
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-016 May 18, 2015

A (Truly) Local Broadcast Layer for
Unreliable Radio Networks
Nancy Lynch and Calvin Newport

A (Truly) Local Broadcast Layer for Unreliable Radio Networks

Nancy Lynch
MIT CSAIL

lynch@csail.mit.edu

Calvin Newport
Georgetown University

cnewport@cs.georgetown.edu

Abstract

In this paper, we implement an efficient local broadcast service for the dual graph model, which
describes communication in a radio network with both reliable and unreliable links. Our local broad-
cast service offers probabilistic latency guarantees for: (1) message delivery to all reliable neighbors
(i.e., neighbors connected by reliable links), and (2) receiving some message when one or more reliable
neighbors are broadcasting. This service significantly simplifies the design and analysis of algorithms for
the otherwise challenging dual graph model. To this end, we also note that our solution can be interpreted
as an implementation of the abstract MAC layer specification—therefore translating the growing corpus
of algorithmic results studied on top of this layer to the dual graph model. At the core of our service is
a seed agreement routine which enables nodes in the network to achieve “good enough” coordination to
overcome the difficulties of unpredictable link behavior. Because this routine has potential application
to other problems in this setting, we capture it with a formal specification—simplifying its reuse in other
algorithms. Finally, we note that in a break from much work on distributed radio network algorithms,
our problem definitions (including error bounds), implementation, and analysis do not depend on global
network parameters such as the network size, a goal which required new analysis techniques. We argue
that breaking the dependence of these algorithms on global parameters makes more sense and aligns
better with the rise of ubiquitous computing, where devices will be increasingly working locally in an
otherwise massive network. Our push for locality, in other words, is a contribution independent of the
specific radio network model and problem studied here.

1 Introduction

In this paper, we implement an efficient local broadcast service in the dual graph radio network model [15,
17, 3, 8, 7, 11, 9], which captures wireless communication over both reliable and unreliable links. In more
detail, the dual graph model describes a network with two graphs, one for each type of link. In each round,
the network topology used for node communication is a combination of the edges from reliable link graph
and some subset of the edges from the unreliable link graph, the latter chosen adversarially. As argued in our
earlier studies of this setting, the inclusion of unpredictable links in formal models of radio communication
is motivated by the ubiquity of such behavior in real networks (e.g., [23]).

Our local broadcast algorithm yields two types of probabilistic latency guarantees: a fast progress bound,
which bounds the time for a node to receive something when one or more of its reliable neighbors (i.e.,
neighbors connected by reliable links) are transmitting, and a slower but still reasonable acknowledgment
bound, which bounds the time for a sender to finish delivering a broadcast message to all of its reliable
neighbors. The service we implement operates in an ongoing manner, which makes it suitable for use as
an abstraction layer for developing higher-level distributed algorithms for unreliable radio networks. To
this end, we note that our algorithm can be interpreted as an implementation of the Abstract MAC Layer
specification [14, 16]. It follows that the growing corpus of results designed to run on top of this abstraction
(e.g., [10, 20, 6, 13, 12, 5]) can be composed with our implementation, automatically porting these existing
solutions to the dual graph model for the first time.

1

More generally speaking, we note that since 2009 [15] we have waged (algorithmic) battle with the
complexities introduced by the presence of unpredictable link behavior in the dual graph model—describing
upper and lower bounds for a variety of problems [15, 17, 3, 8, 7, 11, 9]. This paper can be seen as the culmi-
nation of this half-decade of effort, in which we integrate what we have learned into a powerful abstraction
that renders this realistic but difficult setting tractable to a wider community of algorithm designers.
True Locality. Before proceeding to the details or our results, we must first emphasize an important property
of our service: its implementation is “truly local,” by which we mean that its specification, time complexity,
and error bounds are expressed independent of global parameters such as network size. To make this work:
we define our correctness and performance properties locally, in terms of individual nodes, rather than glob-
ally, in terms of all the nodes; we express our time complexity bounds with respect to local properties, such
as bounds on local neighborhood size, not the full network size, n; and we capture our error probabilities as
generic ε parameters, rather than the common approach of bounding the error in terms of (1/nc), for some
constant c ≥ 1. Though locality of this type has been well-studied in other network models (e.g., [19, 18]),
it is less understood in the wireless setting—a deficiency we believe must be addressed. There are two
justifications for this belief.

First, the common practice of seeking “high probability” (i.e., an error probability bound of the form
n−c) seems unnatural for most deployment scenarios—why should you have to grow your network size to
decrease your error probability?1 Of course, by instead introducing a generic error parameter, ε, as we do
in this paper, we are not eliminating the possibility of high probability error bounds when useful, as you
can simply set ε = (1/nc) if needed. But we believe that one should try to postpone considering such
dependence until it is really necessary. Second, as we see an increasing emphasis on an Internet of Things
style ubiquity in the wireless setting [1], global properties such as network size can grow to a massive scale.
In studying local algorithms for such scenarios, it is important that we separate time complexity and error
guarantees from global parameters and instead reorient them toward the relevant local conditions. This paper
provides an example of what is required for a reorientation of this type.
Results. Our local broadcast service is parametrized by two time bounds, tack and tprog, and an error bound,
ε. It assumes a dual graph model with an oblivious link scheduler (i.e., decisions about which unreliable
links to include in the topology in each round are made at the beginning of the execution), and a natural
geographic constraint that requires all nodes within distance 1 be connected by a reliable edge, and no nodes
at distance more than r ≥ 1 be connected by an unreliable edge. (We typically assume r is constant and
therefore omit it in our result summary below. For the sake of completeness, however, we keep r as a
parameter in our analysis during all steps leading to these results.) Our service guarantees: (1) for each
broadcast of a message m by a node u, with probability at least 1 − ε, every reliable neighbor of u will
receive m within tack rounds; and (2) for a given receiver v and span of tprog rounds, such that at least one
reliable neighbor of v is broadcasting throughout the entire span, the probability that v fails to receive at
least one message during these rounds is no more than ε. We present an algorithm that takes ε as a parameter
and implements this service for values of tack and tprog bounded as follows:

• tprog = O
(

log ∆ log (log4 ∆
ε)

)
• tack = O

(
∆ log (∆/ε) log ∆ log (log4 ∆

ε)(1
1−ε)

)
where ∆ is an upper bound on node degree. We emphasize that that these results are near optimal, as even

1The most likely answer for why these high probability bounds persist is that they make life easier for the algorithm
designer. In particular, if a property holds with high probability in n, a basic union bound provides that the property
holds for all nodes in a network for all rounds of any reasonable length execution, which greatly simplifies subsequent
analysis. We believe, however, that the algorithm designer should do more work to make the treatment of error
probability more natural to the practitioner using the algorithms.

2

in the absence of unreliable links: (1) any progress bound (which reduces to symmetry breaking among
an unknown set of nodes) requires logarithmic rounds (e.g., [21]); and (2) any acknowledgement bound
requires at least ∆ rounds in the worst case (imagine a receiver u neighboring ∆ broadcasters: u can only
receive one message per round, delaying one of these broadcasters by at least ∆ rounds).
Discussion. A core difficulty in solving local broadcast in the dual graph model is the presence of the
unreliable links, which are included or excluded in the network topology according to an arbitrary link
schedule (see the model section below for details). To understand this difficulty, recall that the standard
strategy for broadcast in a radio network is to cycle through a fixed schedule of geometrically decreasing
broadcast probabilities [2]. The intuition for this fixed schedule approach is that for each receiver, one of
these probabilities will be well-suited for the local contention among its nearby broadcasters. In the dual
graph model, however, there is no fixed amount of local contention: the link schedule can effectively change
this amount at each receiver at each round by changing the edges included in the network topology. It is
possible, for example, that the link schedule was constructed with the intent of thwarting this fixed schedule
strategy by including many links (i.e., increasing contention) when the schedule selects high probabilities,
and excluding many links (i.e., decreasing contention) when the schedule selects low probabilities.

To overcome this difficulty, we use as a starting point the general strategy we originally identified in [11]:
permute the broadcast probability schedule after the execution begins (and therefore, after the link sched-
ule has already been generated) to regain independence from the topology. The challenge in permuting a
broadcast probability schedule, however, is coordinating the nodes sufficiently that they can apply the same
permutation. This creates a chicken and egg problem: to share information among processes requires that
we solve broadcast, but we are sharing this information to help solve broadcast. Our solution is to instead
solve a form of loose coordination we call seed agreement. This problem assumes each participant gener-
ates a seed (for our purposes, this seed will be random bits for use in generating a probability permutation),
and then attempts to convince nearby nodes to commit to its seed. A solution to this problem must guar-
antee that every node commits to some nearby seed (perhaps its own), and, crucially, that there are not too
many unique seeds committed in any node’s neighborhood (in this paper, we achieve a bound on the or-
der of log (1/ε), for error probability ε). If nodes subsequently use these seeds to permute their broadcast
probability schedules (thereby gaining independence from the link schedule), we are assured that there are
not too many different schedules in a given neighborhood. An extra conflict resolution mechanism is then
introduced to our broadcast strategy to help resolve contention among these competing schedules.

We note that the seed agreement subroutine provides a general strategy for taming adversarial link
scheduling, and is therefore of independent interest. Accordingly, in this paper we provide a standalone
formal specification for the problem that is satisfied by our algorithm. This simplifies the process of subse-
quently integrating our seed agreement solution into other algorithms.

Finally, we note that to solve these problems in the absence of global parameters such as n requires the
introduction of new and non-trivial proof techniques, also of independent interest for the general pursuit
of true locality in radio network algorithms. For example, in analyzing our seed agreement subroutine, we
could not simply assume that certain key parameters involving local contention hold for the whole network,
as this would require a dependence on n. We instead established a region of goodness surrounding the target
node in our analysis. Using a careful induction on algorithm steps, we showed that although the guaranteed
radius of this region must contract as time advances (due to the influence of nodes outside the region for
whom we make no assumptions), this contraction is slow enough that our target node safely completes its
computation in time. Similarly, in analyzing the local broadcast routines that leverage the seed agreement
bits, we had to leverage a new notion of “high probability” that is defined with respect to node degree, not
network size (this is the source of the log (∆/ε) factors in the tack bound described above).
Related Work. The dual graph model of unreliable radio communication was introduced by Clementi
et al. [4], and subsequently given the name “dual graph” by Kuhn et al. [15]. It has since been well-
studied [15, 17, 3, 8, 7, 11, 22]. Under the pessimistic assumption of an adaptive adversary (as oppose to the

3

oblivious adversary considered in this paper), we previously explored bounds for global broadcast [15, 17],
local broadcast [8], and graph structuring algorithms [3, 22]. In [11], we studied the impact of different link
scheduler models by proving that some of the more pessimistic bounds from our previous work depended
on the assumption that the link schedule was constructed by an adaptive adversary. Of particular relevance
to this paper, we proved in [11] that local broadcast with efficient progress is impossible with an adaptive
link scheduler of this type, but is feasible with an oblivious link schedule. To establish this latter point, we
designed and analyzed a one-shot local broadcast algorithm that offers a progress guarantee (i.e., every node
that neighbors a broadcaster will get some message quickly) but no reliability guarantees (i.e., no particular
message is guaranteed to be delivered). The algorithm in [11] introduced the basic ideas that we developed
into the seed agreement specification and SeedAlg algorithm presented in this paper. We also note that all
results [11] depend on global parameters, whereas here we invest significant effort in gaining true locality.

