
MIT Open Access Articles

Schedulability Analysis of Task Sets with Upper-
and Lower-Bound Temporal Constraints

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Gombolay, Matthew C., and Julie A. Shah. “Schedulability Analysis of Task Sets with
Upper- and Lower-Bound Temporal Constraints.” Journal of Aerospace Information Systems 11,
no. 12 (December 2014): 821–841.

As Published: http://dx.doi.org/10.2514/1.I010202

Publisher: American Institute of Aeronautics and Astronautics

Persistent URL: http://hdl.handle.net/1721.1/97044

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/97044
http://creativecommons.org/licenses/by-nc-sa/4.0/

Schedulability Analysis of Task Sets with Upper and

Lowerbound Temporal Constraints

Matthew C. Gombolay∗ and Julie A. Shah

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

gombolay@csail.mit.edu, julie a shah@csail.mit.edu

Increasingly real-time systems must handle the self-suspension of tasks, i.e. lowerbound

wait times between subtasks, in a timely and predictable manner. A fast schedulability

test that does not significantly overestimate the temporal resources needed to execute

self-suspending task sets would be of benefit to these modern computing systems. In this

paper, we present a polynomial-time test that, to our knowledge, is the first to handle

non-preemptive, self-suspending tasks sets with hard deadlines, where each task has any

number of self-suspensions. To construct our test, we leverage a novel priority scheduling

policy, jth Subtask First (JSF), which restricts the behavior of the self-suspending model to

provide an analytical basis for an informative schedulability test. In general, the problem of

sequencing according to both upperbound and lowerbound temporal constraints requires an

idling scheduling policy and is known to be NP-Hard. However we empirically validate the

tightness of our schedulability test and scheduling algorithm, and show that the processor

is able to effectively utilize up to 95% of the self-suspension time to execute tasks.

I. Introduction

Real-time scheduling systems are a vital component of many aerospace, medical, nuclear, manufacturing,

and transportation systems. In general, real-time systems must be able to interact with their environment in

a timely and predictable manner, and designers must engineer analyzable systems whose timing properties

can be predicted and mathematically proven correct.1,2 Analysis is typically performed using schedulability

tests, which are fast methods for determining whether a system can process a set of tasks within specified

temporal constraints.1,3–6

∗Corresponding Author

1 of 42

American Institute of Aeronautics and Astronautics

Increasingly real-time systems must handle the self-suspension of tasks and new methods are required

for testing the feasibility of these self-suspending task sets.7–10 In processor scheduling, self-suspensions (i.e.

lowerbound “wait times” between subtasks), can result both due to hardware and software architecture.

At the hardware level, the addition of multi-core processors, dedicated cards (e.g., GPUs, PPUs, etc.), and

various I/O devices such as external memory drives, can necessitate task self-suspensions. Furthermore,

the software that utilizes these hardware systems can employ synchronization points and other algorithmic

techniques that also result in self-suspensions.11 Schedulability tests that do not significantly overestimate

the temporal resources needed to execute self-suspending task sets would be of benefit to these modern

computing systems.

The sequencing and scheduling of tasks according to upperbound and lowerbound (self-suspension) tem-

poral constraints is a challenging problem with important applications outside of processor scheduling, as

well. Other examples include autonomous tasking of unmanned aerial and under-water vehicles,12,13 schedul-

ing of factory operations,14,15 and scheduling of aircraft and flight crews.16 New uses of robotics for flexible

manufacturing are pushing the limits of current state-of-the-art methods in artificial intelligence (AI) and op-

erations research (OR) and are spurring industrial interest in fast methods for sequencing and scheduling.14

Solutions to these applications typically draw from methods in AI and OR,15–18 which provide complete

search algorithms that require exponential time to compute a solution in the worst case. These methods

cannot provide fast re-computation of the schedule in response to dynamic disturbances for large, real-world

task sets. Fast, sufficient schedulability tests, while widely used in processor scheduling, are underutilized in

these applications.

In this paper, we present a schedulability test and complementary scheduling algorithm that handles

periodic, non-preemptive, self-suspending task sets. To our knowledge, our approach is the first polynomial-

time test for non-preemptive, self-suspending task sets with any number of self-suspensions in each task.

We also generalize our schedulability test and algorithm to handle deadline constraints not found in the

traditional self-suspending task model, but commonly found in artificial intelligence (AI) and operations

research (OR) models.

Our schedulability test and scheduling algorithm utilize a novel scheduling policy to create problem

structure in self-suspending task networks. Restricting the behavior of the scheduler sacrifices completeness

for this NP-Hard problem, in general. However, we show that this restriction enables the design of an

informative schedulability test and scheduling algorithm, both of which produce near-optimal results for

many real-world task systems.

We begin in Section II with the definition of a self-suspending task model. Section III reviews prior

art in real-time scheduling of self-suspending task sets, and Section IV introduces terminology to describe

2 of 42

American Institute of Aeronautics and Astronautics

our schedulability test and scheduling algorithm. Section V discusses how we restrict the behavior of the

scheduler so as to enable the design of an informative schedulability test and scheduling algorithm.

In Section VI, we present our schedulability test with proof of correctness. Section VII describes our

complementary scheduling algorithm, which successfully executes task sets that pass the schedulability test.

In Section VIII, we empirically validate the performance of our schedulability test and scheduling algorithm.

We show that our schedulability test is tight, meaning that it does not significantly overestimate the temporal

resources needed to execute the task set. We also show that a processor operating under our scheduling

algorithm incurs little processor idle time. Lastly, we demonstrate empirically that our schedulability test is

fast, and derive the computational complexity of our test and scheduling algorithm.

II. Self-Suspending Task Model

The basic model for the self-suspending task set7 is shown in Equation 1.

τi : (φi, (C
1
i , E

1
i , C

2
i , E

2
i , . . . , E

mi−1

i , Cmi
i), Ti, Di) (1)

In this model, there is a task set, τ , where all tasks, τi ∈ τ must be executed by a uniprocessor. For each

task, there are mi subtasks with mi − 1 self-suspension intervals. Cji is the worst-case duration of the jth

subtask of τi, and Eji is the worst-case duration of the jth self-suspension interval of τi.

Subtasks within a task are dependent, meaning that a subtask τ j+1
i must start after the finish times of

the subtask τ ji and the self-suspension Eji . Ti and Di are the period and deadline of τi, respectively, where

Di ≤ Ti. Lastly, a phase offset delays the release of a task, τi, by the duration, φi, after the start of a new

period.

The self-suspending task model shown in Equation 1 provides a solid basis for describing many real-

world processor scheduling problems of interest. In this work, we augment the traditional model to provide

additional expressiveness, by incorporating deadline constraints that upperbound the temporal difference

between the start and finish of two subtasks within a task. We call these deadline constraints subtask-to-

subtask deadlines. We define a subtask-to-subtask deadline as shown in Equation 2.

Ds2s

〈τa
i ,τ

b
i 〉 :

(
f bi − sai ≤ ds2s〈τa

i ,τ
b
i 〉
)

(2)

where f bi is the finish time of subtask τ bi , sai is the start time of subtask τai , and d〈τa
i ,τ

b
i 〉 is the upperbound

temporal constraint between the start and finish times of these two subtasks, such that b > a.

Subtask-to-subtask constraints are commonly included in AI and operations research scheduling models

(e.g.19–21) and are vital in modeling many real-world problems. We augment the self-suspending task model

3 of 42

American Institute of Aeronautics and Astronautics

in this way to illustrate the relevance of our techniques to important applications other than processor

scheduling. Consider the sequencing and scheduling of assembly manufacturing processes. In this case, each

manufactured piece is represented by a uniprocessor and the work performed on the piece is represented by

the subtasks. The goal is to sequence the work to assemble the piece subject to temporal and precedence

constraints among subtasks. Self-suspensions (i.e. lowerbound wait times between subtasks) may arise due

to, for example, “cure times” involved in the assembly process. Upperbound temporal constraints also arise

naturally; the build schedule may require that a sequence of tasks be grouped together and executed in a

specified time window.

The problem of sequencing arriving and departing aircraft on a runway is also analogous to processor

scheduling. Here the runway represents the uniprocessor, and the constraints that landing aircraft be spaced

by a minimum separation time are represented as self-suspensions. Upperbound subtask-to-subtask deadlines

encode the amount of time an aircraft can remain in a holding pattern based on fuel considerations. While

each domain has its own nuances in problem formulation, there is sufficient underlying commonality in

problem structure to investigate the application of real-time scheduling techniques to these problems.

In the remainder of this paper, we present a schedulability test and complementary scheduling algorithm

that handles periodic, self-suspending task sets. We develop the test for non-preemptable subtasks, meaning

the interruption of a subtask significantly degrades its quality. However, we note that a schedulability test for

non-preemptive subtasks conservatively bounds the temporal resources necessary to execute a preemptable

system. We also generalize our schedulability test and algorithm to handle subtask-to-subtask deadlines,

to increase the applicability of our techniques to real-time scheduling problems found in various application

domains.

III. Background

In this section we briefly review the challenges for real-time scheduling of self-suspending tasks sets,

including prior work in analytical schedulability tests and scheduling algorithms.

III.A. Challenge Posed by Task Self-Suspension

The problem of scheduling, or testing the schedulability of a self-suspending task set, is NP-Hard as can be

shown through an analysis of the interaction of self-suspensions and task deadlines.9,21,22 Many uniproces-

sor, priority-based scheduling algorithms, such as Earliest Deadline First (EDF) or Rate-Monotonic (RM)

introduce scheduling anomalies since they do not account for this interaction.7,23

A scheduling anomaly arises when a scheduler can produce a feasible schedule for a task set τ , but not

for a relaxation of the task set τ ′. Relaxations include reducing task costs or decreasing phase offsets. These

4 of 42

American Institute of Aeronautics and Astronautics

anomalies are present for both preemptive and non-preemptive task sets. Lakshmanan et al.7 report that

finding an anomaly-free scheduling priority for self-suspending task sets remains an open problem.

We provide illustrations to exemplify different types of scheduling anomalies in Figures 1-2. Each figure

depicts a feasible schedule (top) and an infeasible schedule resulting from a scheduling anomaly (bottom). Up-

ward arrows indicate the release of a task, and downward arrows indicate a task’s deadline. Self-suspensions

are represented by a horizontal bar with a corresponding label. Blocks correspond to the execution cost of

each subtask and are numbered according to the subtask index. For example, a block labeled “2” on a row

labeled “τ3” corresponds to τ23 .

III.A.1. Scheduling Anomalies Produced by Reducing Task Cost

The first type of scheduling anomaly occurs when a reduction in the computation time of a subtask causes the

processor to violate a deadline constraint. This type of scheduling anomaly was first described by Ridouard

et al.23 Figure 1 shows a scenario where execution of three tasks under the Earliest Deadline First (EDF)

algorithm produces this type of scheduling anomaly.

