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SUMMARY: We propose a simple method of control system design for marine vehicles with one or more
azimuthing propulsors, and specifically for the case where the speed of the actuator is on the same time scale
as the plant dynamic response, thus making the assumption of a separation of time scales invalid. By setting
a fixed, regular azimuth trajectory, the control problem is simplified sufficiently to allow a fully linear design
approach, for which bandwidth achieved, robustness, and disturbance and noise rejection, will be more tang-
ible than in the nonlinear cases. Several simulation examples are presented for a new vehicle that is in
development; the approach would apply directly to the cases of multiple propulsors and dynamic positioning
as well.

1. INTRODUCTION

The use of azimuthing propulsors in both ships and
floating structures is well-established and increasing.
The recent development of high-power electric motor
components, which can be mounted and azimuthed
outside the hull, both frees up layout space inside the
vessel, and enhances maneuverability. The thrusters
can be used for main propulsion and as steering
devices while underway, and as directional jets for
station-keeping.

Large dynamically-positioned craft usually rely
on comparatively high-speed actuators in the control
system design: the dynamic response of the thruster
(both the propeller and the azimuth drive) is assumed
to be much faster than the vessel response. This al-
lows a nearly quasi-static view of the thrusters, in the
sense of their directional force production. They may,
however, be subject to slew rate and azimuth posi-
tion limitations. Overall, dynamic positioning today
is predicated on de facto separation of a vessel con-
troller - providing forces and moments in the frame of
the vessel - and a separate process which drives the
thrusters and their azimuth angles, so as to best re-
construct the command from the vessel controller. To
consider a few examples illustrating the quasi-static
assumption, the controller described by Sorensen et
al. achieves a notch at the resonant surge frequency of
a semi-submersible, with an effective bandwidth in the
neighborhood of 0.02Hz (1). Another paper by the
same author uses a pseudo-inverse solution to achieve
control of a 4200t vessel; the data show that the vessel
can follow trajectories with a time constant of better
than about one hundred seconds (2). In these cases
and others, the quasistatic assumption seems valid,
works well, and can be developed more fully for en-
hanced characteristics, e.g., (3,4,5,6).

For certain marine systems, however, this sepa-
ration of vessel and thruster controllers is inadequate.
As with most inner-outer control designs, the crit-
ical condition is that the inner loop (thruster con-
troller) achieves a much faster closed-loop bandwidth
than does the outer loop; the factor in time scales
is usually at least three to five. When this assump-
tion fails, for example if the thrusters can provide
enough authority to drive the plant at a concomi-
tant bandwidth, a more integrated approach has to
be taken. Sordalen, for example, poses a controller
design scheme that does limit the rate and bandwidth
of the azimuth action, but only through tuned filters
and nonlinear components; hence an explicit estimate
of specific robustness or performance levels is unavail-
able (7). More broadly, it is uncertain from these un-
coupled, or inner-outer, loop designs whether system-
atic robustness against modelling errors is achieved.
Similarly, such fundamental properties as closed-loop
bandwidth and the impact of sensor noise and distur-
bances, cannot be easily determined.

The current work studies the application of az-
imuthing thrusters in a case where the time scale of
azimuthing action is close to that of the vehicle’s dy-
namic response. We consider in particular a vehicle
that is being developed at the Massachusetts Institute
of Technology Sea Grant Autonomous Vehicles Lab-
oratory. As shown in Figure 1, this is a streamlined
craft with an unusual arrangement of thrusters. This
configuration derives from the mission it is designed
for:

1. a very fast descent from the surface to a max-
imum depth of 3000m. The descent is largely
unpowered, and employs a large drop weight.

2. a short survey or sampling mission, which re-
quires low-speed (0.5-1 m/s) flight or hovering



in place;

3. a very fast ascent to the surface, having released
a second drop weight.

The vehicle is intended for fast exploration in a sparse
spatial domain. It takes advantage of the fact that
surface vessels - that is, oceanographic ships - travel
much faster than most submerged AUV’s. Other at-
tributes of its mission design are detailed elsewhere
(8). The vehicle as designed has four thrusters; two
cross-body units and two more mounted on a servo-
controlled pitching assembly with a slip ring. Hence,
the thruster pair can be rotated to any pitch angle
without a limit to the accrued number of turns. The
pitching thrusters were chosen for two reasons. First,
the fast ascent and descent require a low-drag vehi-
cle, and any additional thrusters would add significant
drag. Second, the thrusters are quite expensive rela-
tive to other components on the vehicle, even to the
rotating assembly.