The abstract MAC layer [14, 16] is an approach to designing wireless network algorithms that defines
an abstraction that captures the main guarantees of most wireless link layers, and then divides the task of
algorithm design into two efforts: (1) describing and analyzing algorithms that run on top of the abstraction,
and (2) implementing the abstraction in specific low-level wireless models. Our local broadcast problem
was defined with the standard parameters of a (probabilistic) abstract MAC layer in mind. Our algorithm,
therefore, can be interpreted as a strategy for implementing this layer in the dual graph radio network model,
and therefore providing a way to translate to the dual graph low level model the growing corpus of algorithms
designed and analyzed onto of the abstract MAC layer [10, 20, 6, 13, 12, 5]. We note, however, that
the translation from our algorithm to an abstract MAC layer implementation is not immediate, as some
(presumably straightforward) work will be required to mediate between our definition, expressed in terms
of low-level details like rounds and receiving messages, and the higher level specification of the abstract
MAC layer, which is usually expressed only in terms of the ordering and timing of input and output events.

2 The Dual Graph Model

We use a radio network model based on dual graphs, which describes randomized algorithms executing in
a synchronous multihop radio network with both reliable and unreliable links. The model describes the
network topology with a dual graph (G,G′), where G = (V,E), G′ = (V,E′), and E ⊆ E′, where E
describes reliable links and E′ \ E describes unreliable links. We use n to denote |V |, the number of
vertices in the graphs. For u ∈ V , we write NG(u) (NG′(u)) to denote u’s immediate neighbors in G (G′),
not including u itself. We assume two degree bounds: ∆, an upper bound on |NG(u) ∪ {u}|, and ∆′, an
upper bound on |NG′(u) ∪ {u}|, defined over every u.

An embedding of a (finite) set V of graph vertices in the Euclidean plane is simply a mapping emb :
V → R2; this provides a pair of (x, y) coordinates for each vertex V . If emb is an embedding of the vertices
V of a dual graph (G,G′) and r is a real number, r ≥ 1, then we say that (G,G′) is r-geographic with
respect to emb provided that, for every u, v ∈ V, u 6= v, the following conditions hold (where d represents
Euclidean distance):

1. If d(emb(u), emb(v))) ≤ 1 then {u, v} ∈ E.

2. If d(emb(u), emb(v)) > r, then {u, v} /∈ E′.

In other words, nearby vertices must be neighbors in G, and distant vertices cannot even be neighbors
in G′, but vertices in the grey zone represented by the intermediate distances in (1, r] might or might not be
neighbors in G or G′. We say that (G,G′) is r-geographic provided that there exists an embedding emb of
the vertex set V such that (G,G′) is r-geographic with respect to emb. We sometimes also say that (G,G′)
is geographic provided that there exists a real r ≥ 1 such that (G,G′) is r-geographic.

4

We assume that the dual graphs we consider are r-geographic, for some particular r, which we fix for
the rest of the paper. Moving forward, fix an space I . An algorithm is an injective mapping proc() from I
to some set of processes, which are some type of probabilistic timed automata that model wireless devices.
Thus, proc(i) denotes the process with id i. We assume that each process knows (e.g., has in a special
component of its initial state) its own id, and also knows the quantities ∆, and ∆′. Notice, we do not assume
processes know n (as is typical in such models) as we seek problem definitions and solutions that operate
independently of the network size. A process assignment for a dual graph (G,G′) and id space I is an
injective mapping id() from V to I , that assigns a different id to each graph vertex. The two mappings,
proc and id, together serve to assign a distinct process to each graph vertex. That is, proc(id(u)) is the
process assigned to graph vertex u. To simplify terminology, we often write node u to indicate proc(id(u))
or process i to indicate proc(i). We assume that processes do not know the id() mapping in advance.

An execution of an algorithm in a given dual graph network topology (G,G′) proceeds in synchronous
rounds 1, 2, In each round t, each node decides whether to transmit a message or receive, based on its
process definition; this might involve a random choice. The communication topology in round t consists of
the edges in E plus an arbitrary subset of the edges in E′ \ E. This subset, which can change from round
to round, is determined by an adversary that we call a link scheduler (see below). Once the topology is
fixed for a given round, we use the following standard collision rules to determine communication: node u
receives a message m from node v in round t, if and only if: (1) u is receiving; (2) v is transmitting m; and
(3) v is the only node transmitting among the neighbors of u in the communication topology chosen by the
link scheduler for round t. If node u does not receive a message, then we assume that it receives a special
“null” indicator ⊥: that is, we assume no collision detection.

We now formalize the notion of a link scheduler: the entity responsible for resolving the non-determinism
concerning which edges from E′ \ E are added to the topology in each round. Formally, we define a link
scheduler to be a sequence G = G1, G2, G3, ..., where each Gt (also denoted G[t]) is the graph used for the
communication topology in round t. We assume eachGt is allowable given our above model definition.2 We
assume the link scheduler for a given execution is specified at the beginning of the execution. Notice, this
definition implies oblivious behavior concerning the network dynamism, as all decisions on the topology
are made at the beginning of an execution.

The other relevant source of non-determinism in our model is the environment which we use to provide
inputs and receive outputs as required by a specific problem (when relevant). For example, in solving local
broadcast, an environment provides the messages to broadcast, whereas for a problem like consensus, it
provides the initial values. The details of what defines a well-formed environment is specified on a problem-
by-problem basis. As with the scheduler, when analyzing an execution we first fix the environment for
the execution. Though it is possible to conceive of an environment as a probabilistic entity, for the sake of
simplicity, the environments we consider in this paper are all deterministic (i.e., once you fix an environment
for an execution, all non-determinism regarding inputs is resolved). To formally model the interaction with
an environment, we break down the synchronous steps each process takes within a round as follows: first
all processes receive inputs (if any) from the environment, next all processes that decide to transmit do so,
they then all receive, and finally, they generate outputs (if any) which are processed by the environment to
end the round.

We call the combination of a dual graph, process assignment, link scheduler, and environment a config-
uration. Notice, a configuration resolves all relevant model and problem nondeterminism. It follows that a
configuration combined with a probabilistic algorithm defines a distribution over possible executions (which
we sometimes call the execution tree). When we say an algorithm satisfies a certain property with a given
probability, we mean that for all allowable configurations, in the execution tree that results from combining

2That is, it is a graph that includes all the nodes and edges of G with (perhaps) some edges from E′ \ E also
included.

5

the algorithm with the configuration, the property is satisfied with that probability.

3 Seed Agreement

The seed agreement problem provides a loose form of coordination: each participating node u generates
a seed s from some known seed domain S, and then eventually commits to a seed generated by a node in
its neighborhood (perhaps its own). The safety goal is to bound the number of unique seeds committed in
any given neighborhood by a sufficiently small factor δ, while the liveness goal is to do so in a minimum of
rounds. In this section, we provide a dual graph algorithm that yields a bound δ that is roughly O(log(1

ε)),
and that operates within time that is polynomial in log(∆) and log(1

ε), with (provided) error probability ε.
In Section 4, we use seed agreement as a crucial subroutine in our local broadcast service implementa-

tion. It is potentially useful, however, to any number of problems in the dual graph model (and elsewhere),
so we take our time here to first provide a careful formal specification, which we then satisfy with a new
dual graph algorithm. The analysis of our algorithm was rendered particularly tricky by our goal of avoiding
dependence on global parameters such as n, and provides some of the main technical contributions of this
paper. Due the long length of this analysis, we provide below only the problem definition, our algorithm
description, and our main theorem—deferring the analysis details to Appendix B. We point the interested
reader to Appendix B.4 as a good example of how we are forced to compensate for our inability to establish
global properties with a union bound (which would require a dependence on n). The strategy deployed
in this section is to bound the rate at which a region of “goodness” (i.e., sufficiently bounded contention)
surrounding our target node contracts as the node races toward termination.

3.1 The Seed Agreement Problem

Fix a finite seed domain S. We specify the problem as Seed(δ, ε), where δ is a positive integer representing
the seed partition bound, and ε is a small nonnegative real representing an error probability. This specifica-
tion describes correctness for a system based on some arbitrary system configuration, running according to
our execution definition. The specification has no inputs. Its outputs are of the form decide(j, s)u, where
j ∈ I , s ∈ S, and u ∈ V . This represents a decision by the node at graph vertex i to commit to the seed s
proposed by the node with id j (in the following, we call j the owner of seed s). We begin with two basic
non-probabilistic conditions on the outputs; these must hold in every execution:

1. Well-formedness: In every execution, for each vertex u, exactly one decide(∗, ∗)u occurs.

2. Consistency: In every execution, for each pair of vertices u1, u2, if decide(j, s1)u1 and decide(j, s2)u2

both occur, then s1 = s2.

That is, if outputs contain the same owners then they also contain the same seeds. The two remaining
conditions are probabilistic. To talk about probabilities of events, we must first specify the probability
distribution. As noted in Section 2, the combination of the system configuration fixed above and a given
seed agreement algorithm defines a distribution on executions. We state our remaining properties in terms
of this distribution. In more detail, we start by considering an agreement property. Let Bu,δ be the event (in
the probability space of executions) that at most δ distinct ids appear as seed-owners in decide outputs at
nodes in NG′(u) ∪ {u}.

3. Agreement: For each vertex u, Pr(Bu,δ) ≥ 1− ε.

Note that we state Condition 3 for each vertex u separately, rather than in terms of all vertices, as in [11].
This change is needed for expressing costs in terms of local parameters.

