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Abstract: 

 
We have computed phonon scattering rates and density of states in silicon 

germanium alloys using Green’s function calculations and density functional theory.  

This method contrasts with the virtual crystal approximation (VCA) used in 

conjunction with Fermi’s golden rule, which cannot capture resonance states 

occurring through the interaction of substitutional impurities with the host lattice.   

These resonances are demonstrated by density of states and scattering rate 

calculations in the dilute limit and show broadening as the concentration increases.  

Although these deviations become significant from the VCA at high frequencies, the 

relaxation times obtained for these phonon modes are small in both the full 

scattering theory and the VCA, resulting in their negligible contribution to thermal 

transport.  

I.  Introduction: 
 

Understanding how phonon scattering contributes to heat transport in solid 

materials provides a framework to synthesize materials with exceptionally low 

thermal conductivities for thermoelectric energy conversion applications.1,2  By 

identifying the range of phonon frequencies that significantly affect heat 
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conductance,3  one can engineer disorders through alloying,4 interface roughening,5 

or nanostructures6,7,8 to suppress the dominant phonon modes, leading to a 

decrease in thermal conductivity.   

Alloying has yielded great success in reducing phonon thermal conductivity 

due to the effects of impurity scattering.  Modeling alloy scattering’s effects upon 

thermal conductivity currently relies upon the virtual crystal approximation (VCA) 

and Rayleigh scattering law, where the scattering rate scales with the fourth power 

of frequency.4  The VCA4,9 replaces the disordered crystal with a homogenous 

system of averaged masses and interatomic force constants.  It is currently unclear 

how and to what extent the VCA and Rayleigh scattering law fail for alloys at high 

frequencies, although thermal conductivity fitting based on a phenomenological 

model4 has led to good agreement with experiment.   

The advent of first principles methods10–13 allowed for mode-by-mode 

computation of harmonic properties as well as inelastic scattering rates due to 

anharmonicity, which led to an accurate prediction of thermal conductivity of 

crystalline materials.  Garg et al. extended the first-principles framework to alloys 

using the VCA and found good agreements between the measured and calculated 

thermal conductivity of SixGe1-x.14  The same approach was applied to other 

disordered systems such as PbTe/Se,15  Bi1-xSbxTe3,16 and Mg2SixSn1-x.17  However, 

the scattering rates of these systems used first order perturbation theory (single 

scattering) despite the presence of large impurity concentrations.  As the 

concentration of impurities in an alloy leaves the dilute limit, multiple scattering 

and resonant scattering can occur.  There have been no rigorous studies on the 

validity of VCA and multiple scattering effects on phonon thermal transport.   Kundu 

et al.  studied multiple scattering phenomena of Si and Ge nanoparticles embedded 

in a Si0.5Ge0.5 alloy by using Green’s functions to calculate nanoparticle scattering in 

the homogenized medium defined by the VCA.18   

 In this paper, we investigate the failure of VCA in alloys by using full-order 

scattering theory through the computation of Green’s function matrix elements in 

the spatial representation.19  Through the general scattering theory formalism 

introduced in Ref. [19], one is able to compute scattering amplitudes for an arbitrary 
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distribution of scattering centers embedded in a host medium.  This formalism has 

been used to study nanostructures embedded in graphene20 and Si0.5Ge0.5 alloy.18   In 

this work we will focus on scattering due to mass disorder and neglect the effects of 

inelastic phonon-phonon scattering.  By computing the Green’s function of the 

system perturbed by disorder, local phonon density of states are obtained and 

compared to the VCA.4,9  We found that although the VCA approximation and first 

order perturbation theory clearly fails at high frequency, the large scattering rates 

in this regime calculated from both the VCA approximation and the multiple 

scattering theory means that these high frequency phonons do not contribute much 

to heat conduction, and hence explains why the VCA approximation together with 

the first order perturbation theory still leads to satisfactory comparison with 

experimental data on the thermal conductivity of alloys.  The multiple scattering 

picture facilitates an understanding of phonon transport processes in disordered 

materials. 

 

II.  Scattering Theory Described through Green’s Function: 
 

Phonon dynamics are governed by the eigenvalue equation 2Mu = Ku where 

M is the mass matrix, K is the force constant matrix which couples the vibrational 

degrees of freedom, and  is the eigenvalue corresponding to the frequency of a 

particular phonon mode.21  The inversion of this eigenvalue equation yields the 

unperturbed Green’s function of a given phonon branch and frequency.  The 

unperturbed Green’s function can be expressed in the spatial representation as, 

𝐺0
+(𝒙, 𝒚; 𝜔2) =  ∑

⟨𝒙∣𝒌⟩⟨𝒌∣𝒚⟩

𝜔2−𝜔2(𝒌)+𝑖𝜖𝒌                  (1)                   
 

where |k> is the phonon wavevector eigenstate, |x> and |y>  are the displacement 

vectors  of the atom located at the coordinate x and y in the tight binding 

representation, 2 is a complex scalar, and 2(k) is the dispersion relation of a 

particular phonon branch.  