In the top graph, we see a feasible schedule, with τ12 interleaved during self-suspension E1
1 and τ21 inter-

leaved during E1
2 . However, when the execution cost of τ11 is decreased, τ12 starts earlier. In turn, τ22 and τ13

are released at the same time. Because D2 < D3, τ22 is prioritized over τ13 . The result is that the processor

idles during E1
3 and is unable to satisfy deadline D3.

Figure 1: A scheduling anomaly occurs when the reduction in the computation time of a
subtask causes the processor to violate a deadline constraint. The top graph shows a feasible
schedule and the bottom graph shows how the same task set is rendered infeasible due to a
reduction in the cost of one subtask C1

1 .

5 of 42

American Institute of Aeronautics and Astronautics

III.A.2. Scheduling Anomalies Produced by Decreasing Phase Offsets

Phase offsets also can cause scheduling anomalies. This type of anomaly occurs when the reduction of a

phase offset duration allows a task to release earlier, and thus prevents the processor from satisfying all

deadline constraints. Figure 2 shows a scenario where the execution of two tasks under the Earliest Deadline

First (EDF) algorithm produces this scheduling anomaly.

In the top graph, we see a feasible schedule with τ13 interleaved during self-suspension E1
2 and τ22 inter-

leaved during E1
3 . However, when the duration of phase offset φ2 decreases to zero, the start time of τ2

remains unchanged despite the earlier deadline. Even though the subtasks are efficiently interleaved, the

processor cannot satisfy the deadline for τ2.

Figure 2: Another scheduling anomaly occurs when the reduction of a phase offset duration
allows a task to release earlier, and thus prevents the processor from satisfying all deadline
constraints. The top graph shows a feasible schedule and the bottom graph shows how the
same task set is rendered infeasible due to a decreased phase offset φ2.

III.B. Schedulability Testing

Given sufficient computational resources, the schedulability of a self-suspending task set may be computed

offline using complete methods.24–26 However, these approaches are not suitable for determining schedulabil-

ity online, as is necessary when the task set changes. To gain computational speed, many real-time systems

utilize sufficient analytical schedulability tests, that compute the feasibility of a given task set in polynomial

time. These tests assume that the scheduler is using a specific scheduling priority, such as RM or EDF.

The naive method for testing the schedulability of these task sets is to treat self-suspensions as task costs;

however, this can result in significant under-utilization of the processor if the duration of self-suspensions is

large relative to task cost.8

Fast polynomial times schedulability tests have been studied for restrictions of the self-suspending task

model. Kim et al.4 presents two methods for testing task sets where each task has exactly one self-suspension.

6 of 42

American Institute of Aeronautics and Astronautics

Their first method builds on work by Wellings et al.3 to transform each task τi with two subtasks τ1i and

τ2i into two, independent tasks. Both of the new tasks are released at time ri, but τ2i experiences release

jitter to implicitly enforce the temporal dependency between τ1i and τ2i . An iterative formula is developed3

to calculate the worst-case response time for τ1i and τ2i , and, thereby, the schedulability of the task set. The

second method builds on this approach6 to more tightly bound the amount of self-suspension time that must

be considered as task cost, by analyzing which tasks can be interleaved during self-suspension time. Both

these methods require a restriction be made on the specific time a task will self-suspend.

Next, Liu1 and Devi27 develop analyses for another restricted form of the task set, namely where one

self-suspension exists in the entire task set. Their approaches do not make an assumption on when a task

will self-suspend. Liu’s method analyzes the schedulability of the task set when it is executed under the

fixed-priority RM scheduling policy, and treats delays of tasks due to self-suspensions as external blocking

events. This approach accounts for the situation where a higher-priority task self-suspends and the self-

suspension terminates at the same time a lower-priority task is released, thus causing the lower-priority

task to be delayed until the completion of the higher-priority task. Devi27 developed a similar method for

testing the schedulability of self-suspending task sets operating under the EDF dynamic-priority scheduling

algorithm.

Recently, Abdeddaı̈m and Masson introduced an approach for testing self-suspending task sets using

model checking with Computational Tree Logic (CTL).24 While their method is easily extended to handle

tasks with multiple self-suspensions, the runtime is exponential in the number of tasks. Thus, it does not

currently scale to moderately-sized task sets of interest for real-world applications. Lakshmanan et al.11

also increase generality by developing a pseudo-polynomial-time test to determine the worst-case interfer-

ence imposed on a lower priority self-suspending tasks by higher priority non-suspending tasks. However,

Lakshmanan et al. report that an exact-case test for multiple self-suspensions per task remains an open

problem.

Finally, recent works by C. Liu and Anderson8,28 analyze preemptive task sets with multiple self-

suspensions per task for soft real-time requirements. We have not yet seen a schedulability test for hard,

non-preemptive task sets with multiple self-suspensions per task. Our approach seeks to fill this gap by

providing the first such analytical schedulability test.

III.C. Scheduling Algorithms

Designing scheduling policies for self-suspending task sets also remains a challenge. While not anomaly-

free, various priority-based scheduling policies have been shown to improve the online execution behavior in

practice.

7 of 42

American Institute of Aeronautics and Astronautics

Rajkumar29 presents an algorithm called Period Enforcer for preemptive, self-suspending task sets sched-

uled with the RM scheduling algorithm. Period Enforcer works by adding pre-conditions to tasks in the

processor queue that force the tasks to behave as ideal, periodic tasks. Period Enforcer handles tasks that

self-suspend during execution (i.e., creating discrete subtasks) by transforming the task τi into multiple tasks

τ ′i , τ
′′
i , τ

′′′
i , each with the same deadline as τi. However, their approach does not handle non-preemptive task

sets, nor is there a complementary, analytical schedulability test.

Lakshmanan et al.11 build on previous approaches to develop a static slack enforcement algorithm that

delays the release times of subtasks to improve the schedulability of task sets. The static slack enforcement

algorithm is optimal in that it does not affect the worst-case response time of a self-suspending task and it

prevents additional processing delays of lower-priority tasks due to higher-priority tasks.

While there exist scheduling algorithms that can handle non-preemptive, self-suspending tasks sets

with multiple suspensions per task, we have not yet seen a such an algorithm that is accompanied by

an polynomial-time schedulability test. In this paper, we present a complementary schedulability test and

scheduling algorithm. Furthermore, we extend our methods to handle subtask-to-subtask temporal con-

straints that are important in many scheduling problems outside of the processor scheduling domain.

IV. Terminology

In this section we introduce new terminology to help describe our schedulability test and the execution

behavior of self-suspending tasks, which in turn will help us intuitively describe the various components of

our schedulability test.

Definition 1 A free subtask, τ ji ∈ τfree, is a subtask that does not share a deadline constraint with τ j−1i .

In other words, a subtask τ ji is free iff for any deadline D〈τa
i ,τ

b
i 〉 associated with that task, (j ≤ a) ∨ (b < j).

We define τ1i as free since there does not exist a preceding subtask.

Definition 2 An embedded subtask, τ j+1
i ∈ τembedded, is a subtask shares a deadline constraint with τ ji

(i.e., τ j+1
i /∈ τfree). τfree ∩ τembedded = ∅.

The intuitive difference between a free and an embedded subtask is as follows: a scheduler has the

flexibility to sequence a free subtask relative to the other free subtasks without consideration of subtask-to-

subtask deadlines. On the other hand, the scheduler must take extra consideration to satisfy subtask-to-

subtask deadlines when sequencing an embedded subtask relative to other subtasks.

Definition 3 A free self-suspension, Eji ∈ Efree, is a self-suspension that suspends two subtasks, τ ji and

τ j+1
i , where τ j+1

i ∈ τfree.

8 of 42

American Institute of Aeronautics and Astronautics

Definition 4 An embedded self-suspension, Eji ∈ Eembedded, is a self-suspension that suspends the execu-

tion of two subtasks, τ ji and τ j+1
i , where τ j+1

i ∈ τembedded. Efree ∩Eembedded = ∅.

In Section VI, we describe how we can use τfree to reduce processor idle time due to Efree, and, in

turn, analytically upperbound the duration of the self-suspensions that needs to be treated as task cost. We

will also derive an upperbound on processor idle time due to Eembedded.

V. Motivating our jth Subtask First (JSF) Priority Scheduling Policy

Scheduling of self-suspending task sets is challenging because polynomial-time, priority-based approaches

such as EDF can result in scheduling anomalies. To construct a tight schedulability test, we desire a priority

method of restricting the execution behavior of the task set in a way that allows us to analytically bound the

contributions of self-suspensions to processor idle time, without unnecessarily sacrificing processor efficiency.

We restrict behavior using a novel scheduling priority, which we call jth Subtask First (JSF). We formally

define the jth Subtask First priority scheduling policy in Definition 5.

Definition 5 jth Subtask First (JSF). We use j to correspond to the subtask index in τ ji . A processor

executing a set of self-suspending tasks under JSF must execute the jth subtask (free or embedded) of every

task before any (j + 1)th free subtask. Furthermore, a processor does not idle if there is an available free

subtask unless executing that free task results in temporal infeasibility due to a subtask-to-subtask deadline

constraint.

Enforcing that all jth subtasks are completed before any (j + 1)th free subtasks allows the processor to

execute any embedded kth subtasks where k > j as necessary to ensure that subtask-to-subtask deadlines

are satisfied. The JSF priority scheduling policy offers choice among consistency checking algorithms. One

simple algorithm that ensures deadlines are satisfied is as follows: when a free subtask that triggers a

deadline constraint is executed (i.e. τ ji ∈ τfree, τ
j+1
i ∈ τembedded), the subsequent embedded tasks for the

associated deadline constraint are then scheduled as early as possible without the processor executing any

other subtasks during this duration. Other consistency-check algorithms that utilize processor time more

efficiently and operate on this structured task model exist.30–32

VI. Uniprocessor Schedulability Test for Self-Suspending Task Sets

We build the schedulability test and prove its correctness in six steps, starting with a simplified task

model and generalizing to the full model. Section VI.A then summarizes our test for the full task model.

The six steps are as follows:

9 of 42

American Institute of Aeronautics and Astronautics

1. We restrict τ such that each task only has two subtasks (i.e., mi = 2,∀i), there are no subtask-to-

subtask deadlines, and all tasks are released at t = 0 (i.e., φ = 0,∀i). Additionally, we say that all

tasks have the same period and deadline (i.e., Ti = Di = Tj = Dj ,∀i, j ∈ {1, 2, . . . , n}). Thus, the

hyperperiod of the task set is equal to the period of each task. Here we will introduce our formula for

upperbounding the amount of self-suspension time that we treat as task cost, W τ
free.