While azimuthing actuation is inherently a non-
linear control problem, our aim here is to develop
some capability for the hovering problem with lin-
ear control. We believe that the significant advan-
tages of linear control make it worthwhile to consider,
namely ease of design and programming, known ro-
bustness, and allowance for state reconstruction. In-
deed, there are ample cases documented where sim-
ple controllers, such as the linear quadratic regulator
we consider below, achieve good performance and ro-
bustness for strongly nonlinear plants, even relative
to some very elegant nonlinear control schemes, e.g.,
(9).

It should be noted that hovering control is fun-
damentally different than the cruising problem, where
the thrust vectoring can be considered a perturbation
to the steady powering condition; in hovering, both
axes of the azimuthing thrusters have to be used in
an unpredictable way, to reject disturbances and sen-
sor noise. Because the desired trajectory is null, no
feedforward terms, of the type seen in feedback lin-
earization approaches, are applied.

2. NONLINEAR THRUSTER CONTROL

The basic problem in the case of controllable angle
(e.g., pitch) up and thrust ut is illustrated by the sim-
plified equations governing the new Sea Grant vehicle:

mU̇ = f(U, V, θ̇, θ) + cos(up)ut (1)

mV̇ = g(U, V, θ̇, θ) + sin(up)ut

J θ̈ = h(U, V, θ̇, θ) + rycos(up)ut + rxsin(up)ut,

where U and V are the surge and heave body-
referenced velocities, θ is the pitch angle, m and J
are representative linear and rotational mass, respec-
tively, and functions f , g, and h capture complex fluid

dynamic effects, which we will approximate and lin-
earize for the example cases below. The pitch angle
of the thruster is up, and the thrust level is ut.

This system, not dissimilar to the dynamic posi-
tioning problem with azimuthing propulsors, is non-
linear in the inputs. Controller design quickly be-
comes a very difficult if there are significant rate lim-
its, |u̇p| ≤ u̇p or, even more paralyzing, an angular
limit: up ≤ up ≤ up. Moreover, the azimuthing
thrust arrangement fails basic tests (Lie brackets) for
controllability, in sympathy with other types of non-
holonomic physical systems (e.g., automobiles), or
systems with nonholonomic actuation, such as ours
(10). The steering sinusoids approach is the essen-
tial strategy for the general problem of this type, and
it has been successfully applied to marine vehicles
(11,12,13).

A simple quasi-static approach, employing a sep-
aration of controllers, proceeds naturally as follows:

• Develop a control scheme in the body degrees of
freedom, e.g., surge, sway, yaw. We call this a
vessel control in the sense that all actuator dy-
namics are put aside; we say for the case of full-
state feedback that u = −Kx, where the con-
trol vector u comprises commands in the vehicle
U and V directions, and x is the vehicle (rigid
body) state vector.

• Create a mapping that transforms these body-
referenced actions into thruster coordinates, e.g.,
azimuth angle and thrust level. We call this the
nonlinear thruster control. One simple strategy
we consider below, assuming a hard velocity con-
straint but no position constraints, is as follows:

up,ref = atan2(uU , uV ) (2)
(reference value for angle)

ut =
√

u2
U + u2

V

u̇p = u̇p sgn(up,ref − up)

In the last equation, the signum function may be
smoothed around the origin so as to eliminate chatter.
Additionally, its argument should be clipped to the
interval (−π,π] so that the instantaneous preference
will always be for the device to spin the shortest dis-
tance. These equations resist linearization about any
given point because rejecting disturbances physically
requires that both of the U and V degrees of freedom
can be actuated. Clearly, however, if u̇p,max, u̇p,min

are large enough to keep up with the vessel control
signal, then this is a reasonable approach. When
redundant thrusters are available, this problem can
be posed as a quasi-static optimization. Note that
there are no free design variables in our thruster con-
troller, other than the smoothing of the signum func-
tion. Nonetheless, the system behavior - including



performance and robustness - cannot be analyzed ex-
cept through simulations.

The performance of a control system of this type
is given in Figure 2 for a representative vehicle model.
The model includes the pitch/heave coupling induced
by the large horizontal fin area, as well as the right-
ing moment due to buoyancy; it has a lightly damped
mode at 1.53 radians per second and no zeros. The
vehicle controller is an LQR design (the full state is
assumed to be known), such that the slow and fast
closed-loop poles are at about one and 3.6 radians per
second, respectively. As is well-known, the LQR im-
plemented perfectly carries a sixty degree phase mar-
gin, infinite gain reduction margin, and a factor of
two gain amplification margin. While these are gen-
erally considered to be overly conservative relative to
other optimal control techniques, the LQR remains a
viable basic control strategy, and will be the focus of
our work here.