6

We now express independence of the choices of seed values corresponding to different owners. An
owner mapping Mo is a mapping from V to I , that is, an assignment of an (owner) id to each vertex. A seed
mapping Ms is a mapping from V to S, that is, an assignment of a seed to each vertex. We say that a seed
mapping Ms is consistent with an owner mapping Mo provided that, if two vertices have the same owner,
then also have the same seed. That is, if Mo(u) = Mo(v) then Ms(u) = Ms(v). Let OwnMo be the event
in the probabilistic execution that Mo is the owner mapping.

4. Independence: Suppose that Mo is an owner mapping and Ms is a seed mapping, where Ms is consistent
with Mo. Suppose that Pr(OwnMo) > 0. Then, conditioned on OwnMo , the probability that Ms is
the seed mapping that appears in the execution is exactly (1

|S|)
|range(Mo)|.

Condition 4 says that the probability of each consistent seed mapping is just what it would be if the seed
mapping were determined in the following way: All processes first choose a seed from S, uniformly at
random. Then after every process chooses a seed owner, it also adopts the associated seed value.

3.2 A Seed Agreement Algorithm

We now describe our seed agreement algorithm, SeedAlg, which takes as its sole parameter, an error bound,
ε1. We will show, in Theorem 3.1, that this algorithm implements Seed(δ, ε) for values of δ and ε that depend
on ε1. Its main strategy is to hold aggressive local leader elections that yield bounded safety violations (i.e.,
multiple nearby leaders). In the following description, we assume for simplicity that ∆ is a power of 2. We
also use a “sufficiently large” constant c4 for the phase length.

Algorithm SeedAlg(ε1), for process i at graph vertex u, where 0 < ε1 ≤ 1
4 :

The algorithm uses log ∆ phases, each consisting of c4 log2(1
ε1

) rounds.
Process imaintains a local variable containing its “initial seed” in S, which it chooses uniformly
at random from the seed domain S. It also keeps track of its status∈ {“active”, “leader”, “inactive”},
and the current phase number and round number.

Now we describe process i’s behavior in any particular phase h ∈ {1, . . . , log ∆}. If status =
active at the beginning of phase h, then process i becomes a leader; i.e., sets status to leader,
with probability 2−(log ∆−h+1). Thus, it uses probabilities: 1

∆ ,
2
∆ , . . . ,

1
4 ,

1
2 , as it progresses

through the phases.

If process i becomes a leader at the start of phase h, it immediately outputs decide(i, s), where
s is its initial seed. Then, during the remaining rounds of the phase, process i broadcasts (i, s)
with probability 1

log (1
ε1

)
in each round. At the end of the phase, it becomes inactive.

If process i is active but does not become a leader at the start of phase h, then it just listens for
the entire phase. If it receives a message containing a pair (j, s), then it immediately outputs
decide(j, s) and becomes inactive. If it receives no messages during this phase, then it remains
active.

If process i completes all phases and is still active, then it outputs decide(i, s), where s is its
initial seed.

3.3 Correctness of SeedAlg

The analysis of SeedAlg contained in Appendix B culminates with the main theorem below. For the fol-
lowing, recall that r is the value used in defining the r-geographic property assumed of our dual graph
(Section 2), and ∆ is the maximum node degree in G.

7

Theorem 3.1. SeedAlg(ε1) satisfies the Seed(δ, ε) specification, where δ is O(r2 log (1
ε1

)), and ε =

O(r4 log4(∆)(ε1)c
r2

), where c is some constant, 0 < c < 1. The algorithm takes O((log ∆) log2(1
ε1

))
rounds.

4 Local Broadcast

We now define our local broadcast service, then describe and analyze an efficient solution which uses the
SeedAlg algorithm from Section 3 as a key subroutine. As before, due to the length of our analysis, we
describe the algorithm, problem, and main correctness theorem below, but defer details to Appendix C.

4.1 The Local Broadcast Problem

The local broadcast problem described here requires nodes to implement an ongoing probabilistic local com-
munication service with timing and reliability guarantees. In more detail, we call the problemLB(tack, tprog, ε),
where tack ≥ tprog ≥ 1 are integer round bounds, and ε is a small real representing an upper bound on the
error probability. To define the problem, we must first fix the underlying dual graph network in which it is
being solved: (G = (V,E), G′ = (V,E′)). We then define a setMu of possible messages for each u ∈ V .
For simplicity, we assume these sets are pairwise disjoint. Let M =

⋃
uMu be the set of all possible

messages. Every node u ∈ V has a bcast(m)u input and ack(m)u output, for each m ∈ Mu. Node u also
has a recv(m′)u output for each m′ ∈M.

We now restrict the behavior of the environments we consider for this problem. In more detail, we as-
sume that (1) the environment generates each input at a given node u at most once per execution (i.e., each
message it passes a node to broadcast is unique), and (2) if the environment generates a bcast(m)u input at
u at some round r, it must then wait until u subsequently generates a ack(m)u output (if ever) before it can
generate another bcast input at u. To simplify analysis, we restrict our attention to deterministic environ-
ments. Therefore, we can assume the environment is modeled as synchronous deterministic automaton that
receives the nodes’ ack outputs as input, and generates their bcast inputs as its output.

In the following, we say a node u is actively broadcasting m in round r, if node u received a bcast(m)u
input in some round r′ ≤ r, and through round r, node u has not yet generated a subsequent ack(m)u output.
Similarly, we say u is active in a given round if there is some message that u is actively broadcasting during
this round. The problem places deterministic and probabilistic constraints on the nodes’ output behavior.
We begin with the deterministic constraints.

In every execution, the following must always hold:

1. Timely Acknowledgement. If node u receives a bcast(m)u input in round r, it will generate a single
corresponding ack(m)u output in the interval r to r + tack. These are the only ack outputs that u
generates.

2. Validity. If node u performs a recv(m)u output in some round r, then there exists some v ∈ NG′(u)
such that v is actively broadcasting m in round r.

Recall that if we fix some configuration and an algorithm, the combination yields a well-defined prob-
ability distribution (equiv., execution tree) over executions of the algorithm in this configuration. To aid
our probabilistic constraint definitions, we first introduce some notation for discussing an execution tree
determined by a configuration. When considering any execution from such a tree, we can partition time into
phases of length tprog starting in the first round. We number these 1, 2, We use the terminology phase

8

i prefix to describe a finite execution prefix that includes every round up to the beginning of phase i (i.e., it
does not include the first round of phase i but does include the last round—if any—before phase i begins).
For a given execution tree, phase i prefix α in this tree, and node u, let Auα describe the set of tprog-round
extensions of α in which there is a G-neighbor of u that is active throughout every round of phase i, and let
Bu
α describe the set of tprog-round extensions where u receives at least one message mv ∈Mv from a node

v in a round r such that v is actively broadcasting mv in r.

We now define two probabilistic constraints that must hold for every configuration:

1. Reliability. For every configuration, node u, and r-round execution prefix such that u receives a
bcast(m)u input at the beginning of round r: the probability that every v ∈ NG(u) generates a
recv(m)u output before u’s corresponding ack(m)u output, is at least 1− ε.
(Notice: this property leverages the timely acknowledgment property which tells us that in every
extension of this prefix, u generates an ack(m)u output wihin tack rounds.)

2. Progress. For every configuration, node u, phase i, and phase i prefix α in the resulting execution
tree: Pr(Bu

α | Auα) ≥ 1− ε.

4.2 A Local Broadcast Algorithm

We now describe LBAlg: our solution to the local broadcast problem. This description makes use of several
constants that we detail in Appendix C.1. For our purposes here, it is sufficient to know the following
regarding their definition and size: ε1 is the desired error bound for LB, κ describes the number of bits
needed to resolve one phases’s worth of common random choices, Ts is an integer in O

(
log ∆ log2 (1

ε2
)
)
,

Tprog is an integer in O
(
r2 log (1

ε1
) log (1

ε2
) log ∆

)
, Tack is an integer in O

(∆ log (∆/ε1)
(1−ε1)

)
, and ε2 is an error

probability defined to be sufficiently small that SeedAlg solves seed agreement with an error bound≤ ε1/2.

Algorithm LBAlg(ε1), for process i at vertex u for some real ε1, 0 < ε1 ≤ 1
2 .

Node u partitions rounds into phases of length Ts + Tprog rounds. We label these phases
1, 2, 3, During each phase, u can be in one of two states: receiving or sending. Node u
begins the execution in the receiving state. After receiving a bcast(m)u input, u will spend
the next Tack full phases in the sending state (if it receives the bcast input in the middle of a
phase, it waits until the beginning of the next phase to switch to the sending state). At the end
of the last round of the last of these Tack phases, node u generates an ack(m)u output, and then
returns to the receiving state.

We now define what happens during these phases. At the beginning of each phase, regardless
of u’s state, it executes SeedAlg(ε2) as a subroutine, using the seed set Sκ = {0, 1}κ; i.e., the
set describing every bit sequence of length κ. Let s(j)

u be the seed that node u commits in the
beginning of phase j. We call the rounds spent at the beginning of a phase running SeedAlg
the preamble of the phase, and the remaining rounds the body of the phase.

Node u’s behavior during the body of a given phase j depends on its state. If it is in the
receiving state, it simply receives during each of these rounds. If during one of these rounds,
node u receives a message m′ that it has not yet previously received, it generates a recv(m′)u
output.

On the other hand, if u is in the sending state for this phase, during each of the body rounds, it
does the following:

9

1. Node u consumes dlog (r2 log (1
ε2

))e new bits from its seed s(j)
u . If all of these bits are

0 (which occurs with probability a · 1
r2 log (1

ε2
)
, for some a ∈ [1, 2)) it sets its status to

participant, otherwise it sets its status to non-participant.

2. If u is a non-participant, it receives.

3. If u is a participant, it next consumes log log ∆ new bits from s
(j)
u . Let b be the value

in [log ∆] specified by these bits. The node then uses an independent (with respect to
the other processes) local source of randomness (i.e., not bits from s

(j)
u), to generate b

bits with uniform randomness. If all b bits are 0 (which occurs with probability 2−b), u
broadcasts its message.

As with the receiving state, if during any of these body rounds, node u receives a message m′

that it has not yet previously received, it generates a recv(m′)u output.

The above algorithm divides rounds into phases and then runs a seed agreement algorithm at the be-
ginning of each phase to synchronize shared random bits for the remainder of the phase. Notice that there
is nothing fundamental about this frequency of seed agreements. In some settings, it might make sense to
run the agreement protocol less frequently, and generate seeds of sufficient length to satisfy the demands
of multiple phases. Such modifications do not change our worst-case time bounds but might improve an
average case cost or practical performance.