2. Next, we allow for general task release times (i.e., φi ≥ 0,∀i). In this step, we upperbound processor

idle time due to phase offsets, W τ
φ .

3. Third, we relax the restriction that each task has two subtasks and say that each task can have any

number of subtasks.

4. Fourth, we incorporate subtask-to-subtask deadlines. In this step, we will describe how we calculate

an upperbound on processor idle time due to embedded self-suspensions W τ
embedded.

5. Fifth, we relax the uniform task deadline restriction and allow for general task deadlines where Di ≤

Ti,∀i ∈ {1, 2, . . . , n}.

6. Lastly, we relax the uniform periodicity restriction and allow for general task periods where Ti 6=

Tj ,∀i, j ∈ {1, 2, . . . , n}.

Step 1) Two Subtasks Per Task, No Deadlines, and Zero Phase Offsets

In step one, we consider a task set, τ with two subtasks per each of the n tasks, no subtask-to-subtask

deadlines, and zero phase offsets (i.e., φi = 0,∀i ∈ n). Furthermore, we say that task deadlines are equal

to task periods, and that all tasks have equal periods (i.e., Ti = Di = Tj = Dj ,∀i, j ∈ {1, 2, . . . , n}). We

assert that one can upperbound the idle time due to the set of all of the E1
i self-suspensions by analyzing

the difference between the duration of the self-suspensions and the duration of the subtasks costs that will

be interleaved during the self-suspensions.

We say that the set of the cost of all subtasks that might be interleaved during a self-suspension, E1
i , is

B1
i . As described by Equation 3, Bji is the set of all of the jth and (j + 1)th subtask costs less the subtasks

costs for τ ji and τ j+1
i . Note, by definition, τ ji and τ j+1

i cannot execute during Eji . We further define an

operator Bji (k) that provides the kth smallest subtask cost from Bji . We also restrict Bji such that the

jth and (j + 1)th subtasks must both be free subtasks if either is to be added. Because we are currently

considering task sets with no deadlines, this restriction does not affect the subtasks in B1
i during this step.

In Step 4 (Section VI), we will explain why we make this restriction on the subtasks in Bji .

For convenience in notation, we say that N is the set of all task indices (i.e., N = {i|i ∈ {1, 2, . . . , n}},

where n is the number of tasks in the task set, τ). Without loss of generality, we assume that the first

10 of 42

American Institute of Aeronautics and Astronautics

subtasks τ1i execute in the order i = {1, 2, . . . , n}.

Bji = {Cyx |x ∈ N\i, y ∈ {j, j + 1}, τ jx ∈ τfree, τ j+1
x ∈ τfree} (3)

To upperbound the idle time due to the set of E1
i self-suspensions, we consider a worst-case interleaving

of subtask costs and self-suspension durations, as shown in Equation 5 and Equation 6, where W j is an

upperbound on processor idle time due to the set of Eji self-suspensions, and W j
i is an upperbound on

processor idle time due to Eji .

To determine W j , we first calculate the amount of processor idle time W j
i due to each of the Eji self-

suspensions. We calculate W j
i based on the cost of the fewest number of subtasks (Equation 4) that will be

processed during Eji iff Eji is the dominant contributer to processor idle time from the set of Eji ,∀j. We

define the conditions for a self-suspension to be the dominant contributor to processor idle time in Definition

6. By then taking the maximum over all i of W j
i , we arrive at our upperbound on processor idle time W j

due to set of jth self-suspensions {Eji |i ∈ N}.

Definition 6 A self-suspension Eji is the dominant contributor to processor idle time from the set of jth

self-suspensions {Eji |i ∈ N} if it subsumes all idle time contributed by other self-suspensions in the set.

If multiple self-suspensions subsume all idle time contributed by other self-suspensions, then they are co-

dominant contributors.

ηji =
|Bji |

2
(4)

W j
i = max

Eji − ηji∑
k=1

Bji (k)

 , 0

 (5)

W j = max
i|Ej

i∈Efree

(
W j
i

)
(6)

To prove that our method is correct, we first show that Equation 4 lowerbounds the number of free

subtasks that execute during a self-suspension E1
i , if E1

i is the dominant contributor to processor idle time.

We perform this analysis for three cases: for i = 1, 1 < i = x < n, and i = n. Second, we will show that, if

at least ηji =
|B1

i |
2 subtasks execute during E1

i , then Equation 5 correctly upperbounds idle time due to E1
i .

Lastly, we show that if an E1
i is the dominant contributor to idle time then Equation 6 holds, meaning W j

is an upperbound on processor idle time due to the set of E1
i self-suspensions. (In Step 3 we will show that

these three equations also hold for all Eji .)

Proof of Correctness for Equation 4, where j = 1.

11 of 42

American Institute of Aeronautics and Astronautics

Proof 1 (Proof by Deduction for i = 1) We currently assume that all subtasks are free (i.e., there are

no subtask-to-subtask deadline constraints), thus ηji =
|B1

i |
2 = n − 1. We recall that a processor executing

under JSF will execute all jth subtasks before any free (j + 1)th subtask. Thus, after executing the first

subtask, τ11 , there are n − 1 other subtasks that must execute before the processor can execute τ21 . Thus,

Equation 4 holds for E1
1 irrespective of whether or not E1

1 results in processor idle time.

Corollary 1 From our proof for i = 1, any first subtask, τ1x , will have at least n − x subtasks that execute

during E1
x if E1

x causes processor idle time, (i.e., the remaining n− x first subtasks in τ).

Example for Equation 4, where i = 1

Figure 3 illustrates the proof for i = 1 with an example task set. Actual processor idle time is shown in red

and projected onto the timeline below. The task set has three tasks as defined here:

τi φi C1
i E1

i C2
i B1

i η1i

i = 1 0 1 12 2 {C1
3 , C

2
3 , C

1
2 , C

2
2} 2

i = 2 0 2 4 4 {C1
3 , C

2
3 , C

1
1 , C

2
1} 2

i = 3 0 1 1 1 {C1
1 , C

2
1 , C

1
2 , C

2
2} 2

At t = 0, all three tasks are released. We can see by inspection the duration of E1
i must exceed the

processing time of subtasks τ12 and τ13 for E1
i to possibly cause processor idle time. We can calculate the

lowerbound on the fewest subtasks that will execute during a dominant contributor E1
1 as shown in Equation

7.

η11 =
|B1

1 |
2

=
4

2
= 2 (7)

Proof 2 (Proof by Contradiction for 1 < i = x < n) We assume for contradiction that fewer than n−1

subtasks execute during E1
x and E1

x is the dominant contributor to processor idle time from the set of first

self-suspensions E1
i . We apply Corollary 1 to further constrain our assumption that fewer than x− 1 second

subtasks execute during E1
x. We consider two cases: 1) fewer than x− 1 subtasks are released before τ2x and

2) at least x− 1 subtasks are released before τ2x .

First, if fewer than x− 1 subtasks are released before r2x (with release time of τ jx is denoted rjx), then at

least one of the x − 1 second subtasks, τ2a , is released at or after r2x. We recall that there is no idle time

during t = [0, f1n]. Thus, E1
a subsumes any and all processor idle time due to E1

x. In turn, E1
x cannot be the

dominant contributor to processor idle time.

Second, we consider the case where at least x − 1 second subtasks are released before r2x. If we complete

x − 1 of these subtasks before r2x, then at least n − 1 subtasks execute during E1
x, which is a contradiction.

12 of 42

American Institute of Aeronautics and Astronautics

Figure 3: An example schedule is shown with three tasks where the self-suspension E1
1 is the

dominant contributor to processor idle time. Processor idle time is shown in red and projected
onto the timeline below.

If fewer than x− 1 of these subtasks execute before r2x, then there must exist a continuous non-idle duration

between the release of one of the x − 1 subtasks, τ2a and the release of r2x, such that the processor does not

have time to finish all of the x− 1 released subtasks before r2x. Therefore, the self-suspension that defines the

release of that second subtask, E2
a, subsumes any and all idle time due to E1

x. E1
x then is not the dominant

contributor to processor idle time, which is a contradiction.

Example for Equation 4, where 1 < i = x < n

Consider the example shown in Figure 4 where the dominant contributor to processor idle time is E1
2 . We

calculate the lowerbound on the fewest subtasks that will execute during E1
2 in Equation 8. The parameters

of the task set for this example are:

τi φi C1
i E1

i C2
i B1

i η1i

i = 1 0 1 5 2 {C1
3 , C

2
3 , C

1
2 , C

2
2} 2

i = 2 0 2 7 4 {C1
3 , C

2
3 , C

1
1 , C

2
1} 2

i = 3 0 1 4 1 {C1
1 , C

2
1 , C

1
2 , C

2
2} 2

η12 =
|B1

2 |
2

=
4

2
= 2 (8)

Proof 3 (Proof by Contradiction for i = n) We show that if fewer than n − 1 subtask execute during

E1
n, then E1

n cannot be the dominant contributor to processor idle time. As in Case 2: i = x, if r2n is less

than or equal to the release of some other task, τ1z , then any idle time due to E1
n is subsumed by E1

z , thus E1
n

cannot be the dominant contributor to processor idle time. If τ2n is released after any other second subtask

13 of 42

American Institute of Aeronautics and Astronautics

Figure 4: An example schedule is shown with three tasks where the self-suspension E1
2 is the

dominant contributor to processor idle time. Processor idle time is shown in red and projected
onto the timeline below.

14 of 42

American Institute of Aeronautics and Astronautics

and fewer than n − 1 subtasks then at least one subtask finishes executing after r2n. Then, for the same

reasoning as in Case 2: i = x, any idle time due to E1
n must be subsumed by another self-suspension. Thus,

E1
x cannot be the dominant contributor to processor idle time if fewer than n−1 subtasks execute during E1

i ,

where i = n.

Example for Equation 4, where i = n

We now consider an example for the final case, where i = n. As shown in Figure 5, the dominant contributor

to processor idle time is E1
3 . We calculate the lowerbound on the fewest subtasks that will execute during

E1
3 in Equation 8. The parameters of the task set in this example are shown here:

τi φi C1
i E1

i C2
i B1

i η1i

i = 1 0 1 5 2 {C1
3 , C

2
3 , C

1
2 , C

2
2} 2

i = 2 0 2 7 4 {C1
3 , C

2
3 , C

1
1 , C

2
1} 2

i = 3 0 1 11 1 {C1
1 , C

2
1 , C

1
2 , C

2
2} 2

η13 =
|B1

3 |
2

=
4

2
= 2 (9)

Proof of Correctness for Equation 5, where j = 1.