The above nonlinear thruster control algorithm
is applied to the LQR-generated control vector, with
a cycle time of one second. This is reasonable, if a bit
fast, from the point of view of the pitch drive system
capability, and the ability of the propulsor to mod-
ulate thrust levels during one cycle. We see that a
clear degradation of the closed-loop response occurs
when the nonlinear thrust control is used, most no-
tably in the surge DOF, where several oscillations ap-
pear. This controller also uses up to four times the
thrust command seen in the direct LQR, and has sig-
nificantly more azimuth action. These negative effects
are the solely the result of the limitation on thruster
slew rate; they are reduced for a faster cycle time in
the azimuth, and exacerbated for a slower cycle time.
In fact, with ∆t = 1.1 seconds (not shown), we find
the nonlinear thruster control is unacceptable, so it
certainly cannot be considered a robust design rela-
tive to cycle time. The response also depends unpre-
dictably on both the initial condition of the plant and
on the initial angle of the thruster.

3. SEQUENTIAL LINEARIZATION

We now introduce the major approach of the paper,
which we will show provides a more easily designed
and better performing closed-loop system than the
nonlinear thruster control above. The key concept
is that of a constant azimuth rate, or alternatively, a
cyclic azimuth trajectory, which reduces the nonlinear
input problem to the linear time-varying form

ẋ = Ax + B(t)u, (3)

where the matrix B(t) captures the variations in
thrust direction with terms of the form cos(2πt/∆t)
and so on. It is not dissimilar to the steering sinu-
soids mentioned previously; this is a case of so-called

extended linearization, enabled by the explicit elimi-
nation of the angle control variable.

Typical feedback approaches for dealing
with such time-varying systems derive from gain-
scheduling, wherein a family of control gains is
generated as if each point of operation were the only
one. This can work quite well in practice, although
without further analysis it is unclear what are the
limits of the approach. Clearly, any set of static
optimal controllers based on piecewise linearization
will suffer degraded performance and robustness
properties, because a given steady-state Riccati
equation minimizes an integral cost, as opposed to an
instantaneous one. At the next linearization point,
the design from the previous one has become sub-
optimal. This deleterious fact is illustrated in Figure
3, for a LQR design with an undamped oscillator
plant having natural frequency of one radian per
second. The top row shows the performance of the
discrete-time LQR with a full-width zero-order hold
assumption: that is, the control is assumed constant
across ∆t, and this is how it is applied. The second
row shows the performance of an equivalent controller
design with the discretization and design time step
set to ∆t/2. The control is only executed, however,
on alternate steps, that is, once per ∆t. We observe
that for smaller ∆t, this approach is acceptable, but
that serious degradation occurs as the Nyquist rate
(π/∆t) nears the natural mode.

This uncertainty can be completely eliminated
by translation of the continuous plant into discrete-
time, employing the idea of sequential linearization
to expand the control vector, and then designing con-
trollers entirely in the discrete domain. While the dis-
cretization involves no significant approximations, the
implementation of any discrete-time controller still
has a strong dependency on sampling rate. Consid-
ering the field of discrete linear systems, several ba-
sic methods are available for assessing their stabil-
ity, under structured and unstructured uncertainty
models (14, 15). Guaranteed robustness margins of
the discrete-time linear quadratic regulator depend
on penalty matrices Q and R, unlike the continuous-
time case, and are not nearly as good as are found
in the continuous-time case. The margins do con-
verge in the cases of large R (expensive control) and
of course when the time step is very fast compared to
the system dynamic response (16). For this reason,
the question of robust performance in controller de-
sign was addressed by several authors using a special
cost function comprising a robustness part and a sepa-
rate LQR performance part. The robustness part typ-
ically makes use of the generic methods for stability
analysis mentioned above (17). Our expansion of the
control vector into sequential components is notably
similar to the expansion used for discrete-time control
with computation delays, for which several papers in-
dicate a strong variation in the robustness properties



as control cost R is changed (18, 19).
We now describe the implementation of the se-

quential linearization. We consider here a single actu-
ator, although every aspect of the approach is easily
extended to the case of multiple actuators. Given
a basic linear time-invariant system description ẋ =
Ax+Bu, the zero-hold model for an actuator requires
the level of the actuator output to be constant over
the sampling interval. This is expressed as:

x(tk+1) = eA∆tx(tk) +
∫ tk+1

tk

eA(tk+1−s)Bu(s)ds, (4)