 
In the tight binding representation, diagonal disorder corresponds to a 

perturbation in the mass of a host atom.  More explicitly, this disorder can be 
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defined as a diagonal matrix in the impurity subspace V = -(m’-m)2/m where m is 

the mass of the original atom and m’ is the mass of the substitution.    Introducing 

the T-matrix to describe elastic transitions between momentum eigenstates,  

  𝑇(𝜔2) = 𝑉 + 𝑉𝐺0𝑉 + ⋯ = (1 − 𝑉𝐺0)−1𝑉                                          (2) 
 
we can compute the Green’s function of the perturbed system as  
 

𝐺(𝜔2) =  𝐺0 +  𝐺0𝑇𝐺0                 (3) 
 
noting that the frequency arguments on the right hand side are implicit.  Each 

successive term in the expansion of (2) corresponds to the single scattering process, 

double scattering process, etc. between the impurity degrees of freedom and the 

medium.  Since mass disorder breaks the translational symmetry of the system, the 

diagonal elements of the perturbed Green’s function are coordinate dependent.  

Additionally, since the density of states can be defined as, 

 𝜌(𝒙 ; 𝜔2) =  
−1

𝜋
𝐼𝑚(𝐺(𝒙, 𝒙; 𝜔2))            (4) 

 
a spatially dependent density of states, the local DOS, can be defined from the 

diagonal terms of the perturbed Green’s function.  Due to the analytical structure of 

the T-matrix, resonance states may occur as VG0 ~ 1.  Physically, this resonance 

stems from the constructive interference of the multiple scattering processes of a 

system of impurities.  Using the optical theorem, the impurity scattering rate for a 

particular branch can be computed as 

𝜏𝑖𝑚𝑝
−1 =  

𝛺𝑓𝑖𝑚𝑝

2𝜔2𝑉𝑖𝑚𝑝
𝐼𝑚[⟨𝒌|𝑇(𝜔2)|𝒌⟩]                                            (5) 

 
where Ω is the volume of the unit cell, fimp is impurity concentration, and Vimp is the 

volume of the impurity.18–20  The presence of the T-matrix implicitly in (4) and 

explicitly in (5) can lead to a resonant local density of states and scattering rate. 

 

The unperturbed Green’s functions can be obtained from the phonon 

dispersion solved by the diagonalization of the dynamical matrix.  The dynamical 

matrix of Si is constructed from the second-order interatomic force constants 

following the work of Ref. [10]. The actual integration method to perform Eq. (1) is 
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best achieved by using the tetrahedron interpolation method.22  The tetrahedron 

method computes the imaginary part of the Green’s function while the real part is 

obtained through the Kramers-Kronig relations.   The Green’s function matrix 

elements were computed on a k-mesh of 20x20x20, 30x30x30, and 40x40x40 in size 

in order to determine convergence behavior.  The matrix elements converged at the 

20x20x20 grid density; consequently, all of the calculations in this work use the 

20x20x20 grid.   

 

 Perturbations corresponding to diagonal disorder (mass mismatch) were 

implemented on a finite diamond cubic lattice that contained up to 500 impurities.  

We assumed that the Germnaium impurity atoms did not change the lattice constant 

of the system for an arbitrary degree of impurity concentration.  Due to discrete 

translational symmetry, all of the Green’s function matrix elements were 

precomputed to save time during the configurational averaging of 200 samples.  The 

computation of the T-matrix, perturbed Green’s function, scattering rate, and local 

density of states then follow from the computation described earlier. 