Proof 4 (Proof by Deduction) If n − 1 subtasks execute during Eji , then the amount of idle time that

results from Eji is greater than or equal to the duration of Eji less the cost of the n− 1 subtasks that execute

during that self-suspension. We also note that the sum of the costs of the n− 1 subtasks that execute during

Eji must be greater than or equal to the sum of the costs of the n − 1 smallest-cost subtasks that could

possibly execute during Eji . We can therefore upperbound the idle time due to Eji by subtracting the n − 1

smallest-cost subtasks. Next we compute W 1
i as the maximum of zero and E1

i less the sum of the smallest

n − 1 smallest-cost subtasks. If W 1
i is equal to zero, then E1

i is not the dominant contributor to processor

idle time, since this would mean that fewer than n − 1 subtasks execute during E1
i (see proof for Equation

4). If W j
i is greater than zero, then E1

i may be the dominant contributor to processor idle time, and this idle

time due to Eji is upperbounded by W j
i .

Example for Equation 5, where j = 1

Returning to our example shown in Figure 3, the dominant contributor to processor idle time is E1
1 . The

upperbound on processor idle time due to this self-suspension is shown in Equation 10. If either of the

other self-suspensions E1
2 or E1

3 were the dominant contributor to processor idle time, the upperbound on

processor idle time due to those self-suspensions is shown in Equations 11 and 12, respectively.

15 of 42

American Institute of Aeronautics and Astronautics

Figure 5: An example schedule is shown with three tasks where the self-suspension E1
3 is the

dominant contributor to processor idle time. Processor idle time is shown in red and projected
onto the timeline below.

16 of 42

American Institute of Aeronautics and Astronautics

W 1
1 = max

E1
1 −

η11∑
k=1

B1
1(k)

 , 0


= max ((12− (1 + 1))) , 0)

= 10

(10)

W 1
2 = max

E1
2 −

η12∑
k=1

B1
2(k)

 , 0


= max ((4− (1 + 1))) , 0)

= 2

(11)

W 1
3 = max

E1
3 −

η13∑
k=1

B1
3(k)

 , 0


= max ((1− (1 + 2))) , 0)

= 0

(12)

Figure 4 shows an example where the dominant contributor to processor idle time is E1
2 . The upperbound

on processor idle time due to this self-suspension is shown in Equation 14. If either of the other self-

suspensions E1
1 or E1

3 were the dominant contributor to processor idle time, the upperbound on processor

idle time due to those self-suspensions is shown in Equations 13 and 15, respectively.

W 1
1 = max

E1
1 −

η11∑
k=1

B1
1(k)

 , 0


= max ((5− (1 + 1))) , 0)

= 3

(13)

W 1
2 = max

E1
2 −

η12∑
k=1

B1
2(k)

 , 0


= max ((7− (1 + 1))) , 0)

= 5

(14)

W 1
3 = max

E1
3 −

η13∑
k=1

B1
3(k)

 , 0


= max ((4− (1 + 2))) , 0)

= 1

(15)

17 of 42

American Institute of Aeronautics and Astronautics

The dominant contributor to processor idle time in our third example (Figure 5) is E1
3 . The upperbound

on processor idle time due to this self-suspension is shown in Equation 18. If either of the other self-

suspensions E1
1 or E1

2 were the dominant contributor to processor idle time, the upperbound on processor

idle time due to those self-suspensions is shown in Equations 16 and 17, respectively.

W 1
1 = max

E1
1 −

η11∑
k=1

B1
1(k)

 , 0


= max ((5− (1 + 1))) , 0)

= 3

(16)

W 1
2 = max

E1
2 −

η12∑
k=1

B1
2(k)

 , 0


= max ((7− (1 + 1))) , 0)

= 5

(17)

W 1
3 = max

E1
3 −

η13∑
k=1

B1
3(k)

 , 0


= max ((11− (1 + 2))) , 0)

= 8

(18)

Proof of Correctness for Equation 6, where j = 1.

Proof 5 (Proof by Deduction) Here we show that by taking the maximum over all i of W 1
i , we upper-

bound the idle time due to the set of E1
i self-suspensions. We know from the proof of correctness for Equation

4 that if fewer than n− 1 subtasks execute during a self-suspension, E1
i , then that self-suspension cannot be

the dominant contributor to idle time. Furthermore, the dominant self-suspension subsumes the idle time due

to any other self-suspension. We recall that Equation 5 bounds processor idle time caused by the dominant

self-suspension, say Ejq . Thus, we note in Equation 6 that the maximum of the upperbound processor idle

time due to any other self-suspension and the upperbound for Ejq is still an upperbound on processor idle

time due to the dominant self-suspension.

Example for Equation 6

For the example schedules shown in Figures 3, 4, and 5, the actual processor idle times are 4, 3, and 5,

respectively. We upperbound the processor idle time for our three examples in Equations 19, 20, and 21.

18 of 42

American Institute of Aeronautics and Astronautics

Example 1 in Figure 3:

W 1 = max
i|Ej

i∈Efree

(
W 1
i

)
= max(W 1

1 ,W
1
2 ,W

1
3)

= max(10, 2, 0)

= 10

(19)

Example 2 in Figure 4:

W 1 = max
i|Ej

i∈Efree

(
W 1
i

)
= max(W 1

1 ,W
1
2 ,W

1
3)

= max(3, 5, 1)

= 5

(20)

Example 3 in Figure 5:

W 1 = max
i|Ej

i∈Efree

(
W 1
i

)
= max(W 1

1 ,W
1
2 ,W

1
3)

= max(3, 5, 8)

= 8

(21)

In all three examples, we can see that Equation 6 correctly upperbounds the processor idle time due to

the set of first self-suspensions {E1
i |1 ≤ i ≤ n}. Specifically, 4 ≤ W 1 = 10 (Figure 3), 3 ≤ W 1 = 5 (Figure

4), and 5 ≤W 1 = 8 (Figure 5).

Step 2) General Phase Offsets

Next we allow for general task release times (i.e., φi ≥ 0,∀i). Phase offsets may result in additional processor

idle time. For example, if every task has a phase offset greater than zero, the processor is forced to idle at

least until the first task is released. We also observe that, at the initial release of a task set, the largest phase

offset of a task set will subsume the other phase offsets. We recall that the index i of the task τi corresponds

to the ordering with which its first subtask is executed (i.e., s1i ≤ s1i+1). We can therefore conservatively

upperbound the idle time during t = [0, f1n] due to the first instance of phase offsets by taking the maximum

over all phase offsets, as shown in Equation 22.

The quantity W τ
φ computed in Step 2 is summed with W 1 (e.g., Equation 20) computed in Step 1 to

conservatively bound the contributions of first self-suspensions and first phase offsets to processor idle time.

This summation allows us to relax the assumption in Step 1 that there is no processor idle time during the

interval t = [0, f1n].

19 of 42

American Institute of Aeronautics and Astronautics

W τ
φ = max

i
φi (22)

Example for Equation 22

We extend Example 2 from Figure 4 to consider non-zero phase offsets. The new task set parameters are

shown in the table below:

τi φi C1
i E1

i C2
i B1

i η1i

i = 1 0 1 5 2 {C1
3 , C

2
3 , C

1
2 , C

2
2} 2

i = 2 2 2 7 4 {C1
3 , C

2
3 , C

1
1 , C

2
1} 2

i = 3 3 1 4 1 {C1
1 , C

2
1 , C

1
2 , C

2
2} 2

The upperbound on processor idle time due to phase offsets is Wφ = 3, as shown in Equation 23.

W τ
φ = max

i
φi = max{0, 2, 3} = 3 (23)

Figure 6: An example schedule is shown for three tasks with phase offsets. Processor idle
time is shown in red and projected onto the timeline below. This plot includes dashed, ver-
tical lines separate the timeline. W τ

phi upperbounds idle time between t =
[
0,maxi

(
f1
i

)]
,

and W 1 upperbounds processor idle time during the domain of the first self-suspension
t =

[
maxi

(
f1
i

)
,maxi

(
f2
i

)]
.

Step 3) General Number of Subtasks Per Task

The next step in formulating our schedulability test is incorporating general numbers of subtasks in each

task. As in Step 1, our goal is to determine an upperbound on processor idle time that results from the

worst-case interleaving of the jth and (j + 1)th subtask costs during the jth self-suspensions. Again, we

20 of 42

American Institute of Aeronautics and Astronautics

recall that our formulation for upperbounding idle time due to the 1st self-suspensions in actuality was an

upperbound for idle time during the interval t = [f1n,maxi(f
2
i)].

In Step 2, we upperbounded idle time resulting from phase offsets. To do this we determined an upper-

bound on the idle time between the release of the first instance of each task at t = 0 and the finish of τ1n.

Equivalently, this duration is t = [0,maxi(f
1
i)].

It follows then that, for each of the jth self-suspensions, we can apply Equation 6 to determine an

upperbound on processor idle time during the interval t =
[
maxi

(
f ji

)
,maxi

(
f j+1
i

)]
. The upperbound

on total processor idle time for all free self-suspensions in the task set is computed by summing over the

contribution of each of the jth self-suspensions as shown in Equation 24.

W τ
free =

∑
j

W j (24)

=
∑
j

max
i|Ej

i∈Efree

(
W j
i

)

=
∑
j

max
i|Ej

i∈Efree

max

Eji − ηji∑
k=1

Bji (k)

 , 0


However, we need to be careful in the application of this equation for general task sets with unequal

numbers of subtasks per task. Let us consider a scenario were one task, τi, has mi subtasks, and τx has

only mx = mi − 1 subtasks. When we upperbound idle time due to the (mi − 1)
th

self-suspensions, there is

no corresponding subtask τmi
x that could execute during Emi−1

i . We note that τmi−1
x does exist and might

execute during Emi−1
i , but we cannot guarantee that it does. Thus, when computing the set of subtasks, Bji ,

that may execute during a given self-suspension Eji , we only add a pair of subtasks τ jx, τ
j+1
x if both τ jx, τ

j+1
x

exist, as described by Equation 3. We note that, by inspection, if τ jx were to execute during Eji , it would

only reduce processor idle time.

Example for Equation 6

We extend our example from Figure 6 to include multiple self-suspensions in each task. The new task set is

shown here:

τi φi C1
i E1

i C2
i E2

i C3
i E3

i C4
i

i = 1 0 1 5 2 5 2 1 1

i = 2 2 2 7 4 5 2 0 0

i = 3 3 1 4 1 2 2 0 0

21 of 42

American Institute of Aeronautics and Astronautics

To upperbound the processor idle time due to all self-suspensions, we first upperbound processor idle time

W j for each of the jth self-suspensions {Eji |1 ≤ i ≤ n} using Equation 6, as shown in Equations 25 and 26.