4.3 Correctness of LBAlg

In Appendix C, we analyze LBAlg, culminating in the following theorem:

Theorem 4.1. LBAlg(ε1) solves the LB(tack, tprog, ε1) problem for:

• tprog = Ts + Tprog = O
(
r2 log ∆ log (r

4 log4 ∆
ε1

)
)

• tack = (Tack + 1)(Ts + Tprog) = O
(
r2∆ log (∆/ε1) log ∆ log (r

4 log4 ∆
ε1

)(1
1−ε1)

)
Below is the core lemma on which we build our proof of Theorem 4.1. This lemma bounds the behavior

of LBAlg within the scope of a single phase. To do so, we first introduce some useful notation. For a given
phase i of an execution, letBi be the set of nodes that are in sending status during phase i, andRi = NG(Bi)
be the set of nodes that neighbor Bi in G. Notice, because sending status is fixed for the duration of a given
phase, both Bi and Ri are determined at the beginning of phase i and cannot change during the phase. Also
recall from the model definitions that ∆′ bounds the maximum degree inG′. Using this notation, we specify
and prove the following key probabilistic behavior:

Lemma 4.2. Fix some phase i and an execution prefix through the (j − 1)th body round of this phase, for
some j ∈ {2, ..., Tprog}. Fix nodes u and v, where u ∈ Ri and v ∈ NG(u) ∩ Bi. Assume the call to
SeedAlg at the beginning of phase i in this prefix satisfies Bu,δ. Let pu be the probability that u receives
some message in the jth round, and let pu,v be the probability that u receives a message from v in this round.
It follows that:

• pu ≥ c2
r2 log (1

ε2
) log ∆

• pu,v ≥ pu/∆′

10

The full proof for this lemma (see Appendix C.2) works through the details of the following intuition.
Under the assumption that the call to SeedAlg at the beginning of this phase is successful, the neighbors of
u can be partitioned into at most δ = O(r2 log (1

ε2
)) groups, such that each group shares the same seed (see

Theorem 3.1). Because u has a reliable neighbor that is transmitting (by assumption), at least one such group
Su contains one or more G neighbors. By the definition of LBalg, with probability Θ((r2 log (1

ε2
))−1), this

group will be the only group to decide to be a participant group in this round (these decisions are uniform
within a group since they are based on a common seed). Assuming this happens, we next fix the edges added
to the topology for this round by the link schedule. Let ` be the number of G edges from Su to u in this
topology. We note that there is a “successful” probability for this value of ` (i.e., anything close to 1/`), and
that members from Su, using bits from their common seed, will select this successful value with probability
1/ log ∆. At this point, with an additional constant probability, exactly one of these ` neighbors of u will
broadcast. Combining these various probabilities provides the pu bound from above. The pu.v bound follows
from the uniformity and independence with which the (≤ ∆′) nodes in Su make their broadcast decisions.

5 Conclusion

In this paper, we described and analyzed an ongoing local broadcast service for the dual graph model. This
service hides the complexities introduced by unpredictable link behaviors and therefore has the potential to
significantly simplify the development of distributed algorithms for this challenging setting. As noted in the
introduction, we see this result as the culmination of a half-decade struggle [15, 17, 3, 8, 7, 11, 9] to tame
the realistic but difficult link unpredictability at the core of the dual graph model definition.

Our solution can also be adapted to implement the abstract MAC layer specification [14, 16], allowing
existing results for this abstraction to translate to the dual graph model (e.g., [10, 20, 6, 13, 12, 5]). Though
we leave the details of this adaptation to future work, we note that it would likely be straightforward, with
the main effort focused on aligning our local broadcast problem definition—which depends on low level
model details, such as rounds and receiving messages—with the higher level of the abstract MAC layer,
which is specified in terms of the timing and ordering of input and output events.

Finally, we emphasize that our commitment to truly local algorithms, which required us to avoid global
parameters in problem definitions, algorithm strategies, and analysis, is of standalone interest to those study-
ing radio network algorithms. As we argued at this paper’s opening, a local perspective provides more
flexibility to practitioners, and will become increasingly necessary as network sizes grows.

6 Acknowledgments

This research is supported in part by: Ford Motor Company University Research Program, NSF Award
CCF-1320279, NSF Award CCF-0937274, NSF Award CCF-1217506, NSF CCF-0939370, and AFOSR
Award Number FA9550-13-1-0042.

References

[1] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A Survey. Computer Networks,
54(15):2787–2805, 2010.

[2] R. Bar-Yehuda, O. Goldreigch, and A. Itai. On the Time-Complexity of Broadcast in Multi-Hop Radio
Networks: An Exponential Gap between Determinism and Randomization. Journal of Computer and
System Sciences, 45(1):104–126, 1992.

11

[3] K. Censor-Hillel, S. Gilbert, F. Kuhn, N. Lynch, and C. Newport. Structuring unreliable radio networks.
Distributed Computing, 27(1):1–19, 2014.

[4] A. E. F. Clementi, A. Monti, and R. Silvestri. Round Robin is Optimal for Fault-Tolerant Broadcasting
on Wireless Networks. Journal of Parallel and Distributed Computing, 64(1):89–96, 2004.

[5] A. Cornejo, N. Lynch, S. Viqar, and J. L. Welch. Neighbor Discovery in Mobile Ad Hoc Networks
Using an Abstract MAC Layer. In Annual Allerton Conference on Communication, Control, and
Computing, 2009.

[6] A. Cornejo, S. Viqar, and J. L. Welch. Reliable Neighbor Discovery for Mobile Ad Hoc Networks. In
Proceedings of the International Workshop on Foundations of Mobile Computing, 2010.

[7] M. Ghaffari. Bounds on contention management in radio networks. Master’s thesis, Electrical En-
gineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, February
2013.

[8] M. Ghaffari, B. Haeupler, N. Lynch, and C. Newport. Bounds on contention management in radio
networks. In M. K. Aguilera, editor, Distributed Computing: 26th International Symposium (DISC
2012), Salvador, Brazil, October, 2012, volume 7611 of Lecture Notes in Computer Science, pages
223–237. Springer, 2012.

[9] M. Ghaffari, E. Kantor, N. Lynch, and C. Newport. Multi-message broadcast with Abstract MAC
layers and unreliable links. In Proceedings of the 33nd Annual ACM Symposium on Principles of
Distributed Computing (PODC’14), pages 56–65, Paris, France, July 2014.

[10] M. Ghaffari, E. Kantor, N. Lynch, and C. Newport. Multi-message broadcast with abstract mac layers
and unreliable links. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), 2014.

[11] M. Ghaffari, N. Lynch, and C. Newport. The cost of radio network broadcast for different models of
unreliable links. In Proceedings of the 32nd Annual ACM Symposium on Principles of Distributed
Computing, pages 345–354, Montreal, Canada, July 2013.

[12] M. Khabbazian, F. Kuhn, D. Kowalski, and N. Lynch. Decomposing Broadcast Algorithms Using
Abstract MAC Layers. In Proceedings of the International Workshop on Foundations of Mobile Com-
puting, 2010.

[13] M. Khabbazian, F. Kuhn, N. Lynch, M. Medard, and A. ParandehGheibi. MAC Design for Analog
Network Coding. In Proceedings of the International Workshop on Foundations of Mobile Computing,
2011.

[14] F. Kuhn, N. Lynch, and C. Newport. The Abstract MAC layer. In Distributed Computing, 23rd Inter-
national Symposium on Distributed Computing (DISC 2009), Elche, Spain, September 2009, volume
5805 of Lecture Notes in Computer Science, pages 48–62. Springer, 2009.

[15] F. Kuhn, N. Lynch, and C. Newport. Brief announcement: Hardness of broadcasting in wireless
networks with unreliable communication. In Proceedings of the 28th Annual ACM Symposium on the
Principles of Distributed Computing (PODC 2009), Calgary, Alberta, Canada, August 2009.

[16] F. Kuhn, N. Lynch, and C. Newport. The Abstract MAC layer. Distributed Computing, 24(3-4):187–
206, November 2011. Special Issue for DISC 2009: 23rd International Symposium on Distributed
Computing.

12

[17] F. Kuhn, N. Lynch, C. Newport, R. Oshman, and A. Richa. Broadcasting in unreliable radio networks.
In Proceedings of the 29th ACM Symposium on Principles of Distributed Computing (PODC), pages
336–345, Zurich, Switzerland, July 2010.

[18] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), 2004.

[19] M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on Computing,
24(6):1259–1277, 1995.

[20] C. Newport. Consensus with an abstract mac layer. In Proceedings of the ACM Symposium on Princi-
ples of Distributed Computing (PODC), 2014.

[21] C. Newport. Lower bounds for radio networks made easy. In Proceedings of the International Sympo-
sium on Distributed Computing (DISC), 2014.

[22] C. Newport. Lower bounds for structuring unreliable radio networks. In Proceedings of the Interna-
tional Symposium on Distributed Computing (DISC), 2014.

[23] C. Newport, D. Kotz, Y. Yuan, R. S. Gray, J. Liu, and C. Elliott. Experimental Evaluation of Wireless
Simulation Assumptions. Simulation, 83(9):643–661, 2007.

13

Appendix

A Mathematical Preliminaries

Here we define and isolate some important properties and concepts used in the analyses that follow. We also
identify some mathematical facts that prove useful in these efforts.

A.1 Region Partitions

The arguments in [11] is based on a partition of the graph vertices. Instead, our work here is mainly based
on a partition of the Euclidean plane into convex regions. We consider partitions of the plane that satisfy
certain constraints on the size of a region and on the number of regions in a limited-size area of the plane.

Let R be any partition of the plane into (nonempty) convex regions and let r ≥ 1 be a real number.
We define the region graph for R and r, GR,r, as follows. The vertices are just the regions in R. An edge
is included between regions R and R′, R 6= R′, exactly if d(p, q) ≤ r for some p ∈ R and q ∈ R′. We
say that (R, r) is f -bounded, where f is a monotone nondecreasing function from nonnegative integers to
nonnegative reals, provided that both of the following hold.

1. For every region R ∈ R, and for every pair of points p, q ∈ R, d(p, q) ≤ 1.

2. For every region R ∈ R, and for every nonnegative integer h, there are at most f(h) regions whose
hop-distance from R in GR,r is at most h.

It is easy to see that such partitions exist:

Lemma A.1. There exists a partition R and a positive real constant c1 such that, for any r ≥ 1, (R, r) is
f -bounded, where f(h) = c1r

2h2.