  

To verify the geometric series representation of the perturbation series of 

the T-matrix, the scattering rate of a single impurity was compared to the Born 

approximation used by Tamura23 which in this work is achieved by truncating the 

series to first-order.  The T-matrix can also be justified by computing the angular 

dependent scattering amplitudes of a 2 nm x 2 nm x 2 nm Ge nanoparticle at long 

wavelengths in order to see Rayleigh scattering behavior.  For acoustic branch 

frequencies lower than ~ 1 THz, an isotropic scattering amplitude is obtained, 

which corresponds to the Rayleigh limit (first-order).  At larger frequencies, the 

scattering profile becomes more and more anisotropic.24  
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FIG. 1.  Local density of states (LDOS) of the TA1 phonon branch for a single Ge 
impurity embedded in a Si lattice (blue).  The Si neighbor (red) is the nearest 
neighbor to the impurity.  The Si density of states (green) is shown for comparison.  
The normalization is chosen such that the integral of the TA1 bulk density of states 
(in THz) is unity.  The inset provides a visual representation of the Ge impurity 
embedded in the Si lattice.  The Si neighbor corresponds to the adjacent Si atom in 
the inset. 
 
III.  Results and Discussion: 

 
Resonances arise from the multiple scattering interaction by impurities 

embedded in a bulk crystal.  Mathematically, this arises from the singularity through 

the denominator of the T-matrix.  Resonances should correspond to strong 

deviations in the scattering rate and density of states calculations obtained from the 

VCA.  To see the effects of resonant scattering, we first calculate the LDOS of a single 

impurity.  Figure 1 shows the LDOS for a Ge atom embedded in a Si host.  The 

resonance dominates the LDOS since the second term in Eq. (3) is so much larger 

than the first.  The resonant frequency is ~2.2 THz for the TA1 branch and coincides 

with the resonance in the scattering rate (Fig.2).  The LDOS for the nearest neighbor 

Si provides insight into the coupling between an impurity and its host crystal.  The 

LDOS exists as a hybridization of the resonant state and the original Si DOS.  As one 
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moves further away from the impurity, the strength of the resonance becomes 

weaker and the LDOS starts to look more like the original band structure.  A 

calculation of the LDOS of the surrounding atoms allows for a determination of the 

length scale with which the resonance of the impurity atom couples to degrees of 

freedom within the bulk system. 

 
 Introducing more than one impurity can make the analysis of the scattering 

calculations nontrivial if the inter-impurity spacing becomes too small.  As the space 

between impurities decreases, the off-diagonal matrix elements of the Green’s 

function become comparable to the diagonal terms, resulting in a T-matrix that 

cannot be put into block diagonal form.  In other words, a system, in high enough 

impurity concentration, cannot be decomposed into clusters of scattering centers.  

Figure 2 demonstrates the difference between a single Ge impurity that is 

resonantly interacting with the Si host lattice and two Ge impurities that are spaced 

close enough together that they can no longer be treated as being independent of 

one another due to multiple scattering.      

 

FIG. 2.  Scattering rate of a TA1 phonon by a single Ge impurity (solid line) and two 
Ge impurities (dashed line) spaced 0.5 nm apart.  The magnitude of the scattering 
rates are normalized by the number of impurities.   
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The pronounced difference between the scattering rate of a single impurity and two 

closely spaced impurities highlights the effect of strong coupling in the impurity 

subspace.  This coupling causes the resonance to split to frequencies above and 

below the original resonant frequency.  Calculations were also performed for a 

system of three closely spaced impurities.  The effect of multiple scattering causes 

an even greater splitting in the three-impurity system for the same inter-impurity 

spacing.     

 

 The resonances from multiple scattering demonstrated by the scattering rate 

computations yield insight into the behavior of alloys, especially at high frequencies 

and alloy concentrations.  In the dilute limit, the T-matrix should be approximately 

diagonal, allowing for relaxation time computations to be performed as a sum over 

independent scattering centers.  As the alloy concentration increases, the mean 

impurity spacing decreases, resulting in a broadening of resonance impurity modes 

over a wide range of frequencies.  The average local density of states 

 

                𝜌𝑎𝑣𝑔(𝜔2) =  
1

𝑁
∑

−1

𝜋𝑥∈𝐷 𝐼𝑚[𝐺(𝒙, 𝒙; 𝜔2)]                      (6) 

 

 
FIG. 3.  Averaged local density of states for a single configuration of Ge impurities at 
20% concentration for the acoustic phonon branches. 
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is able to capture the resonance splitting behavior.  The averaged local density of 

states of a single configuration for the three acoustic branches is shown in Fig. 3 for 

a 20 percent Ge alloy concentration.  The 20 percent alloy concentration is a clear 

departure from the dilute limit, which yields an averaged LDOS that is a weighted 

superposition of the original Si DOS and Ge resonance.  Since the Ge impurity 

resonance is at a frequency far below band edge for the LA branch, it does not affect 

this branch as much as the two transverse branches. 