Second, we apply Equation 24 to the set of W j terms to compute the total upperbound W τ
free. For this

example, W τ
free = 7 (Equation 27).

W 1 = max
i|Ej

i∈Efree

(
W 1
i

)
= max

(
W 1

1 ,W
1
2 ,W

1
3

)
= max(3, 5, 1)

= 5

(25)

W 2 = max
i|Ej

i∈Efree

(
W 1
i

)
= max(W 2

1 ,W
2
2 ,W

2
3)

= max(2, 2, 0)

= 2

(26)

W τ
free =

∑
j

W j = W 1 +W 2 = 5 + 2 = 7 (27)

Figure 7: An example schedule is shown for three tasks with phase offsets. Processor idle
time is shown in red and projected onto the timeline below. This plot includes dashed,
vertical lines separate the timeline. W τ

φ upperbounds idle time between t =
[
0,maxi

(
f1
i

)]
,

and W 1 upperbounds processor idle time during the domain of the first self-suspension
t =

[
maxi

(
f1
i

)
,maxi

(
f2
i

)]
.

22 of 42

American Institute of Aeronautics and Astronautics

Step 4) Subtask-to-Subtask Deadline Constraints

In Steps 1 and 3, we provided a lowerbound for the number of free subtasks that will execute during a free self-

suspension, if that self-suspension produces processor idle time. We then upperbounded the processor idle

time due to the set of free self-suspensions by computing the least amount of free task cost that will execute

during a given self-suspension. However, our proof assumed no subtask-to-subtask deadline constraints.

Now, we relax this constraint and calculate an upperbound on processor idle time due to embedded self-

suspensions W τ
embedded.

Recall under the JSF priority scheduling policy, an embedded subtask τ j+1
i may execute before all jth

subtasks are executed, contingent on a temporal consistency check for subtask-to-subtask deadlines. The

implication is that we cannot guarantee that embedded tasks (e.g. τ ji or τ j+1
i) will be interleaved during

their associated self-suspensions (e.g., Ejx, x ∈ N\i).

To account for this lack of certainty, we conservatively treat embedded self-suspensions as task cost, as

shown in Equations 28 and 29. Equation 28 requires that if a self-suspension, Eji is free, then Eji (1−x
j+1
i) = 0.

The formula (1− xj+1
i) is used to restrict our sum to only include embedded self-suspensions. Recall that a

self-suspension, Eji is embedded iff τ j+1
i is an embedded subtask.

Second, we restrict Bji such that the jth and (j + 1)th subtasks must be free subtasks if either is to be

added. We specified this constraint in Step 1, but this restriction did not have an effect because we were

considering task sets without subtask-to-subtask deadlines.

Third, we now must consider cases where ηji < n−1, as described in Equation 4. We recall that ηji = n−1

if there are no subtask-to-subtask deadlines; however, with the introduction of these deadline constraints, we

can only guarantee that at least ηji =
|Bj

i |
2 subtasks will execute during a given Eji , if Eji results in processor

idle time.

W τ
embedded =

n∑
i=1

mi−1∑
j=1

Eji

(
1− xj+1

i

) (28)

xji =


1, if τ ji ∈ τfree

0, if τ ji ∈ τembedded

(29)

Having bounded the amount of processor idle time due to free and embedded self-suspensions and phase

offsets, we now provide an upperbound on the time Hτ
UB the processor will take to complete all instances

of each task in the hyperperiod (Equation 30). H denotes the hyperperiod of the task set, and Hτ
LB is

defined as the sum over all task costs released during the hyperperiod. Recall that we are still assuming that

Ti = Di = Tj = Dj ,∀i, j ∈ N ; thus, there is only one instance of each task in the hyperperiod. Under this

23 of 42

American Institute of Aeronautics and Astronautics

assumption, the task set is schedulable under JSF if
HτUB

H ≤ 1.

HτUB = HτLB +W τ
phase +W τ

free +W τ
embedded (30)

Hτ
LB =

n∑
i=1

H

Ti

mi∑
j=1

Cji (31)

Example for Subtask-to-Subtask Deadline Constraints

Consider our example from Figure 7, which is now augmented to include a subtask-to-subtask deadline

Ds2s

〈τ2
1 ,τ

3
1 〉

= 9. The parameters of the task set are repeated here:

τi φi C1
i E1

i C2
i E2

i C3
i E3

i C4
i

i = 1 0 1 5 2 5 2 1 1

i = 2 2 2 7 4 5 2 0 0

i = 3 3 1 4 1 2 2 0 0

We apply Equation 28 to our example to upperbound the processor idle time due to all embedded self-

suspensions. In this case there is only one embedded self-suspension, E2
1 ; thus, the upperbound on processor

idle time due to embedded self-suspensions is Wτ
embedded = 5 (Equation 32).

W τ
embedded =

n∑
i=1

mi−1∑
j=1

Eji

(
1− xj+1

i

)
= E2

1

= 5

(32)

Because of the addition of this subtask-to-subtask deadline Ds2s

〈τ2
1 ,τ

3
1 〉

, the upperbound for W τ
free must be

recomputed. Deadline Ds2s

〈τ2
1 ,τ

3
1 〉

embeds just one of the 2nd self-suspensions {E2
i |1 ≤ i ≤ n}, so we only need

to recompute W 2; W 1 is unchanged.

Recall that W j is the max over all {W j
i |1 ≤ i ≤ n} where each associated self-suspension Eji is a free

self-suspension. Because E2
1 is embedded, we only need to calculate W 2

2 (Equation 33) and W 2
3 (Equation

34).

W 2
2 = max

E2
2 −

η22∑
k=1

B2
2(k)

 , 0


= max ((5− (1))) , 0)

= 4

(33)

24 of 42

American Institute of Aeronautics and Astronautics

W 2
3 = max

E2
3 −

η23∑
k=1

B2
3(k)

 , 0


= max ((2− (1))) , 0)

= 1

(34)

The new upperbound for idle time due to free self-suspensions is now calculated as shown in Equations 35

and 36.

W 2 = max
i|Ej

i∈Efree

(
W 1
i

)
= max(W 2

2 ,W
2
3)

= max(4, 1)

= 4

(35)

W τ
free =

∑
j

W j = W 1 +W 2 = 5 + 4 = 9 (36)

Finally, the upperbound HτUB on the time required to process τ can be computed via Equation 30. For

our example, HτUB = 35 (Equation 37). This upperbound guarantees that this task set can be processed if

the hyperperiod H = Ti = Tj of the task set is greater than or equal to HτUB = 35.

HτUB = HτLB +W τ
phase +W τ

free +W τ
embedded

= 18 + 3 + 9 + 5

= 35

(37)

Figure 8: An example schedule is shown for three tasks with a subtask-to-subtask deadline
constraint Ds2s

〈τ2
1 ,τ

3
1 〉.

25 of 42

American Institute of Aeronautics and Astronautics

Step 5) Deadlines Less Than or Equal to Periods

Next we allow for tasks to have deadlines less than or equal to the period. We recall that we still restrict

the periods such that Ti = Tj ,∀i, j ∈ N for this step. When we formulated our schedulability test of a

self-suspending task set in Equation 30, we calculated an upperbound on the time the processor needs to

execute the task set, Hτ
UB . Now we seek to upperbound the amount of time required to execute the final

subtask τ ji for task τi, and we can utilize the methods already developed to upperbound this time.

To compute this bound we consider the largest subset of subtasks in τ , which we define as τ |j ⊂ τ , that

might execute before the task deadline for τi. If we find that H
τ |j
UB ≤ Dabs, where Dabs is the absolute task

deadline for τi, then we know that a processor scheduling under JSF will satisfy the task deadline for τi. We

recall that, for Step 5, we have restricted the periods such that there is only one instance of each task in

the hyperperiod. Thus, we have Dabs
i,1 = Di + φi. In Step 6, we consider the more general case where each

task may have multiple instances within the hyperperiod. For this scenario, the absolute deadline of the kth

instance of τi is Dabs
i,k = Di + Ti(k − 1) + φi.

We present an algorithm named testDeadline(τ ,Dabs,j) to perform this test. Pseudocode for

testDeadline(τ ,Dabs,j) is shown in Figure 9. This algorithm requires as input a task set τ , an absolute

deadline Dabs for task deadline Di, and the subtask index (i.e., index j in τ ji) of the last subtask associated

with Di (e.g., j = mi associated with Di for τi ∈ τ). The algorithm returns true if a guarantee can be

provided that the processor will satisfy Di under the JSF, and returns false otherwise.

In Lines 1-14, the algorithm computes τ |j , the set of subtasks that may execute before Di. In the absence

of subtask-to-subtask deadline constraints, τ |j includes all subtasks τ j
′

i where i ∈ N and j′ ∈ {1, 2, . . . , j}.

In the case an subtask-to-subtask deadline spans subtask τ jx (in other words, a deadline D〈τa
x ,τ

b
x〉 exists where

a ≤ j and b > j), then the processor may be required to execute all embedded subtasks associated with the

deadline before executing the final subtask for task τi. Therefore the embedded subtasks of D〈τa
x ,τ

b
x〉 are also

added to the set τ |j . In Line 15, the algorithm tests the schedulability of τ |j using Equation 30.

Next we walk through the pseudocode for testDeadline(τ ,Dabs,j) in detail. Line 1 initializes τ |j . Line

2 iterates over each task, τx, in τ . Line 3 initializes the index of the last subtask from τx that may need to

execute before τ ji as z = j, assuming no subtask-to-subtask constraints.

Lines 5-11 search for additional subtasks that may need to execute before τ ji due to subtask-to-subtask

deadlines. If the next subtask, τz+1
x does not exist, then τzx is the last subtask that may need to execute

before τ ji (Lines 5-6). The same is true if τz+1
x ∈ τfree, because τz+1

x will not execute before τ ji under JSF if

z+ 1 > j (Lines 7-8). If τz+1
x is an embedded subtask, then it may be executed before τ ji , so we increment z,

the index of the last subtask, by one (Line 9-10). Finally, Line 13 adds the subtasks collected for τx, denoted

τx|j , to the task subset, τ |j .