Proof. We can use a uniform grid based on squares of side 1
2 . To ensure that we have a partition, each square

includes only some of its boundary points: the upper left corner, the upper edge excluding the endpoints,
and the left edge excluding the endpoints.

There are many other possible partitions. For the rest of the paper, we fix some partitionR and constant
c1 satisfying the properties in Lemma A.1. We also write cr for c1r

2; thus, cr is a “constant” once we fix r
(as we will do in much of the paper). Thus, we have:

Lemma A.2. For the fixed partition R and constant c1, for any r ≥ 1, (R, r) is f -bounded, where f(h) =
crh

2. In particular, any region R ∈ R has at most cr − 1 neighboring regions in GR,r.

Here is another small observation relating ∆ and ∆′ for geographic dual graphs.

Lemma A.3. Suppose (G,G′) is an r-geographic dual graph with respect to emb, where G = (V,E) and
G′ = (V,E′). Then ∆′ ≤ cr∆.

Proof. Consider our fixed f -bounded region partition. Given our assumptions on the size of these regions,
all nodes in a given region are G neighbors, and therefore the number of vertices in each region is at most
∆. Applying Lemma A.2, we get the total number of G′-neighbors, plus u itself, is at most cr∆.

14

A.2 Probability

Here are some basic probability results that we use.

Theorem A.4 (Chernoff bounds). Let X1, · · · , Xk be independent random variables such that for 1 ≤ i ≤
k, Xi ∈ {0, 1}. Let X = X1 +X2 + · · ·+Xk and let µ = E[X]. Then, for any δ, 0 ≤ δ ≤ 1:

P [X > (1 + δ)µ] ≤ e−δ2 µ
2 , (1)

P [X < (1− δ)µ] ≤ e−δ2 µ
3 , and (2)

P [|X − µ| < δµ] ≤ 2e−δ
2 µ

3 . (3)

We also use a standard inequality:

Lemma A.5. Let x be a real number, x ≥ 2. Then (1− 1
x)x ≥ (1/4).

B Seed Agreement Analysis

Here we provide the details of our analysis of the seed agreement algorithm SeedAlg, defined in Section 3.
In the following, recall that we have fixed a configuration, including a dual graph network topolgy: (G,G′).
We have also already assumed that r is a fixed real, r ≥ 1. We have already fixed partition R of the plane;
now name the equivalence classes as region x, or Rx, for x ∈ X . We will say that a node u is in region x if
emb(u) ∈ Rx. In a slight abuse of notation, we will sometimes use u ∈ Rx to indicate node u is in region
Rx, and |Rx| to indicate the number of unique nodes in Rx.

B.1 Constants

The algorithm and the analysis use many positive real-valued constants. For reference, we collect them here:

• c1 and cr = c1r
2, used in specifying the region partitionR.

• c2 ≥ 4, in the definition of good, below. Let c3 = 5
4c2.

• c4 ≥ 2 · 4crc3 , a parameter of the algorithm. Let c5 = (log2(e)
12)c4.

• c6 = (1
4)c1c3 .

• ε1 ≤ 1
2 , another parameter of the algorithm.

• ε2 = (ε1)c2 log2(e)/32 + (ε1)c2 log2(e)/24, arising from some Chernoff bounds.

• ε3 = (ε1)c5(c6)r
2

. This high dependence on r arises in a rather delicate local analysis of success
probabilities for transmission; see Lemma B.7.

• ε4 = crε2 + ε3.

15

B.2 Non-Probabilistic Definitions and Lemmas

The algorithm has several interesting non-probabilistic properties. The first lemma gives some easy proper-
ties of the owners and seeds that nodes choose.

Lemma B.1. Let α be an execution, Rx a region. Suppose that decide(j, s)v occurs in α for some node v
whose region is within one hop of Rx. Suppose further that this decision is not the result of a default choice
made at the end of all the phases. Then:

1. j is the id of some node in a region that is within two hops of Rx,

2. s is the initial seed chosen by j in α.

3. j is a leader in the phase at which the decide(j, s)v occurs.

Proof. Straightforward.

The remaining lemmas require some definitions. These definitions are for a particular execution α of
the algorithm.

For any region (index) x and phase h, we define:

• Ax,h, h ≥ 1, to be the set of nodes inRx that are active at the beginning of phase h, and ax,h = |Ax,h|.
• ph = 2−(log ∆−h+1) to be the leader election probability associated with phase h, and Px,h = ax,hph

to be the cumulative leader election probability for Rx at phase h.

• Region x is good in phase h provided that Px,h ≤ c2 log (1
ε1

).

• Lx,h, h ≥ 1 to be the set of nodes in Rx that become leaders in phase h, and `x,h = |Lx,h|.
Note that all of these notions except for Lx,h and `x,h depend on just the first h− 1 phases of the implicitly-
assumed execution α. These last two notions depend on the first h − 1 phases plus the initial step of phase
h at which the nodes decide whether to be leaders at phase h.

Lemma B.2. In every execution α, every region is good in Phase 1.

Proof. Fix any region x. By definition of the algorithm, p1 = 1
∆ . We have that ax,1 ≤ |Rx|, and |Rx| ≤ ∆

by the first property of region partitions. Therefore, Px,1 ≤ ∆
∆ = 1, which suffices.

Lemma B.3. Let α be an execution. Let x be a region, h a phase number. Suppose that, in α, Px,h ≤
c2
2 log (1

ε1
). Then in α, region x is good in phase h+ 1, that is, Px,h+1 ≤ c2 log (1

ε1
).

Proof. We know that ax,h+1 ≤ ax,h because the number of active nodes never increases from one phase
to the next. Also, ph+1 = 2ph. So Px,h+1 = ax,h+1ph+1 ≤ 2ax,hph = 2Px,h. By assumption, 2Px,h ≤
c2 log (1

ε1
). So Px,h+1 ≤ c2 log (1

ε1
), as needed.

The next lemma constrains the total number of leaders ever elected in a region x, in terms of the `x,h
values.

Lemma B.4. Let α be an execution, x a region, ` a positive integer. Suppose that, in every phase h,
1 ≤ h ≤ log ∆, the following hold:

1. `x,h ≤ `.
2. If `x,h ≥ 1 then after round h, all nodes in region x are inactive.

16

Then the total number of leaders elected in region x in α, that is, Σh`x,h, is at most `.

Proof. Straightforward.

The final non-probabilistic lemma constrains the number of nodes that decide on their own ids by default,
at the end of phase log ∆.

Lemma B.5. Let x be a region. Let α be a finite execution that completes exactly log ∆−1 phases. Suppose
that, in α, region x is good at phase log ∆. Then in all extensions of α, the number of nodes in region x that
decide on their own ids by default, at the end of phase log ∆, is at most 2c2 log (1

ε1
).

Proof. Since region x is good in phase log ∆, we know that Px,log ∆ ≤ c2 log (1
ε1

). Since plog ∆ = 1
2 and

Px,log ∆ = ax,log ∆plog ∆, we have that ax,log ∆ ≤ 2c2 log (1
ε1

). That is, the number of nodes in region x
that are active at the beginning of phase log ∆ is at most 2c2 log (1

ε1
). This bounds the number of nodes that

decide on their own ids by default, at the end of phase log ∆.

B.3 Probabilistic Lemmas about Individual Phases

In this subsection and the next, we prove some lemmas about the probabilities for having certain numbers of
leaders, for successful transmission, and for “goodness”. This subsection contains lemmas about behavior
in a single phase. The next subsection builds upon this one to describe behavior in many phases.

B.3.1 Number of leaders

The first lemma provides bounds on the number of leaders that are chosen in a region x at a phase h, based
on the range of values for the probability sum Px,h.

Lemma B.6. Let x be a region, h a phase number. Let α be a finite execution that completes exactly h− 1
phases. (Note that this is enough to determine Px,h.) Then, considering probabilities in extensions of α:

1. If Px,h ≤ c2 log (1
ε1

), then with probability at least 1− (ε1)c2 log2(e)/32, `x,h ≤ 5
4c2 log (1

ε1
).

2. If c22 log (1
ε1

) ≤ Px,h then with probability at least 1− (ε1)c2 log2(e)/24, `x,h ≥ 1
4c2 log (1

ε1
).

Proof. Define an indicator variable χ(u) for each u ∈ Ax,h (i.e., the set of active nodes in Rx at the
beginning of phase h): χ(u) = 1 if u elects itself leader in this phase (i.e., u ∈ Lx,h), and χ(u) = 0
otherwise (i.e., u 6= Lx,h). We express the total number of leaders in this region and phase as a sum of these
indicators: `x,h =

∑
u∈Ax,h χ(u). For each u, we have that E[χ(u)] = ph. By linearity of expectation,

E[`x,h] = ax,hph = Px,h.

1. We upper bound the probability that `x,h > 5
4c2 log (1

ε1
) using a Chernoff bound. Let µ = Px,h.

We define δ so that (1 + δ)µ = 5
4c2 log (1

ε1
), specifically, let δ = (5

4c2 log (1
ε1

))/Px,h − 1. Then

Chernoff yields a probability upper bound of e−δ2µ/2. If we express this as a function of Px,h, we
see that this bound increases monotonically as Px,h increases. So the largest value of the expression

occurs when Px,h = c2 log (1
ε1

). The expression then works out to e−(1/4)2(1/2)c2 log (1
ε1

), which is

equal to e−1/32c2 log (1
ε1

) = (ε1)c2 log2(e)/32. Then the probability that `x,h ≤ 5
4c2 log (1

ε1
) is at least

1− (ε1)c2 log2(e)/32.

17

2. We upper bound the probability that `x,h < 1
4c2 log (1

ε1
) = 1

2(c2/2) log (1
ε1

), using Chernoff. To
apply Chernoff, we use µ = Px,h. We define δ so that (1 − δ)µ = 1

4c2 log (1
ε1

). This works out

to δ = 1 − (1
4c2 log (1

ε1
))/Px,h. Then Chernoff yields a probability upper bound of e−δ2µ/3. If we

express this as a function of Px,h we see that this bound decreases monotonically as Px,h increases. So
the largest value of the expression occurs when Px,h = (c2/2) log (1

ε1
). The expression then works out

to e−(1/2)2(1/3)(c2/2) log 1
ε1 , which is equal to e−1/24c2 log (1

ε1
) = (ε1)c2 log2(e)/24. Then the probability

that `x,h ≥ 1
4c2 log (1

ε1
) is at least 1− (ε1)c2 log2(e)/24.