and is recognized as a convolution over the sampling
interval (20). Next we invoke the notion of a steady
physical cycle time; in the case of a thruster az-
imuthing at constant rate, this cycle time corresponds
with one turn. This is the same as ∆t = tk+1 − tk.
The idea now is that one physical cycle can be split
into n non-overlapping time intervals (but not neces-
sarily evenly spaced), wherein the thrust action ui is
in force, and constant over the interval. The equiv-
alent n-input system, with sampling coincident with
the beginning of the first interval per cycle is

x(tk+1) = eA∆tx(tk) + (5)
∫ tk+∆t

tk

eA(tk+1−s)B1u1(s)ds +

∫ tk+2∆t/n

tk+∆t/n
eA(tk+1−s)B2u2(s)ds + · · ·

= eA∆tx(tk) +
∫ tk+1

tk+1−∆t/n
eA(tk+1−s)ds×

n∑

i=1

eA∆t(n−i)/nBiui(tk)

= Φx(tk) + Γ′ ×
[
eA(n−1)∆tB1 eA(n−2)∆tB2 · · ·

eA∆tBn−1 Bn

]
u(tk)

= Φx(tk) + Γu(tk).

Here, Bi denotes the i’th column of the input matrix
B. Note that this analysis includes no approxima-
tions, except for the zero-hold behavior of the input;
the mapping could be smoothed with more lineariza-
tion intervals.

For the oscillator example of Figure 3, wherein
a cycle is split into two subcycles, the third row of
plots indicates that the half-width control action is
comparable with, but not exactly the same as, the
full ZOH approach. In this case, the system model
which creates the LQR design has built into it the
fact that the control is shut off for half of every ∆t,
and so maintains the basic capabilities and limita-
tions of the full-width design. Concerning robustness,
the guaranteed LQR bounds for this particular design

are inconsequential because of the specific design pa-
rameters used, but the resulting closed loop matrix
Φ − ΓK can be assessed via Martin’s and Hewer’s
procedure for unstructured perturbations of the form
eig(G) = eig(Gdesign + ∆G). Stability is maintained
for maximum singular values of unstructured varia-
tions in Φ − ΓK less than 0.42, 0.45, and 0.30, for
the three time steps of [1.5, 2.0, 2.5] seconds, respec-
tively. These are substantial margins, covering gain
uncertainties, phase uncertainties, and real paramater
variations in Φ.

We reiterate that any discrete-time control sys-
tem is subject to the sampling theorem. This con-
straint is manifested by a loss of control of modes
above the Nyquist rate, and reduced gain and phase
margins if the Nyquist rate is not high enough. In the
present case, the time steps are extremely large for the
problem, as indicated by the discretization shown in
Figure 3.

4. APPLICATION

Returning to the three-degree of freedom vehicle
model, the thrust actuation can be decomposed into
four separate portions we denote u1, u2, u3, u4; the
first and third access the same DOF, as do the second
and the fourth:

U, θ : u1, tk < t < tk + ∆t/4 (6)
V, θ : u2, tk + ∆t/4 < t < tk + 2∆t/4
U, θ : −u3, tk + 2∆t/4 < t < tk + 3∆t/4
V, θ : −u4, tk + 3∆t/4 < t < tk + ∆t.

Hence, there are four input control channels, and
the system can be discretized using the equations
given above. The decomposition of a single cycle
into four periods is arbitrary; the resolution could
be easily set much higher, giving a better lineariza-
tion of the trigonometric functions. It follows also
that the case of azimuth hard limits can be consid-
ered. For instance, if the azimuth angle has to satisfy
|up| ≤ up, it is reasonable to set up = up cos(2πt/∆t),
so that a smooth slewing through the range results.
In complete analogy with the case of constant az-
imuth rate above, we see that the surge DOF obeys
mẌ = ut cos[up cos(2πt/∆t)], and so on. The result-
ing functions may benefit from unequal spacing in the
decomposition. These options do not involve approx-
imations on the basic scheme of sequential lineariza-
tion.

Multi-input, multi-output control problems are
suitable for the many optimal and robust control ap-
proaches available today. We study the discrete-time
linear quadratic regulator here, which minimizes the
cost function



J =
∞∑

k=0

Jk =
∞∑

k=0

xT (tk)Qx(tk) + (7)

uT (tk)Ru(tk) +
2xT (tk)Nu(tk).

The solution of the discrete Riccati equation is readily
computed, and provides the optimum gain such that
u(tk) = −Kx(tk).