26 of 42

American Institute of Aeronautics and Astronautics

After constructing our subset τ |j , we compute an upperbound on the fraction of time required by the

processor to satisfy some subtask τ ji,k constrained by Dabs (Line 15). If this fraction is less than or equal

to one, then we can guarantee that the deadline will be satisfied by a processor scheduling under JSF (Line

16). Otherwise, we cannot guarantee the deadline will be satisfied and return false (Line 18). To determine

if all task deadlines are satisfied, we call testDeadline(τ ,Dabs,j) once for each task deadline.

testDeadline(τ ,Dabs,j)

1: τ |j ← NULL
2: for x = 1 to |τ | do
3: z ← j
4: while TRUE do
5: if τz+1

x /∈ (τfree ∪ τembedded) then
6: break
7: else if τz+1

x ∈ τfree then
8: break
9: else if τz+1

x ∈ τembedded then
10: z ← z + 1
11: end if
12: end while
13: τx|j ← (φx, (C

1
x, E

1
x, C

2
x, . . . , C

z
x), Dx, Tx)

14: end for
15: if H

τ |j
UB/D

abs ≤ 1 //Using Eq. 30 then
16: return TRUE
17: else
18: return FALSE
19: end if

Figure 9: Pseudo-code for testDeadline(τ,Di, j), which tests whether a processor scheduling
under JSF is guaranteed to satisfy a task deadline, Di.

Step 6) General Periods

Thus far, we have established a mechanism for testing the schedulability of a self-suspending task set with

general task deadlines less than or equal to the period, general numbers of subtasks in each task, non-zero

phase offsets, and subtask-to-subtask deadlines. We now relax the restriction that Ti = Tj ,∀i, j. The

principle challenge of relaxing this restriction is there will be any number of task instances in a hyperperiod,

whereas before, each task only had one instance.

To determine the schedulability of the task set, we first start by defining a task superset, τ∗, where

τ∗ ⊃ τ . This superset has the same number of tasks as τ (i.e., n), but each task τ∗i ∈ τ∗ is composed of H
Ti

instances of τi ∈ τ . A formal definition is shown in Equation 38, where Cji,k and Eji,k are the kth instance of

the jth subtask cost and self-suspension of τ∗i .

τ∗i :(φi, (C
1
i,1, E

1
i,1, . . . , C

mi
i,1 , C

1
i,2, E

1
i,2, . . . , C

mi
i,2 ,

. . . , C1
i,k, E

1
i,k, . . . , C

mi

i,k), D∗i = H,T ∗i = H)

(38)

27 of 42

American Institute of Aeronautics and Astronautics

We aim to devise a test where τ∗i is schedulable if
Hτ

∗
UB

D∗i
≤ 1 and if the task deadline Di for each release

of τi is satisfied for all tasks and releases. This requires three steps. First we must perform a mapping of

subtasks from τ to τ ∗ that guarantees that τ j+1∗
i will be released by the completion time of all other jth

subtasks in τ∗. Consider a scenario where we have just completed the last subtask τ ji,k of the kth instance of

τi. We do not know if the first subtask of the k+ 1th instance of τi will be released by the time the processor

finishes executing the other jth subtasks from τ∗. We would like to shift the index of each subtask in the

new instance to some j′ ≥ j such that we can guarantee the subtask will be released by the completion time

of all other (j′ − 1)th subtasks.

Second, we need to check that each task deadline Di,k for each instance k of each task τi released during

the hyperperiod will be satisfied. To do this check, we compose a paired list of the subtask indices j in τ∗

that correspond to the last subtasks for each task instance, and their associated deadlines. We then apply

testDeadline(τ ,Di,j) for each pair of deadlines and subtask indices in our list. Finally, we must determine

an upperbound, Hτ
∗

UB , on the temporal resources required to execute τ∗ using Equation 30. If
Hτ

∗
UB

H ≤ 1,

where H is the hyperperiod of τ , then the task set is schedulable under JSF.

We use an algorithm called constructTaskSuperSet(τ), presented in Figure 10, to construct our task

superset τ∗. The function constructTaskSuperSet(τ) takes as input a self-suspending task set τ and

returns either the superset τ∗ if we can construct the superset, or null if we cannot guarantee that the

deadlines for all task instances released during the hyperperiod will be satisfied.

In Line 1, we initialize our task superset, τ∗, to include the subtask costs, self-suspensions, phase offsets,

and subtask-to-subtask deadlines of the first instance of each task τi in τ . In Line 2, we initialize a vector

I, where I[i] corresponds to the instance number of the last instance of τi that we have added to τ∗. Note

that after initialization, I[i]= 1 for all i. In Line 3, we initialize a vector J, where J[i] corresponds to the j

subtask index of τ∗ji for instance I[i], the last task instance added to τ∗i . The mapping to new subtask indices

is constructed in J to ensure that the (j + 1)th subtasks in τ∗ will be released by the time the processor

finishes executing the set of jth subtasks.

We use D[i][k] to keep track of the subtasks in τ∗ that correspond to the last subtasks of each instance

k of a task τi. D[i][k] returns the subtask index j in τ∗ of instance k of τi. In Line 4, D[i][k] is initialized to

the subtask indices associated with the first instance of each task.

In Line 5, we initialize counter, which we use to iterate through each j subtask index in τ∗. In Line 6

we initialize HLB to zero. HLB will be used to determine whether we can guarantee that a task instance in

τ has been released by the time the processor finishes executing the set of j = counter− 1 subtasks in τ ∗.

Next we compute the mapping of subtask indices for each of the remaining task instances released during

the hyperperiod (Line 7-31). In Line 11, we increment HLB by the sum of the costs of the set of the

28 of 42

American Institute of Aeronautics and Astronautics

j = counter − 1 subtasks. In Line 12, we iterate over each task τ∗i . First we check if there is a remaining

instance of τi to add to τ∗i (Line 13). If so, we then check whether counter > J[i] (i.e., the current j = counter

subtask index is greater than the index of the last subtask we added to τ∗i) (Line 14).

If the two conditions in Line 13 and 14 are satisfied, we test whether we can guarantee the first subtask

of the next instance of τi will be released by the completion of the set of the j = counter − 1 subtasks in

τ∗ (Line 15). We recall that under JSF, the processor executes all j − 1 subtasks before executing a jth

free subtask, and, by definition, the first subtask in any task instance is always free. The release time of

the next instance of τi is given by Ti ∗ I[i] + φi. Therefore, if the sum of the cost of all subtasks with index

j ∈ {1, 2, . . . , counter− 1} is greater than the release time of the next task instance, then we can guarantee

the next task instance will be released by the time the processor finishes executing the set of j = counter− 1

subtasks in τ ∗.

We can therefore map the indices of the subtasks of the next instance of τi to subtask indices in τ∗i with

j = counter + y − 1, where y is the subtask index of τyi in τi. Thus, we increment I[i] to indicate that we

are considering the next instance of τi (Line 16) and add the next instance of τi, including subtask costs,

self-suspensions, and subtask-to-subtask deadlines, to τ∗i (Line 17). Next, we set J[i] and D[i][k] to the j

subtask index of the subtask we last added to τ∗i (Lines 18-19). We will use D[i][k] later to test the task

deadlines of the task instances we add to τ∗i .

In the case where all subtasks of all task instances up to instance I[i], ∀i are guaranteed to complete

before the next scheduled release of any task in τ (i.e, there are no subtasks to execute at j = counter),

then counter is not incremented and HLB is set to the earliest next release time of any task instance (Lines

24 and 25). Otherwise, counter is incremented (Line 27). The mapping of subtasks from τ to τ ∗ continues

until all remaining task instances released during the hyperperiod are processed. Finally, Lines 31-39 ensure

that the superset exists iff each task deadline Di,k for each instance k of each task τi released during the

hyperperiod is guaranteed to be satisfied.

VI.A. Schedulability Test Summary

To determine the schedulability of task set τ we call constructTaskSuperSet(τ) on τ . This function tests

the schedulability of τ by computing an upperbound HτUB on the time required to process task (or subtask)

using Equation 30.

HτUB is comprised of four terms. The first term HτLB is simply the sum over the cost of the tasks

(Equation 31). The next three terms upperbound the amount of processor idle time due to phase offsets,

and free and embedded self-suspensions. W τ
φ (Equation 22) accounts for processor idle time due to phase

offsets and equals the maximum over all phase offsets. W τ
free upperbounds processor idle time due to free

29 of 42

American Institute of Aeronautics and Astronautics

constructTaskSuperSet(τ)

1: τ∗ ← Initialize to τ
2: I[i] ← 1,∀i ∈ N
3: J[i] ← mi,∀i ∈ N
4: D[i][k] ← mi,∀i ∈ N, k = 1
5: counter ← 2
6: HLB ← 0
7: while TRUE do
8: if I[i] = H

Ti
,∀i ∈ N then

9: break
10: end if
11: HLB ← HLB +

∑n
i=1 C

∗(counter−1)
i

12: for i = 1 to n do
13: if I[i] < H

Ti
then

14: if counter > J[i] then
15: if HLB ≥ Ti∗I[i]+φi then
16: I[i] ←I[i]+1

17: τ
∗(counter+y−1)
i ←

τyi ,∀y ∈ {1, 2, . . . ,mi}
18: J[i] = counter +mi − 1
19: D[i][I[i]] ← J[i]
20: end if
21: end if
22: end if
23: end for
24: if counter > maxi J[i] then
25: HLB = mini (Ti ∗ I[i] + φi)
26: else
27: counter ← counter +1
28: end if
29: end while
30: //Test Task Deadlines for Each Instance
31: for i = 1 to n do
32: for k = 1 to H

Ti
do

33: Di,k ← Di + Ti(k − 1) + φi
34: j ← D[i][k]
35: if testDeadline(τ ∗,Di,k,j) = FALSE then
36: return NULL
37: end if
38: end for
39: end for
40: return τ∗

Figure 10: Pseudo-code for constructTaskSuperSet(τ), which constructs a task superset, τ∗

for τ .

30 of 42

American Institute of Aeronautics and Astronautics

self-suspensions by considering the worst-case interleaving of subtasks during free self-suspensions (Equation

24). Lastly, W τ
embedded upperbounds processor idle time due to self-suspensions that are constrained by

subtask-to-subtask deadlines (Equation 28).

If the schedulability test determines that the processor can schedule τ under JSF, then we process τ . In

addition to testing the schedulability of τ constructTaskSuperSet(τ) returns a super task set τ∗ consisting

of all instances of tasks in τ released during the hyperperiod. constructTaskSuperSet(τ) constructs τ∗

in a careful way such that the processor will schedule τ according to JSF using jth indeces of subtasks as

specified in τ∗.

VII. Uniprocessor Scheduling Algorithm for Self-Suspending Task Sets

In Section VI, we developed a uniprocessor schedulability test for hard, non-preemptive, self-suspending

task sets. This schedulability test relies on a processor operating using the jth Subtask First scheduling

priority. JSF requires that all jth subtasks are processed before any (j+ 1)th free subtasks, where a subtask

τ j+1
i is free iff it does not share a deadline constraint with subtask τ ji . In computing the analytical schedu-

lability test, we assume that the processor idles during the embedded self-suspensions. We now describe

our JSF scheduling algorithm, which uses an online schedulability test to execute subtasks during embedded

self-suspensions and thus better utilizes the processor.