The original Si band structure is still retained at frequencies above and below 

the range of frequencies corresponding to the resonant splitting.  By further 

increasing the alloy concentration, the original Si bandstructure is obfuscated by the 

overwhelming influence of the strongly coupled Ge resonances.  Calculations above 

50 percent concentration demonstrate no signs of the underlying Si host lattice, 

corresponding to a failure of perturbation theory.  Furthermore, at large enough 

concentrations, it is unjustified to naively choose Si as the host crystal.  High-

frequency phonons in a strongly disordered system will be scattering off of Si and 

Ge atoms. 

 

Figure 4 demonstrates the comparison of the ensemble averaged local 

density of states of a 20 percent impurity concentration system with the density of 

states obtained through the VCA.  The DOS agrees well at long wavelengths since the 

phonons cannot probe the local inhomogeneity of the disordered system.  

Mathematically this corresponds to a diagonal T-matrix at small frequencies, which 

allows for the contributions of impurities to be individually summed over, providing 

the same configurationally averaged Green’s function as the one obtained from the 

VCA.  It is therefore justifiable to assume that these phonons are governed by the 

effective medium represented by the VCA.  

At the THz range, however, the effects of resonances cause strong deviations 

from the VCA.   The resonance broadening destroys the 2 behavior corresponding 

to non-dispersive phonon modes.  Additionally, failures of the VCA are also captured 

at even higher frequencies.  Since the differences in force constants are much 
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smaller than the mass differences of Si and Ge, the VCA merely rescales the DOS to 

lower frequencies.  This uniform scaling over the entire range of phonon 

frequencies contradicts the results from explicit Green’s function calculations 

beyond the long wavelength regime.   

These findings imply more accurate methods to accurately calculate 

scattering rates due to nanoparticles embedded in alloy systems.  Previous works 

computed the T-matrix from green’s function using the VCA.18  Unfortunately, this 

method does not appropriately capture the high frequency scattering rates due to 

the deviations of the Green’s function demonstrated by Fig. 3 and Fig. 4.  In order to 

improve the calculations, the configurationally averaged Green’s function matrix 

elements should be explicitly computed from Eq. 3 as performed in this work.  These 

matrix elements for the Green’s function should then serve as inputs to the T-matrix 

calculation of an embedded nanoparticle.  These corrections should become 

significant for cases where there are large discrepancies between the VCA and an 

explicit computation for the Green’s function, which primarily occurs when 

impurities resonantly interact with the host system.  

Even though the resonance broadening stemming from the Ge impurities 

generate large discrepancies in the DOS for frequencies larger than 1.2 THz, these 

modes do not contribute significantly to the thermal conductivity due to the large 

elastic scattering rate which roughly scales as ~ 4.                 
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FIG. 4.  Configurational averaged density of states computed using the perturbed 
Green’s function (blue) vs. density of states obtained through the virtual crystal 
approximation (red). 
 
In other words, despite the existence of nontrivial behavior stemming from multiple 

scattering at high frequencies, the impurities act as a low-pass filter, preventing 

these modes from contributing to thermal transport. 

Although not implemented in this work, the scattering theory formalism 

allows for off-diagonal disorder, which will be necessary for systems with small 

mass mismatch.25  Additionally, we can also increase the accuracy of thermal 

conductivity calculations by analyzing angle-dependent scattering rates.  In a 

sufficiently disordered system, anisotropic scattering profiles render the relaxation 

time approximation26 (RTA) inaccurate.  Consider an extreme example of a 

disordered system that exhibits coherent backscattering due to the onset of 

localization; the RTA treats backscattered phonons with equal weight despite 

having a larger effect upon diffusive thermal transport.  Multiple scattering theory 

can therefore be used to justify the validity of the RTA. 

 

IV.  Conclusion 

In summary, we employed the Green’s function approach to study elastic phonon 
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scattering in Si-Ge alloys in order to examine the validity of the VCA that has been 

used in all of the past treatments of phonon heat conduction in alloy systems.  The 

Green’s function approach allows inclusion of multiple scattering and resonant 

effects that are absent from the VCA approach.  A Ge atom embedded in a Si host 

creates a local resonance state, which splits into multiple states as the Ge 

concentration increases.  The configurationally averaged DOS is distinctly different 

from that of the VCA approximation at high frequencies.  However, at these high 

frequencies, the relaxation times obtained for these phonon modes are small in both 

the full scattering theory and the VCA, resulting in their negligible contribution to 

thermal transport.  

Acknowledgment: 

We would like to thank Jivtesh Garg, Vazrik Chiloyan, and Sangyeop Lee for fruitful 

discussions.  Funding support for this work was provided by the “Solid State Solar-

Thermal Energy Conversion Center (S3TEC)”, an Energy Frontier Research Center 

funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy 

Sciences, under Award Number: DE- SC0001299/DE-FG02-09ER46577.  