As in the continuous time case, choices of Q and
R affect the tradeoff between speed of response in reg-
ulation, and control action. One important point is
that the LQR solution with diagonal Q and R al-
lows all of the inputs to vary arbitrarily with respect
to each other. This might not be practical or de-
sired in the case of sequential linearization, because
thrust reversals take power and are hard on equip-
ment. Fortunately, some measure of fluctuation can
be incorporated into the cost function J as follows:
first, augment the discrete-time system with an addi-
tional state, this a delayed version of the last input,
i.e., xp+1(tk+1) = un(tk). Here, p is the number of
original states - not including the delay state, and n
is the dimension of the control vector. Next, for the
case of n = 4 and neglecting the indices for conve-
nience, we write:

J = [Q11x
2
1 + · · · + Qppx

2
p] + a[u2

1 + · · · + u2
4] +

b[(u1 − u2)2 + (u2 − u3)2 + (u3 − u4)2 +
(xp+1 − u1)2], or,

= xT Qx + (8)

uT





a + 2b −b 0 0
−b a + 2b −b 0
0 −b a + 2b −b
0 0 −b a + 2b



u +

2xT





0 0 · · ·
· · · · · · · · ·
0 0 · · ·
−b 0 · · ·



u.

It can be confirmed that the middle matrix R is posi-
tive definite for any positive value of b, so this arrange-
ment allows one to systematically trade off perfor-
mance for small differences between successive values
of u. The additional delay state exists to complete the
cycle; without it, there could be a large discontinuity
between the n’th and the first input, at the end of the
cycle.

Results are given for an example case of the
Odyssey IV vehicle in Figure 4. The top three
subplots show the open loop response to be lightly
damped in heave and pitch, with a pure drift in the
surge and heave directions. The discrete-time con-
troller is designed with ∆t = 1.0, QẊẊ = QẎ Ẏ =
Qφ̇φ̇ = 10−4, QXX = QY Y = 104, Qφφ = 105,
a = 10−4, and b = 10−2. Response of the discrete-

time model to this control law, using sequential lin-
earization, shows that although the damping has been
increased, it still is lower than might be hoped. This
level of performance is related to our selection of the
parameter b, which scales the cost of changes in the
thrust level. As simulated, the cost of these changes
is larger than the cost of ”uncorrelated,”, i.e., diago-
nal R, control. The lower subplot confirms that the
thrust level changes slowly. With b = 0, successive
thrust commands are uncorrelated, and the damping
performance can be much better.

The upper figures also show the result of a
continuous-time simulation with the discrete-time
control law implemented with a zero-order-hold.
There are slight discrepancies between the continu-
ous and discrete model responses because the contin-
uous model fully accounts for the continuous change
in pitch angle through [0, 2π] over ∆t.

An important implementation point is that
thruster jet dynamics will almost certainly play a role
in the system performance. The effect is neglected in
this work, and should be considered more carefully, al-
though published data from thrusters of a size similar
to that we will put on the new Sea Grant vehicle con-
firm that rise times of one- to two-hundred millisec-
onds are common (21,22). Surprisingly little attention
has been given to speed of response in azimuthing
propellers, but Stettler shows that extremely small
time scales are suitable, incurring virtually no delay
in the force response (23). Where possible, these ef-
fects should be modelled.

4. CONCLUSION

By making the assumption of a constant azimuth rate,
or of a given cyclic azimuth trajectory, the fundamen-
tal nonlinearity in the basic vehicle control problem is
eliminated, and the plant obtains a time-varying gain
matrix. This admits a clean discretization, recovering
normal controllability of the plant, and hence allow-
ing any one of a number of optimal control design
techniques. The advantages of the approach include
explicit bounds for robustness and performance, as
with other linear systems, and the extension to mul-
tiple actuators.
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Figure 1: The MIT Sea Grant Odyssey IV vehicle. The vehicle comprises a streamlined main body with aft
stabilizing fins. The two surge thrusters are actively controlled in pitch through a drive assembly near the center
of the body; hence, the thrusters actuate vehicle surge, heave, and pitch.
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Figure 2: Comparison of the system closed-loop response with a direct LQR controller implemented in continuous
time (dashed lines), and with the simplest nonlinear thruster controller (solid lines).
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Figure 3: Examples of control of the undamped oscillator (natural frequency 1rad/s).
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Figure 4: Odyssey IV system response with the split-ZOH discrete-time LQR control. Circles show the discrete-
time plant, solid line shows the effect of the split-ZOH control action on a continuous model, and the dashed-line
is the continuous-time open-loop response.