VII.A. Scheduling Algorithm Pseudocode

The JSF scheduling algorithm takes as input a self-suspending task set τ and the super set τ∗ generated

by constructTaskSuperSet(τ). The algorithm processes instances of τ until terminated by the system.

Recall that τ∗ is a special task set that contains H/Ti instances of each task τi, where H is the hyperperiod

of task set τ . JSF prioritizes subtask τ ji according to its j index in τ∗.

Pseudo-code for the JSF Scheduling Algorithm is shown in Figure 11. In Line 1, we initialize our clock.

Line 2 sets the algorithm up to indefinitely process released subtasks. In Line 3, we increment our clock. In

Line 4, we check if the processor is busy processing a subtask. If so, we wait until the next clock step (Line

5). If our processor is available to process a new subtask, we first collect all released subtasks (Line 7).

Next, the scheduling algorithm prunes this list of subtasks according to JSF. As an example, consider

two released subtasks τ ji,a and τyx,b for an instance a and b of τi and τx, respectively. There are corresponding

subtasks τk∗i and τz∗x in τ∗ such that j ≤ k and y ≤ z. If both τ ji and τyx are free subtasks, and j < y, then

the processor does consider τ ji for execution at time t, but does not consider τyx for execution, according to

the JSF prioritization. Line 8 prunes all such released subtasks τyx,b.

Line 9 prioritizes the remaining, released subtasks according to an application-specific priority. Because

31 of 42

American Institute of Aeronautics and Astronautics

JSF sets the same priority for subtasks τ j∗i,a and τγ∗α,β if j = γ, then there is room to further prioritize within

JSF. For now, we assume that such subtasks are prioritized according to the Earliest-Deadline First (EDF).

Line 10 iterates over all released, prioritized subtasks allowed by JSF to be processed at time t. In Line

11, the algorithm stores the next subtask to consider processing τ ji,k. In Line 12, a novel online consistency

test, called the Russian Dolls Test, determines whether scheduling τ ji,k at time t may result in a subtask

missing a deadline. We describe this test in Section VII.B. If our online consistency test guarantees that

processing τ ji,k at time t will not result in a subtask missing its deadline, then the algorithm schedules τ ji,k

on the processor.

JSFSchedulingAlgorithm(τ ,τ∗)

1: t ← −1
2: while true do
3: t ← t +1
4: if processor is busy then
5: continue
6: end if
7: releasedSubtasks ← getReleasedSubtasks(τ)
8: JSFsubtasks ← pruneForJSF(releasedSubtasks,τ∗)
9: prioritizedSubtasks ← prioritize(JSFsubtasks)

10: for counter = 1→ |prioritizedSubtasks| do
11: τ ji,k ← prioritizedSubtasks[counter];

12: if russianDollsTest
(
τ ji,k

)
then

13: process
(
τ ji,k

)
14: break
15: end if
16: end for
17: end while

Figure 11: This figure provides pseudo-code for JSFSchedulingAlgorithm(τ ,τ∗). This algo-
rithm schedules self-suspending task sets on a uniprocessor.

VII.B. Online Schedulability Test

The uniprocessor Russian Dolls Test is a schedulability test for ensuring feasibility while scheduling tasks

against subtask-to-subtask deadline constraints. The test is a variant of the resource edge-finding algo-

rithm,31,32 the purpose of which is to determine whether an event must or may execute before or after a

set of activities.33 Our analytical, polynomial-time approach determines whether a subtask τ ji can feasi-

bly execute before a set of other subtasks given the set of subtask-to-subtask deadline constraints. To our

knowledge, our approach is the first to leverage the structure of the self-suspending task model to perform

fast edge checking.

To describe our test, we first define an active subtask-to-subtask deadline (Definition 7) and an active

subtask (Definition 8).

32 of 42

American Institute of Aeronautics and Astronautics

Definition 7 Active Subtask-to-Subtask Deadline - A subtask-to-subtask deadline Ds2s

〈τj
i ,τ

b
i 〉

is considered

active between sji ≤ t ≤ f bi .

Definition 8 Active Subtask - A subtask is active at time t if it has been released and is yet unprocessed at

time t and is directly constrained by an active subtask-to-subtask deadline.

VII.B.1. Walk-through of Pseudocode

Pseudocode describing the uniprocessor Russian Dolls Test is shown in Figure 12. The Russian Dolls Test

takes as input a subtask τ ji , the task set τ , the current time t. The Russian Dolls Test returns whether we

can guarantee that processing τ ji at time t will not result in another subtask violating its subtask-to-subtask

deadline constraint.

To determine the feasibility of scheduling τ ji at time t, we must consider two scenarios. First, if processing

τ ji does not activate a subtask-to-subtask deadline, then we merely need to guarantee that processing τ ji

leaves enough time for the processor to finish executing the set of active subtasks. Second, if processing τ ji

does activate a subtask-to-subtask deadline D〈τj
i ,τ

b
i 〉, then we must also consider whether the processor will

have enough time to attend to subtasks {τ qi |j < q ≤ b} in addition to the other active subtasks.

In Line 1, the test iterates over all active subtasks τyx,z (Definition 8) not including τ ji . In Lines 2-4, the

test considers the direct effect of processing τ ji at time t. Line 2 tests whether the processor can nest the

execution of τ ji within the laxity of τyx,z’s deadline. If no such nesting is possible, then the test returns false

thus prohibiting the processing of τ ji at time t (Line 3).

If scheduling τ ji,k at time t would activate a subtask-to-subtask deadline Ds2s

〈τj
i ,τ

b
a〉 (Definition 7), then

we must consider the indirect effects of this activation on the other subtasks constrained by this deadline

constraint. If this activation would occur (Line 5), the test iterate over all subtasks τ qi |j < q ≤ b constrained

by Ds2s

〈τj
i ,τ

b
i 〉

(Line 6) except for τ ji,k, which is accounted for in Line 2.

We then determine whether the processor can nest the execution of τ qi within the laxity of τyx ’s deadline

or vice versa (Line 7). If the nesting is not feasible, then the test returns false, indicating that there is no

guarantee that the processor will satisfy all subtask-to-subtask deadline constraints if τ ji,k is processed at

time t (Line 8). If this nesting can be performed for all such pairs of subtasks, then the test returns true,

indicating that τ ji,k can safely be processed at time t (Line 13).

VIII. Results and Discussion

In this section, we empirically evaluate the tightness and computational complexity of our schedulability

test and scheduling algorithm. We perform our empirical analysis using randomly generated task sets. The

number of subtasks mi of a task τi is drawn from mi ∼ U(1, 2n), with n being the number of tasks. If

33 of 42

American Institute of Aeronautics and Astronautics

russianDollsTest(τ ji,k,τ ,t)

1: for all τyx,z ∈ τactive\τ
j
i do

2: if
(
t+ Cji > dyx,z − Cyx

)
then

3: return false
4: end if
5: if ∃D〈τj

i ,τ
b
i 〉 then

6: for all τ qi |j < q ≤ b do

7: if
(
dyx,z > dqi,k − C

q
i

)
∧
(
dyx,z − Cyx < dqi,k

)
then

8: return false
9: end if

10: end for
11: end if
12: end for
13: return true

Figure 12: Pseudocode describing the uniprocessor Russian Dolls Test.

mi = 1, then that task does not have a self-suspension. The subtask cost and self-suspension durations are

drawn from uniform distributions Cji ∼ U(1, 10) and Eji ∼ U(1, 10), respectively. Task periods are drawn

from a uniform distribution such that Ti ∼ U(
∑
i,j C

j
i , 2

∑
i,j C

j
i). Lastly, task deadlines are drawn from a

uniform distribution such that Di ∼ U(
∑
i,j C

j
i , Ti).

To evaluate the performance of our methods as a function of problem size, we consider task sets between

2 and 23 tasks. We note that the number of subtasks in the task set is equal to the square of the number

of tasks; for 23 tasks, there are 529 subtasks in the task set. Each data point and associated error bar

represents the median and quartiles for fifty randomly generated task sets.

We benchmark our method against the naive approach that treats all self-suspensions as task cost. To our

knowledge our method is the first polynomial-time test for hard, periodic, non-preemptive, self-suspending

task systems with any number of self-suspensions per task.

VIII.A. Tightness of the Schedulability Test and Scheduling Algorithm

The metric we use to evaluate the tightness of our schedulability test is the percentage of self-suspension

time our method treats as task cost, as calculated in Equation 39.

Ê =
W τ
free +W τ

embedded∑
i,j E

j
i

∗ 100% (39)

This metric provides a comparison between our method and the naive worst-case analysis that treats all

self-suspensions as idle time. Similarly, we evaluate the tightness of our scheduling algorithm using the

percentage of self-suspension time that the processor is idle.

34 of 42

American Institute of Aeronautics and Astronautics

VIII.A.1. Traditional Self-Suspending Task Model

In Figure 13, we show the empirical tightness of our schedulability test and scheduling algorithm as a function

of the size of the task set. Recall that the traditional model (Equation 1) does not include subtask-to-subtask

deadlines.

For small problem sizes, the schedulability test significantly overestimates the amount of time the pro-

cessor will idle due to self-suspensions while processing the task set. However, the schedulability test and

scheduling algorithm quickly converge as task size increases. Both the schedulability test and scheduling

algorithm approach approximately 10% idle time.

Figure 13: This plot shows the tightness of our schedulability test and scheduling algorithm
for the traditional self-suspending task model. For the schedulability test, the plot shows
the amount of self-suspension time that is treated as task cost to account for processor idle
time. For the scheduling algorithm, the plot shows the actual amount of processor idle time
due to self-suspensions. Both measures are normalized to the sum of the duration of all
self-suspensions.

35 of 42

American Institute of Aeronautics and Astronautics

VIII.B. Augmented Self-Suspending Task Model

Next, we evaluate tightness of the JSF schedulability test and scheduling algorithm for the self-suspending

task model augmented with subtask-to-subtask deadline constraints. We use a metric D̂, to classify the

degree to which subtask-to-subtask deadlines constrain the task set. The quantity D̂ is computed as the

number of subtasks constrained by subtask-to-subtask deadlines, normalized by the total number of subtasks

released during the hyperperiod. We show the empirical tightness of our schedulability test and scheduling

algorithm for task sets where one-fourth (Figure 14) and one-half (Figure 15) of the subtasks released during

the hyperperiod are constrained by subtask-to-subtask deadlines.

Recall that our schedulability test treats all self-suspensions constrained by subtask-to-subtask deadlines

(embedded self-suspensions) as task cost (or processor idle time). Online, our scheduling algorithm uses

the Russian Dolls Test to correctly interleave subtasks during these embedded self-suspensions to reduce

processor idle time.