B.3.2 Successful transmission

The next lemma provides a bound for successful transmission in a region x at a phase h, based on bounds
on the number of leaders chosen at phase h in region x and its neighboring regions.

Lemma B.7. Let x be a region, h a phase number. Let α be a finite execution that completes exactly h− 1
phases, plus the leader election step of phase h. Suppose that, in α:

1. Region x satisfies 1 ≤ `x,h ≤ c3 log (1
ε1

).

2. Every neighboring region y of x satisfies `y,h ≤ c3 log (1
ε1

).

Let u be any element of Lx,h. Then with probability at least 1 − ε3 in extensions of α, there is some round
in phase h in which u transmits and no other node in Rx or node in any neighboring region Ry transmits.

Proof. First, we lower bound the probability that this combination of events occurs in any single round of
phase h by:

(1/ log (
1
ε1

))(1− 1/ log (
1
ε1

))crc3 log (1
ε1

);

This is because u transmits with probability 1/ log (1
ε1

) and there are at most crc3 log (1
ε1

) transmitting nodes
in region Rx plus its neighboring regions. By Lemma A.5, the right-hand side of this inequality is at least

(1/ log (
1
ε1

))(
1
4

)crc3 .

Now consider all of phase h. Since the individual round probabilities are at least (1/ log (1
ε1

))(1/4)crc3 ,
and we have c4 log2(1

ε1
) rounds, the mean number of successes is at least the product of these two ex-

pressions, which is c4 log (1
ε1

)(1/4)crc3 . Now we take δ = 1
2 in the Chernoff lower bound, Theorem A.4,

Equation 2 and get that we have at least half the mean number of successes, hence at least one success,

with probability at least 1 − e−(1/12)c4 log (1
ε1

)(1
4

)crc3 . (Here we use the assumed lower bound on c4.) This

simplifies to: 1− (ε1)(1/12)c4 log2(e)(1
4

)crc3 = 1− (ε1)c5(c6)r
2

= 1− ε3.

Note that the error bound ε3 that appears in Lemma B.7 has a double-exponential dependence on r.
We do not know how to avoid this. To compensate for large r, we would need to use small values of ε1,
which would impact the running time of the algorithm. This suggests that, for this approach to be feasible
in practice, one would need to have small values of r.

18

B.3.3 Goodness

We prove a lemma that says how goodness is preserved for a region Rx at one phase h. It turns out that
preserving goodness for region x at phase h depends on goodness of all neighboring regions of x at the
beginning of phase h, but not on goodness of any regions that are further away. The analysis is more
delicate than corresponding arguments in [11] because we are seeking local bounds.

Lemma B.8. Let x be any region, h a phase number. Let α be a finite execution that completes exactly h−1
phases. Suppose that, in α, region x and all its neighboring regions in the region graph are good at phase
h. Then with probability at least 1− ε4 in extensions of α, region x is also good at phase h+ 1.

Proof. By assumption, Px,h ≤ c2 log (1
ε1

). If Px,h ≤ c2
2 log (1

ε1
), that is, if region x is far below the threshold

used to define good, then Lemma B.3 implies that region x is good in phase h+ 1 (in all extensions), which
suffices. So for the remainder of the proof, we assume that Px,h > c2

2 log (1
ε1

), that is, region x is fairly
close to the threshold.

Lemma B.6 implies that, with probability at least 1 − ε2, 1
4c2 log (1

ε1
) ≤ `x,h ≤ 5

4c2 log (1
ε1

). This
implies that, with probability at least 1 − ε2, 1 ≤ `x,h ≤ c3 log (1

ε1
). (We use the lower bound on c2 here.)

Likewise, for any neighboring region y of x, Lemma B.6 implies that, with probability at least 1 − ε2,
`y,h ≤ c3 log (1

ε1
). Since the number of regions within one hop of x is at most cr, we can use a union bound

to conclude that with probability at least 1− cr(ε2), both of the following hold: (1) 1 ≤ `x,h ≤ c3 log (1
ε1

),
and (2) for every region y that is a neighbor of x, `y,h ≤ c3 log (1

ε1
). That is, with “high probability”, no

region within one hop of x elects more than c3 log (1
ε1

) leaders, and x elects at least one leader.
We argue that this combination of constraints on the P values is well suited for region x to succeed in

broadcasting to the region and reduce the sum to 0 by the start of phase h+ 1. Formally, let B be the set of
executions that extend α for just the initial leader-election step of phase h, and choose leaders at phase h in
such a way that conditions (1) and (2) above are satisfied. Then for each particular α′ ∈ B, fix uα′ ∈ Lx,h to
be any one of the leaders that are chosen in region x in phase h. Then Lemma B.7 implies that, in extensions
of α′, uα′ succeeds in delivering a message to all active nodes in region x with probability at least 1 − ε3.
In this case, all nodes in region x start phase h+ 1 inactive.

Then by Total Probability, the probability, conditioned on B, that some leader in region x succeeds in
delivering a message to all active nodes in region x, is at least 1− ε3.

Now we use a union bound to combine the two probabilities—for selecting the “right” number of leaders
and for the broadcast succeeding, and we get that all this happens with probability at least 1− cr(ε2)− ε3 =
1 − ε4. In this case, all nodes in region x start phase h + 1 inactive. Therefore, Px,h+1 = 0 which clearly
satisfies the definition of good.

Lemma B.8 gives a bound on preserving goodness in extensions of some particular (h − 1)-phase exe-
cution α. The following corollary gives a similar bound for all executions taken together.

Corollary B.9. Let x be any region. Let h be a phase number. Suppose (condition on the event) that region
x and all its neighboring regions in the region graph are good at phase h. Then with probability at least
1− ε4, region x is also good in phase h+ 1.

Proof. This follows from Lemma B.8, using Total Probability (considering all prefixes α satisfying the
assumption).

B.4 Probabilistic Lemmas about Multiple Phases

We now use the results of the previous section to get results about what happens during many phases of an
execution. We begin with a lemma that gives conditions for a region x and all its neighboring regions to a

19

designated distance to remain good for phases 1, . . . , n. This proof relies on Corollary B.9 for the inductive
step. The lemma is stated quite generally, although later, in the analysis of SeedAlg, we will need the result
for only limited distances.

Lemma B.10. Let x be any region, h and k integers, 1 ≤ h ≤ log ∆, 0 ≤ k. Then x and all its neighboring
regions to distance log ∆+k−h are good at phases 1, . . . , h, with probability at least 1−cr(h−1)(log (∆)+
k)2ε4.

Proof. By induction on h, for each fixed k. The base, h = 1, follows from Lemma B.2. For the inductive
step, assume the lemma for h and prove it for h+1, where 1 ≤ h ≤ log ∆−1. That is, assume that region x
and all its neighboring regions to distance log ∆+k−h are good at phases 1, . . . , h, with probability at least
1−cr(h−1)(log (∆)+k)2ε4. We show that x and all its neighboring regions to distance log ∆+k−(h+1)
are good at phases 1, . . . , h + 1, with probability at least 1 − crh(log (∆) + k)2ε4. Let A be the set of
executions in which all regions within log ∆ + k − h hops of region x are good at phases 1, . . . , h; thus,
Pr(A) ≥ 1− cr(h− 1)(log (∆) + k)2ε4.

Now consider any particular region y that is within log ∆ + k − (h + 1) hops of x. Then y and all
its neighboring regions are within log ∆ + k − h hops of x, and so, are good at phases 1, . . . , h in every
execution in A. Corollary B.9 implies that, with probability at least 1 − ε4, conditioned on A, region y is
also good at phase h + 1. There are at most cr(log (∆) + k)2 such regions y, by definition of the region
partition. So, with probability at least 1 − cr(log (∆) + k)2ε4, conditioned on A, all such y are good at
phase h+ 1. Thus, with probability at least 1− cr(log (∆) + k)2ε4, conditioned on A, all such y are good
at phases 1, . . . , h+ 1.

Combining this probability bound with the probability bound for A, we conclude that with probability
at least 1− cr(h− 1)(log (∆) +k)2ε4− cr(log (∆) +k)2ε4 = 1− crh(log (∆) +k)2ε4, all such y are good
at phases 1, . . . , h+ 1.

Corollary B.11. With probability at least 1− cr(log (∆))(log (∆) +k)2ε4, region x and all its neighboring
regions to distance k are good in every phase h, 1 ≤ h ≤ log ∆.

Proof. Apply Lemma B.10 for h = log ∆.

Next, we define some special events (sets of executions), based on goodness, bounded numbers of lead-
ers, and transmission success, and prove bounds for these. We will use the final lemma, about transmission
success, in the final analysis of SeedAlg.

For 1 ≤ h ≤ log ∆, define Gh to be the set of executions in which every region within three hops of
region x is good at all phases 1, . . . , h.

Lemma B.12. Pr(Glog (∆)) ≥ 1− cr(log (∆) + 3)3ε4.

Proof. By Corollary B.11.

For 1 ≤ h ≤ log ∆, define Lh to be the set of executions in which every region y within three hops of
region x satisfies the condition `y,h ≤ c3 log (1

ε1
).

Lemma B.13. For any phase h, Pr(Lh) ≥ 1− cr(log(∆) + 3)3ε4 − 9crε2.

Proof. We have thatPr(Lh) ≥ Pr(Gh∩Lh) = Pr(Gh)Pr(Lh|Gh). We know thatPr(Gh) ≥ Pr(Glog (∆)) ≥
1−cr(log(∆)+3)3ε4, by Lemma B.12. By Lemma B.6, we have thatPr(Lh|Gh) ≥ 1−9cr(ε1)c2 log2(e)/32 ≥
1− 9crε2, using the fact that there are at most 9cr regions within three hops of x. Combining these inequal-
ities, we get that Pr(Lh) ≥ 1− cr(log(∆) + 3)3ε4 − 9crε2.

20

For 1 ≤ h ≤ log ∆, define Sh to be the set of executions in which every region y within two hops of
region x satisfies the following property: “If `y,h ≥ 1 then there is some round in phase h in which some
node u in region y transmits and no other node in region y or any neighboring region z transmits.” Write S
as shorthand for S1 ∩ . . . ∩ Slog ∆, i.e., S is the set of executions in which all regions within two hops of x
“have successful transmissions, if possible” at all phases.

Lemma B.14. Pr(Sh) ≥ 1− cr(log(∆) + 3)3ε4 − 9crε2 − 4crε3.