 

References: 

1 H.J. Goldsmid, Introduction to Thermoelectricity (Springer Science & Business 
Media, 2009), p. 258. 

2 M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy & 
Environmental Science 5, 5147 (2012). 

3 T. Gibbons and S. Estreicher, Physical Review Letters 102, 255502 (2009). 

4 B. Abeles, Physical Review 131, 1906 (1963). 

5 A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. 
Majumdar, and P. Yang, Nature 451, 163 (2008). 

6 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. 
Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science (New York, 
N.Y.) 320, 634 (2008). 



 13 

7 G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z. Ren, Advanced Energy Materials 1, 
643 (2011). 

8 N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Letters 
9, 711 (2009). 

9 R.J. Elliott, J.A. Krumhansl, and P.L. Leath, Reviews of Modern Physics 46, 465 
(1974). 

10 K. Esfarjani and H.T. Stokes, Physical Review B  77, 144112 (2008). 

11 K. Esfarjani, G. Chen, and H.T. Stokes, Physical Review B 84, 085204 (2011). 

12 D.A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, Applied Physics 
Letters 91, 231922 (2007). 

13 D.A. Broido, A. Ward, and N. Mingo, Physical Review B 72, 014308 (2005). 

14 J. Garg, N. Bonini, B. Kozinsky, and N. Marzari, Physical Review Letters 106, 
045901 (2011). 

15 Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Physical Review B 85, 
184303 (2012). 

16 N.A. Katcho, N. Mingo, and D.A. Broido, Physical Review B 85, 115208 (2012). 

17 W. Li, L. Lindsay, D. a. Broido, D. a. Stewart, and N. Mingo, Physical Review B 86, 
174307 (2012). 

18 A. Kundu, N. Mingo, D.A. Broido, and D.A. Stewart, Physical Review B 84, 125426 
(2011). 

19 E. Economou, Green’s Functions in Quantum Physics, 3rd ed. (Springer, New York, 
1984). 

20 N. Mingo, K. Esfarjani, D.A. Broido, and D.A. Stewart, Physical Review B  81, 
045408 (2010). 

21 C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, New York, 1976). 

22 P. Lambin and J.P. Vigneron, Physical Review B 29, 3430 (1984). 

23 S.I. Tamura, Physical Review B 27, 858 (1983). 

24 N. Zuckerman and J. Lukes, Physical Review B 77, 094302 (2008). 



 14 

25 N.A. Katcho, J. Carrete, W. Li, and N. Mingo, Physical Review B 90, 094117 (2014). 

26 M. Omini and A. Sparavigna, Nuovo Cimento D Serie 19, 1537 (1997).  

List of Figure Captions: 

FIG. 1.  Local density of states (LDOS) of the TA1 phonon branch for a single Ge 

impurity embedded in a Si lattice.   

 

FIG. 2.  Scattering rate of a TA1 phonon by a single Ge impurity and two Ge 

impurities spaced 0.5 nm apart. 

 

FIG. 3.  Averaged local density of states for a single configuration of Ge impurities at 

20% concentration for the acoustic phonon branches. 

 

FIG. 4.  Configurational averaged density of states computed using the perturbed 

Green’s function vs. density of states obtained through the virtual crystal 

approximation. 
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List of Figures: 

 
 
FIG. 1.  Local density of states (LDOS) of the TA1 phonon branch for a single Ge 
impurity embedded in a Si lattice (blue).  The Si neighbor (red) is the nearest 
neighbor to the impurity.  The Si density of states (green) is shown for comparison.  
The normalization is chosen such that the integral of the TA1 bulk density of states 
(in THz) is unity.  The inset provides a visual representation of the Ge impurity 
embedded in the Si lattice.  The Si neighbor corresponds to the adjacent Si atom in 
the inset. 
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FIG. 2.  Scattering rate of a TA1 phonon by a single Ge impurity (solid line) and two 
Ge impurities (dashed line) spaced 0.5 nm apart.  The magnitude of the scattering 
rates are normalized by the number of impurities.   

 

 

 
FIG. 3.  Averaged local density of states for a single configuration of Ge impurities at 
20% concentration for the acoustic phonon branches. 
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FIG. 4.  Configurational averaged density of states computed using the perturbed 
Green’s function (blue) vs. density of states obtained through the virtual crystal 
approximation (red). 

 

 

 

  

 

 

 

 

 

 


