance, and aggregation rules. The hierarchy of elements (e.g., the system contains 

subsystems, which contain components) is implicit in a SysML model, in particular in a block 

definition diagram. A single rule that asserts the existence of the subsystems of a system given the 

existence of the system would be enough. 

 

However, SysML does not explicitly facilitate the definition of models for the system’s 

capabilities (e.g., measurements in the case of the Earth Observing System). Thus, capabilities 

would need to be represented as standard objects either in a block definition diagram or 

requirement diagram in a pure SysML framework. Alternatively, they can be kept as facts or other 

data structures directly in the rule-based system in a hybrid SysML-KBS framework. In either 

case, capability rules would link the different subsystem objects to their capability objects. 

 

Parametric models describing the calculation of system and subsystem attributes can replace the 

rules that currently do these computations. However, performance rules computing the attributes 

of the capabilities objects cannot be replaced unless parametric models are created for native 

SysML capability objects. 

 

Similarly, the hierarchy of requirements can be defined by a requirement diagram, thus defining 

the relationships in the aggregation rules. However, to the best of our knowledge, the requirement 

diagram misses critical aspects of our framework. First, the testcase method provided to check 

requirement satisfaction has a too rigid interface not accepting partial satisfaction levels. As a 

conclusion, it does not seem to allow defining requirement satisfaction functions that are 

arithmetic and/or logical functions of children requirement satisfaction. Third, it also does not 

allow the definition of stakeholder objects (with their own satisfaction) that own these 

requirements. And last, but not least, it does not allow to keep the traceability of how the 

requirement was satisfied. 

 

Finally, none of the diagrams in SysML seem to support the definition of emergence rules that 

generate new capability objects from combinations of capability objects. While one could argue 

that this goal could be achieved by using automatic programming techniques that generate SysML 

diagrams in real time, we believe that the rule-based implementation is much simpler and more 

elegant. 

 

For all these reasons, we argue that the core of the VASSAR framework would need to remain in 

the knowledge-based system as opposed to SysML, unless changes are made to the SysML 

specification.  

 

Finally, we plan to explore multi-agent architectures for the next generation of VASSAR, in order 

to improve flexibility and allow for the independent development of heterogeneous agents.  

 

Appendix 1: Hierarchy of stakeholder needs for Earth observation example 

The information used in the case study for the stakeholders and their hierarchy of requirements are 

shown below in Table 6 and Table 7.  

 

Table 6. Stakeholders and weights 

Panel Id Description Weight 

Weather WEA Weather 20% 

Climate CLI Climate 20% 

Ecosystems ECO Land and Ecosystems 20% 

Water WAT Water 20% 

Applications HEA Human health 20% 

   100% 
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Table 7. Stakeholder objectives and weights 

Objective Description Value 

Weather panel 

WEA1 Initialization of NWP models 60% 

WEA2 River forecast streamflow models 20% 

WEA3 River forecast flash flood models 20% 

Climate panel 

CLI1 Boundary conditions for climate models 80% 

CLI2 Ocean thermohaline circulation 20% 

Ecosystems panel 

ECO1 Net carbon flux in boreal landscapes 75% 

ECO2 Carbon net ecosystem exchange 25% 

Water panel 

WAT1 Estimation of runoff-EVT 67% 

WAT2 Estimation of precipitation 11% 

WAT3 Snow and cold land processes 11% 

WAT4 Sea Ice cover 11% 

Applications panel 

HEA1 Heat Stress and Drought 20% 

HEA2 Agriculture productivity 20% 

HEA3 Flood monitoring 20% 

HEA4 Wild fires prediction 20% 

HEA5 Spread of infectious diseases 20% 

 

Appendix 2: Characteristics and capabilities of instruments for Earth observation example 

 

The characteristics of the instruments are provided in the Table 8 and Table 9 . 

Table 8: Instrument characteristics 

 LRADIO LRADAR XRADIO IR PRADIO 

Mass (kg) 202 236 257 199 390 

Avg. power (W) 67 440 340 134 430 

Avg. data rate (Mbps) 20 6 0.3 6.5 80 

 
Table 9: Instrument capabilities 

Parameter LRADIO LRADAR XRADIO IR PRADIO 

Soil 

Moisture 

High accuracy, 

low spatial 

resolution 

Low accuracy, 

high spatial 

resolution 

Medium 

accuracy, low 

spatial 

resolution 

Lowest 

accuracy, high 

spatial 

resolution 

Highest 

accuracy, low 

spatial 

resolution 

Freeze-

Thaw 

 High accuracy, 

high spatial 

resolution 

   

Snow cover Medium 

accuracy, low 

spatial 

resolution 

Low accuracy, 

high spatial 

resolution 

High accuracy, 

low spatial 

resolution 

Low accuracy, 

high spatial 

resolution 

Medium 

accuracy, low 

spatial 

resolution 

Sea ice cover Medium 

accuracy, low 

spatial 

resolution 

Low accuracy, 

high spatial 

resolution 

High accuracy, 

low spatial 

resolution 

Low accuracy, 

high spatial 

resolution 

Medium 

accuracy, low 

spatial 

resolution 

Sea surface 

wind 

Low accuracy, 

low spatial 

resolution  

Low accuracy, 

high spatial 

resolution 

Highest 

accuracy, low 

spatial 

resolution 

 Low accuracy, 

low spatial 

resolution 

Precipitation   Highest   
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rate accuracy, low 

spatial 

resolution 

Ocean 

salinity 

High accuracy, 

low spatial 

resolution 

Medium 

accuracy, high 

spatial 

resolution 

  Low accuracy, 

low spatial 

resolution 

 

 

Appendix 3: Cost model 

The cost model used in the case study is a rule-based cost model largely based on Larson and 

Wertz’s Space Mission Analysis and Design. The first level decomposition of lifecycle cost is 

given in Fig. 15.  

 

 

Fig. 15: Lifecycle cost decomposition 

 

Payload cost is based on the NASA Instrument Cost model (Habib-Agahi, Ball, & Fox, 2009). Bus 

cost is based on the parametrics provided in (Apgar, 2011). Since these parametrics are based on 

the spacecraft mass budget, a spacecraft design module that estimates the mass and power budgets 

of each spacecraft precedes the cost estimation module.  

 

The spacecraft design module is iterative because of the couplings between different subsystems. 

For example, the mass of the spacecraft affects the design of the ADCS through the size of the 

reaction wheels and the amount of propellant amongst others, and these feed back into the 

computation of the spacecraft mass. In practice, three iterations are sufficient to make the design 

process converge to a precision of less than a kg.  An overview of the spacecraft design module is 

provided in Fig. 16. 
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Fig. 16: Spacecraft design algorithm 
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