Proof. We have that Pr(Sh) ≥ Pr(Lh ∩ Sh) = Pr(Lh)Pr(Sh|Lh). By Lemma B.13, we know that
Pr(Lh) ≥ 1 − cr(log(∆) + 3)3ε4 − 9crε2. By Lemma B.7, we have that Pr(Sh|Lh) ≥ 1 − 4crε3, using
the fact that there are at most 4cr regions within two hops of x. Combining these inequalities, we get that
Pr(Sh) ≥ 1− cr(log(∆) + 3)3ε4 − 9crε2 − 4crε3.

Lemma B.15. Pr(S) ≥ 1− cr(log ∆)[(log(∆) + 3)3ε4 + 9ε2 + 4ε3].

Proof. By Lemma B.14.

B.5 Correctness of SeedAlg

Now we use the lemmas in the previous subsections to show that our algorithm satisfies the seed-service
specification. Our overall goal is to prove:

Theorem B.16. SeedAlg(ε1) satisfies the Seed(δ, ε) specification, where δ is O(r2 log (1
ε1

)), and ε =

O(r4 log4(∆)(ε1)c
r2

), where c is some constant, 0 < c < 1. The algorithm takes O((log ∆) log2(1
ε1

))
rounds.

Proof. The time complexity is immediate from the definition of the algorithm. It remains to show that the
algorithm meets the specification. Properties 1 and 2 are straightforward. Property 4 should be easy because
the choices are made independently. It remains to show Property 3, the δ bound on the number of local
seeds.

For Property 3, fix some node u, in some region x. We prove a “high probability” bound on the number
of different owners/seeds that are decided upon within one hop of region x. There are two ways a node can
decide on a seed: (a) “Normally”, either by using its own seed because it elects itself a leader, or because it
adopts the seed of another leader. (b) “By default”, because it never elects itself leader or receives a seed, so
it adopts its own seed at the end of the execution. We bound the number of owners/seeds of these two types
separately.

First we bound the number of normal decisions. Let α be any execution in S. Then by the way the
algorithm works, for any region y that is within two hops of x, and for any phase h, the following condition
holds: If there is some round of phase h in which some node in region y transmits and no other node in
region y or any neighboring region transmits, then all nodes in region y are inactive in phases > h. Then
Lemma B.4 implies that, throughout α, region y elects at most c3 log (1

ε1
) leaders. By our geographic

constraint, the number of such regions y is at most 4cr, so the total number of leaders elected in regions that
are within two hops of x is at most 4crc3 log (1

ε1
). Therefore, in α, the total number of unique seeds that

are decided upon “normally” by nodes in regions that are within one hop of x is also at most 4crc3 log (1
ε1

).
Therefore, by Lemma B.15, with probability at least 1 − cr(log ∆)[(log(∆) + 3)3ε4 + 9ε2 + 4ε3], the
total number of unique seeds that are decided upon “normally” by nodes within one hop of x is at most
4crc3 log (1

ε1
).

Next, we bound the number of default decisions. Consider any execution α in Glog (∆). Lemma B.5
implies that, in α, in any region y that is within one hop of region x, at most 2c2 log (1

ε1
) nodes decide by

21

default. So the total number of nodes in all such regions y that decide by default inα is at most 2crc2 log (1
ε1

).
Therefore, by Lemma B.12, with probability at least 1−cr(log(∆)+3)3ε4, the total number of unique seeds
that are decided upon “by default” by nodes within one hop of x is at most 2crc2 log (1

ε1
).

Combining the results for normal and default decisions using another union bound, we get that the total
number of different owner/seeds that are decided upon within one hop of x are at most

4crc3 log (
1
ε1

) + 2crc2 log (
1
ε1

) ≤ 6crc3 log (
1
ε1

),

with probability at least 1− cr(log ∆)[(log(∆) + 3)3ε4 + 9ε2 + 4ε3]− cr(log(∆) + 3)3ε4

B.6 Useful Seed Properties

The two lemmas below describe useful properties of the seeds committed by SeedAlg, they are defined
with respect to the execution distribution resulting from combining SeedAlg with a configuration. The
first of these lemmas follows from a straightforward application of the independence property of the Seed
specification implemented by SeedAlg.

Lemma B.17. Fix some process i, integer k, 1 ≤ k < κ, and bit string q ∈ {0, 1}k. Let si be the seed
i commits after the SeedAlg subroutine completes. It follows that Pr(si[k + 1] = 0 | si[1]si[2]...si[k] =
q) = Pr(si[k + 1] = 1 | si[1]si[2]...si[k] = q) = 1

2 .

Whereas the above lemma captured that independence of each bit in a seed from its previous bits, it is
also important to establish independence between different seeds. The following lemma accomplishes this
goal. It too can be established as straightforward application of the independence property:

Lemma B.18. Fix two processes i and j and let si and sj be the seeds committed by i and j, respectively.
Assume si and sj have different seed owners. It follows that these seed values are independent.

C Local Broadcast Analysis

Here we contain the details of our analysis of the local broadcast algorithm LBAlg described in Section 4.

C.1 Constants

Below is a summary of the constants used in algorithm description and analysis that follow. Notice, we
reuse some constant names (e.g., c1, c2, c3...) also used in Section 3. These new definitions override the old
definitions. In the following, we assume ∆ is a power of two (to reduce notation).

• ε1 is the notation used in the below algorithm description to describe the desired error probability.

• ε′ is the maximum error probability bound that guarantees, given the constraints of Theorem 3.1, that
SeedAlg(ε′) satisfies the Seed(δ, ε) spec for an ε ≤ ε1/2.

Note: given the relationship between SeedAlg and Seed’s error bounds, as established in Theo-
rem 3.1, ε′ = Θ

(
(ε1
r4 log4 ∆

)(1/(cr2)
)
, where c, 0 < c < 1, is the constant provided by Theorem 3.1.

Because c < 1, we can rewrite the bound as Θ
(
(ε1
r4 log4 ∆

)(γ/r2)
)
, for some constant γ > 1.

• ε2 = min{ε′, ε1}.
Note: For asymptotic concision, we want to ensure that the error probability we use for SeedAlg is no
more than ε1. We cannot simply claim that ε′, as defined above, satisfies this constraint because given

22

its relationship to to ε1 from above, it is possible that if γ is sufficiently small compared to r2, and ε1
is sufficiently small compared to r and log ∆, that this exponent will be a sufficiently small fraction
to increase (ε1

r4 log4 ∆
) to something larger than ε1. This min statement handles this possibility.

• c2 is a constant used in our analysis of successful receptions of messages.

• c1 is a constant we use in defining the length of a phase in the algorithm (see Tprog below).

• Tprog = dc1 · r2 · log (1
ε1

) · log (1
ε2

) · log ∆e = O
(
r2 log (1

ε1
) log (1

ε2
) log ∆

)
is the number of rounds

required by our algorithm to ensure progress.

• κ = Tprog · dlog (r2 log (1
ε2

))e · log log ∆: the maximum number of bits consumed from a seed
agreement seed in a single phase of length Tprog worth of broadcasting.

• Tack =
r212 log (1/ε2) log ∆ ln (2∆

ε1
)∆′

c2Tprog(1−ε1/2) =
12 ln (2∆

ε1
)∆′

c2c1 log (1/ε1)(1−ε1/2) = O
(∆ log (∆/ε1)

(1−ε1)

)
describes the number of

phases a node will spend attempting to send a message that arrives as a bcast input.

• Let Ts = O(log ∆ log2 (1
ε2

)) be the number of rounds required for the seed agreement algorithm
SeedAlg(ε2) (as provided by Theorem 3.1).

C.2 Analysis

Our goal in this section is to prove Theorem 4.1: the main correctness theorem for LBAlg, described in
Section 4.3. To begin, fix a configuration consisting of a dual graph (G = (V,E), G′ = (V,E′)), process
assignment, link scheduler, and allowable environment. Also fix an allowable error probability ε1. Notice,
this configuration combined with the LBAlg(ε1) algorithm specifies a distribution over executions, which
we can describe as an execution tree. The remainder of this argument concerns this distribution.

We now bound the behavior of LBAlg within the scope of a single phase. To do so, we first introduce
some useful notation. For a given phase i of an execution, letBi be the set of nodes that are in sending status
during phase i, and Ri = NG(Bi) be the set of nodes that neighbor Bi in G. Notice, because sending status
is fixed for the duration of a given phase, both Bi and Ri are determined at the beginning of phase i and
cannot change during the phase. Using this notation, we specify and prove the following key probabilistic
behavior:

Lemma C.1. Fix some phase i and an execution prefix through the (j − 1)th body round of this phase,
for some j ∈ {2, ..., Tprog}. Fix nodes u and v, where u ∈ Ri and v ∈ NG(u) ∩ Bi. Assume the call to
SeedAlg at the beginning of phase i in this prefix satisfies Bu,δ. Let pu be the probability that u receives
some message in the jth round, and let pu,v be the probability that u receives a message from v in this round.
It follows that:

• pu ≥ c2
r2 log (1

ε2
) log ∆

• pu,v ≥ pu/∆′

Proof. Fix some u, v, t and a prefix, as specified by the lemma statement. (Notice, we know that a node
v satisfying the constraints of the statement exists due to the assumption that u ∈ Ri, which implies that
|NG(u) ∩ Bi| > 0.) Let S = {S1, S2, ..., Sk} be a minimum-sized partition of the nodes in NG′(u) ∩ Bi
such that all nodes in Sj committed to the same seed in the beginning of this phase. Given the lemma
assumption that the preamble of this phase satisfies Bu,δ, it follows: k ≤ δ. Finally, let Siv be the set from
S that contains v.

23

We now analyze the next broadcast round. In this round, nodes in Bi use their seeds to decide whether
or not to become a participant. In particular, they become a participant with probability 1

r2 log (1
ε2

)
= c/δ, for

some constant c > 0, using bits from their seeds to resolve the random choice. For each Sj ∈ S, all nodes
in Sj make the same decision in each round because they are using bits from the same seed. Let piv be the
probability that set Siv decides to be a participant, and all other sets in S decide to be non-participants. To
bound piv , we apply Lemmata B.17 and B.18 to obtain the uniformity and independence properties needed
to prove the following:

piv = (c/δ)(1− (c/δ))k−1

> (c/δ)(1/4)
c(k−1)
δ

(k≤δ)
> (c/δ)(1/4)c

= Θ(1/δ)

Assume this event—that only Siv decides to participate from among the sets in S—occurs. It follows
that only nodes in Siv can potentially broadcast in this round. Let ` be the number of links from nodes in
Siv to u included in the network topology for the round by the link scheduler included in our configuration
definition. Because Siv contains the G-neighbor v (by definition), we know that v is connected to u and that
therefore ` > 0.

The next thing that happens in this round is that the nodes in Siv use more random bits from their shared
seed to choose a value uniformly from [log ∆]. If ` = 1, we define the correct choice of value from [log ∆]
to be 1. If ` > 1, we define the correct choice to be dlog `e. By Lemma B.17, we know the nodes in Siv
will choose a value from this set with uniform probability. The probability they choose a correct value with
respect to ` is therefore at least 1/ log ∆.

Assume that this event also occurs. At this point, by assumption, only nodes in Siv are potential broad-
casters. Each such node decides to broadcast with the correct probability, pc, which, as defined above, is
within a factor of 2 of 1/`. Let us consider the possibilities. We first note that with probability at least 1/2,
u will decide to receive in this round (broadcast probability 1/2, which corresponds to choosing the value 1
from [log ∆], is the largest possible broadcast probability).

Assume this event occurs. The probability that exactly one neighbor among the ` neighbors connected
to u subsequently decides to broadcast is constant (as there are ` neighbors, each deciding to broadcast with
probability pc = Θ(1/`)). To calculate pu we must now combine all three independent probabilities: the
Θ(1/δ) probability that Siv is the only set in S to participate, the 1/ log ∆ probability that Siv nodes choose
the correct value, and the Θ(1) probability that u decides to receive and exactly one neighbor of u in the
topology for the round broadcasts. We combine the constants in these asymptotic expression to define a
lower bound on the constant c2 used in our definition of pu from the lemma statement.

Now we step back to consider pu,v. Whereas we just calculated that there is a constant probability that
exactly one node from among ` nodes decides to broadcast using broadcast probability pc, we must now ask
the probability that a specific node—i.e., v—is this broadcaster. We can bound this probability as:

pc(1− pc)`−1 =
c′

`
(1− c′

`
)`−1 ≥ c′

`
(
1
4

)c
′ ≥ 1

4∆′
,

where c′ is a constant of size at least 1 used in the definition of pc. By replacing the constant probability for
this final step used in the derivation of pu above with this new ≈ 1/∆′ probability, we get the pu,v bound
required by the lemma statement. (As a slight technicality, we omit the 1/4 in the 1

4∆′ calculation above in
this final pu,v bound, as this can be captured by adjusting the constant c2 calculated for pu by a factor of 4
to include this extra amount.)

24

We can now draw on Lemma C.1 to prove the progress and reliability properties required by the LB speci-
fication. We begin with progress:

Lemma C.2. LBAlg(ε1) solves the LB(tack, tprog, ε1) problem for: tprog = Ts + Tprog.

Proof. Notice that this definition of tprog is the same as the length used by the phases in our algorithm. It
follows that the boundaries of the phases in the progress property align with the phase boundaries used by
LBAlg, so we can refer to both types of phases interchangeably. To prove progress, therefore, it is sufficient
to show that for any node u and phase i such that u has an active G neighbor, the probability that u receives
at least one broadcast message in this phase is at least 1− ε1.

To do so, fix some node u, phase i, and phase i prefix α such that Auα is non-empty; i.e., there is at
least one G neighbor of u that is active throughout phase i. Let α′ be the extension of α through the call to
SeedAlg at the beginning of phase i. By Theorem 4.16, and the definition of the ε2 error parameter passed
to SeedAlg, this call to SeedAlg in this α′ extension satisfies Bu,δ with probability at least 1− (ε1/2).

Assume our above assumptions (including the assumption that Bu,δ is satisfied) hold. It follows that
Lemma C.1 applies with respect to u for all Tprog of the subsequent body rounds in phase i Let p(j)

u be the
(independent) probability that u receives a message in body round j of the phase. Notice, that Lemma C.1
tells us that p(j)

u ≥ pu ≥ c2
r2 log (1

ε2
) log ∆

for each such round. We can now bound the probability that u fails

to receive a message in all Tprog body rounds as:

pfail =
Tprog∏
j=1

(1− p(j)
u) ≤

Tprog∏
j=1

(1− pu) < (1/e)Tprogpu = (1/e)c1c2·log (1/ε1).

It is straightforward to show that for sufficiently large values of constants c1 and c2, we get pfail ≤ ε1/2.
To conclude the proof, we use a union bound to show that the probability that Bu,δ does not hold and/or
the probability that u fails to receive a message when this property does hold, is less than ε1: providing the
needed 1− ε1 probability for u receiving a least one message in phase i.

We now turn our attention to the reliability property of our local broadcast problem:

Lemma C.3. LBAlg(ε1) solves the LB(tack, tprog, ε1) problem for: tack = (Tack + 1)(Tprog + Ts).

Proof. Fix some nodes u and v that are neighbors in G. Let k = ln (2∆
ε1

)/p, for p = c2
r2 log (1

ε2
) log ∆

(i.e., p is

the lower bound for pu,v from the statement of Lemma C.1). In the following, we define a body round to be
useful with respect to u, if it occurs in a phase such thatBu,δ holds for the preceding SeedAlg preamble. Let
p1 be the probability that u fails to receive a message m from v during k useful rounds in which v is active
with m. Applying Lemma C.1 to lower bound the receive probability in each of these rounds, it follows:

p1 ≤ (1− p)k < (1/e)pk =
ε1
2∆

.

We now investigate the number of phases necessary to ensure that v experiences at least k useful rounds
with a sufficiently high probability. To do so, we first fix q = d 12k

Tprog(1−ε1/2)e. Consider an experiment
where we run q consecutive phases. Let Xi, for i ∈ [q], be a random variable that describes the number of
useful rounds in phase i of the experiment. Notice, Xi either takes on the value Tprog (with probability at
least 1− ε1/2) or 0 (else). Let Y = X1 +X2 + ...+Xq be the total number of useful rounds generated by
the experiment. It follows:

E[Y] = q · Tprog · (1− ε1/2) = 12k.

We now apply a Chernoff Bound (in particular, Form 2 from Theorem A.4), to bound the probability
that Y is more than a factor of 2 smaller than its expectation µ = E[Y]:

25

Pr(Y < (1/2)µ = 6k) < e−
µ
12 = e−k ≤ e− ln (2∆

ε1
) = ε1/(2∆).

(Notice, in the above we can bound e−k ≤ e− ln (2∆
ε1

) because k ≥ ln (2∆
ε1

).)
We have now established that with probability at least 1 − ε1/(2∆), u will experience at least 6k > k

useful rounds in q phases. We earlier established that if u experiences at least k useful rounds during which
v is broadcasting m, then u receives m from v with probability at least 1− ε1/(2∆). Assume u broadcasts
m for at least q consecutive phases. By a union bound, the probability that both events occur with respect to
these phases, and u therefore receives v’s message m, is greater than 1− ε1/∆.

To conclude, we want to calculate, under the assumption that v broadcasts m for at least q phases,
that every G neighbor of v succeeds in receiving m. Because there are at most ∆ such neighbors, and
each succeeds with probability at least 1 − ε1/∆, a union bound says that every neighbor succeeds with
probability at least 1− ε1, as required by the reliability property.

To satisfy reliability, therefore, it is sufficient for any node v receiving a bcast(m)u input to spend at
least q full phases with sending status. Notice, this is exactly what LBAlg requires, as by definition it has
v spend the next Tack = q full phases after a bcast(m)v input in sending status. The tack in the lemmas
statement is defined to be long enough for v to wait up to a full phase length until the next phase boundary,
plus the rounds required for an additional q phases.

We now pull together the pieces to prove Theorem 4.1:

Proof (of Theorem 4.1). The definition of the local broadcast problem had four conditions, two deterministic
and two probabilistic. We consider each in turn and argue that LBAlg satisfies the conditions for the
parameter values specified in the theorem statement.

We first note that timely acknowledgment holds because LBAlg, by definition, has each node generate
an ack in response to a bcast within a fixed number of rounds that is strictly less than the tack factor from
the theorem statement. Similarly, the validity condition holds as LBAlg, by definition, only has nodes
broadcast messages they received in a bcast input, and nodes only recv messages that they actually received
from another node. Moving on to the probabilistic properties, Lemma C.2 tells us that tprog = Ts + Tprog
rounds, and that tack = (Tack+1)tprog rounds. Notice, Tack shows up in tack unchanged from its definition.
The definition of tprog, however, shows up in a form that is simplified as compared to the definition provided
for Ts and Tprog (which contain both ε1 and ε2 facotrs). To match the bounds in the Theorem statement,
therefore, it is sufficient to show that Ts + Tprog = O

(
log ∆ log2 (1

ε2
) + r2 log ∆ log (1

ε2
) log (1

ε1
)
)

can be

asymptotically upper bounded by O
(
r2 log ∆ log (r

4 log4 ∆
ε1

)
)

. We dedicate the remainder of this proof to
this effort.

By definition, ε2 ≤ ε1. We can, therefore, substitute the former for the latter in our sum, yielding:

Ts + Tprog = O
(
r2 log ∆ log2 (

1
ε2

)
)
.

We need a bound, however, that is expressed with respect the problem parameter ε1. This requires us to dive
deeper into the relationship between ε2 and ε1. There are two cases to consider given our definition above
that ε2 = min{ε′, ε1}. The first case is that ε2 = ε1. If this is true, we can simply replace ε2 with ε1 in
our above equation, and the result is clearly upper bounded by O

(
r2 log ∆ log (r

4 log4 ∆
ε1

)
)

(which strictly

increases the log factor by adding the r4 log∆ term).
The second case is that ε2 = ε′ < ε1. By definition of ε′, it would then follow that ε2 = Θ

(
(ε1
r4 log4 ∆

)(γ/r2)
)
,

for some constant γ > 1. The properties of γ allows us to simplify (asymptotically) the log2 (1
ε2

) term in
our above equation as follows:

26

log2 (
1
ε2

) =
[

log (
(r4 log4 ∆)(γ/r2)

(ε1)(γ/r2)
)
]2 =

[
(γ/r2) log (

(r4 log4 ∆)
(ε1)

)
]2 = O

(
log2 (

r4 log4 ∆
ε1

)
)
.

Notice in the above we simply drop the (1/r2), as it too is bounded to be at least 1, so dropping it simply
increases the value of the upper bound. Now to conclude our argument, we simply substitute this upper
bound for log2 (1

ε2
) in our above sum to get the desired equation.

27