While the tightness of the schedulability test quickly approaches that of the scheduling algorithm for

the traditional model (Figure 13), we do not see that same behavior for task sets with subtask-to-subtask

deadlines. The Russian Dolls Test allows the processor to utilize much of the embedded self-suspension time

treated as task cost by the schedulability test. Nonetheless, our methods are tight for task sets that have a

relatively low number of subtasks constrained by subtask-to-subtask deadlines. To our knowledge, this is the

first polynomial-time schedulability test and scheduling algorithm that handles self-suspending task models

with subtask-to-subtask deadlines.

VIII.C. Computational Complexity

VIII.C.1. JSF Schedulability Test

The JSF schedulability test is computed in polynomial time. We bound the time-complexity as follows,

noting that mmax is the largest number of subtasks in any task in τ and Tmin is the shortest period of any

task in τ .

The complexity of evaluating Equation 30 for τ∗ is upperbounded by O
(
n2mmax

H
Tmin

)
where

O
(
nmmax

H
Tmin

)
bounds the number of self-suspensions in τ∗. The complexity of testDeadline() is domi-

nated by evaluating Equation 30. In turn, constructTaskSuperset() is dominated by O
(
n H
Tmin

)
calls to

testDeadline(). Thus, for the algorithm we have presented in Figures 9 and 10, the computational com-

plexity is O

(
n3mmax

(
H

Tmin

)2)
. However, we note our implementation of the algorithm is more efficient.

We reduce the complexity to O
(
n2mmax

H
Tmin

)
by caching the result of intermediate steps in evaluating

Equation 30.

We provide empirical validation of the computational time of the JSF schedulability test in Figure 16.

36 of 42

American Institute of Aeronautics and Astronautics

Figure 14: This plot shows the tightness of our schedulability test and scheduling algorithm for

the augmented self-suspending task model where one quarter
(
D̂ = 1

4

)
of the subtasks released

during the hyperperiod are constrained by subtask-to-subtask deadlines. For the schedulability
test, the plot shows the amount of self-suspension time that is treated as task cost to account
for processor idle time. For the scheduling algorithm, the plot shows the actual amount of
processor idle time due to self-suspensions. Both measures are normalized to the sum of the
duration of all self-suspensions.

37 of 42

American Institute of Aeronautics and Astronautics

Figure 15: This plot shows the tightness of our schedulability test and scheduling algorithm

for the augmented self-suspending task model where one half
(
D̂ = 1

2

)
of the subtasks released

during the hyperperiod are constrained by subtask-to-subtask deadlines. The schedulability
test plot shows the amount of self-suspension time that is treated as task cost to account for
processor idle time. The scheduling algorithm plot shows the actual amount of processor idle
time due to self-suspensions. Both measures are normalized to the sum of the duration of all
self-suspensions.

38 of 42

American Institute of Aeronautics and Astronautics

This figure shows the computation time of the JSF schedulability test as a function of problem size and

the proportion of subtasks constrained by subtask-to-subtask deadline constraints D̂. These results were

generated using a MATLAB implementation of the schedulability test and run on a commercial, off-the-shelf

laptop with an Intel Core i7-2820QM CPU 2.30GHz and 8 GB of RAM. With a more efficient implementation,

we expect the computation time to significantly decrease.

Figure 16: This plot shows the computation time of our polynomial time schedulability test
for the traditional model as well as for task sets with subtask-to-subtask deadlines where
D̂ ∈

{
1
4
, 1
2

}
.

VIII.C.2. JSF Scheduling Algorithm

Our scheduling algorithm is also computed in polynomial-time. We bound the time-complexity for each time

step of the algorithm. The largest number of released subtasks at any point in time is n. The algorithm

attempts to schedule at worst all n of the released subtasks. For each attempt to schedule a subtask,

the algorithm calls the Russian Dolls Test to determine temporal feasibility. The Russian Dolls Test must

perform a pair-wise comparison of all active subtasks. In the worst case, there are O (n
∑
imiW) active

subtasks. Thus, the complexity of our scheduling algorithm is O
(
n2mmax

)
per time step.

39 of 42

American Institute of Aeronautics and Astronautics

IX. Conclusion

In this paper, we present a polynomial time solution to the open problem of determining the feasibility

of hard, periodic, non-preemptive, self-suspending task sets with any number of self-suspensions in each

task, phase offsets, and deadlines less than or equal to periods. We also generalize the self-suspending task

model and our schedulability test to handle task sets with subtask-to-subtask deadlines, which constrain the

upperbound temporal difference between the start and finish of two subtasks within the same task. These

constraints are commonly included in AI and operations research scheduling models.

Our schedulability test works by leveraging a novel priority scheduling policy for self-suspending task

sets, called jth Subtask First (JSF), that restricts the behavior of a self-suspending task set so as to provide

an analytical basis for an informative schedulability test. We prove the correctness of schedulability test.

Furthermore, we also introduce an online consistency test, which we call the Russian Dolls Test, that

ensures temporal feasibility during runtime when scheduling against subtask-to-subtask deadlines. We empir-

ically evaluate the tightness and computational complexity of our methods. For the standard self-suspending

task model our method enables the processor to effectively use 95% of self-suspension time to process tasks.

Acknowledgment

Funding for this project was provided by Boeing Research and Technology and The National Science

Foundation (NSF) Graduate Research Fellowship Program (GRFP) under grant number 2388357.

References

1J. Liu, Real-Time Systems. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1st ed., 2000.

2J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo. Kluwer Academic Publishers, 1998.

3N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings, “Applying new scheduling theory to static priority

pre-emptive scheduling,” Software Engineering Journal, vol. 8, pp. 284–292, 1993.

4I.-G. Kim, K.-H. Choi, S.-K. Park, D.-Y. Kim, and M.-P. Hong, “Real-time scheduling of tasks that contain the external

blocking intervals,” in Proceedings of the Conference on Real-time Computing Systems and Applications, 1995.

5C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time environment,” Journal

of the Association for Computing Machinery, 1973.

6L. Ming, “Scheduling of the inter-dependent messages in real-time communication,” in Proceedings of the First Interna-

tional Workshop on Real-Time Computing Systems and Applications, (Seoul, Korea), December 21-22 1994.

7K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Open problems in scheduling self-suspending tasks,” in Proceedings of

the Real-Time Scheduling Open Problems Seminar (RTSOPS), (Brussels, Belgium), July 6 2010.

8C. Liu and J. H. Anderson, “An O(m) analysis technique for supporting real-time self-suspending task systems,” in

Proceedings of the Real-Time Systems Symposium (RTSS), 2012.

40 of 42

American Institute of Aeronautics and Astronautics

9P. Richard, “On the complexity of scheduling real-time tasks with self-suspensions on one processor,” in Proceedings of

the 15th Euromicro Conference on Real-Time Systems (ECRTS), (Porto, Portugal), Julie 2-4 2003.

10F. Ridouard and P. Richard, “Worst-case analysis of feasibility test for self-suspending task sets,”

11K. Lakshmanan and R. R. Rajkumar, “Scheduling self-suspending real-time tasks with rate-monotonic priorities,” in

Proceedings of the Real-Time and Embedded Technology and Applications Symposium (RTAS), (Stockholm, Sweden), April

12-15 2010.

12L. Brunet, H.-L. Choi, and J. P. How, “Consensus-based auction approaches for decentralized task assignment,” in

Proceedings of the AIAA Guidance, Navigation, and Control Conference (GNC), (Honolulu, HI), 2008.

13M. Rekik, J.-F. Cordeau, and F. Soumis, “Consensus-based decentralized auctions for robust task allocation,” IEEE

Transactions on Robotics, vol. 25, pp. 912–926, 2004.

14M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of multi-robot teams with temporospatial constrints,”

in Proceedings of the Robots: Science and Systems (RSS), (Berlin, Germany), June 24-28 2013.

15J. N. Hooker, “A hybrid method for planning and scheduling,” tech. rep., Pittsburgh, Tepper School of Business, Carnegie

Mellon University, 2004.

16J.-F. Cordeau, G. Stojković, F. Soumis, and J. Desrosiers, “Benders decomposition for simultaneous aicraft routing and

crew scheduling,” Transportation Science, vol. 35, no. 4, pp. 357–388, 2001.

17E. Castro and S. Petrovic, “Combined mathematical programming and heuristics for a radiotherapy pre-treatment

scheduling problem,” Journal of Scheduling, vol. 15, no. 3, pp. 333–346, 2012.

18J. Chen and R. G. Askin, “Project selection, scheduling and resource allocation with time dependent returns,” European

Journal of Operational Research, vol. 193, pp. 23–34, 2009.

19D. Bertsimas and R. Weismantel, Optimization over Integers. Belmont: Dynamic Ideas, 2005.

20R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” AI, vol. 49, no. 1, 1991.

21N. Muscettola, P. Morris, and I. Tsamardinos, “Reformulating temporal plans for efficient execution,” in Proceedings of

the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR&R), (Trento, Italy), June

2-5 1998.

22M. G. Harbour and J. C. Palencia, “Response time analysis for tasks scheduled under EDF within fixed priorities,” in

Proceedings of the Real-Time Systems Symposium (RTSS), 2003.

23F. Ridouard and P. Richard, “Negative results for scheduling independent hard real-time tasks with self-suspensions,” in

Proceedings of the Real-Time and Network Systems (RTNS), (Poitiers, France), May 30-31 2006.

24Y. Abdeddäım and D. Masson, “Scheduling self-suspending periodic real-time tasks using model checking,” in Proceedings

of the Real-Time Systems Symposium (RTSS), 2011.

25A. Armando, C. Castellini, E. Giunchiglia, M. Idini, and M. Maratea, “TSAT++: an open platform for satisfiability

modulo theories,” in Proceedings of the 2nd workshop on Pragmatics of Decision Procedures in Automated Reasoning, 2004.

26B. Nelson and T. K. Kumar, “CircuitTSAT: A solver for large instances of the disjunctive temporal problem,” in Pro-

ceedings of the ICAPS (J. Rintanen, B. Nebel, J. C. Beck, and E. A. Hansen, eds.), 2008.

27U. C. Devi, “An improved schedulability test for uniprocessor periodic task systems,” in Proceedings of the 16thEuromicro

Technical Committee on Real-Time Systems, (Catania, Italy), June 30 - July 2 2003.

28C. Liu and J. H. Anderson, “Task scheduling with self-suspensions in soft real-time multiprocessor systems,” in Proceedings

of the 30th IEEE Real-Time Systems Symposium (RTSS), (Washington DC, U.S.A.), December 1-4 2009.

29R. R. Rajkumar, “Dealing with self-suspending period tasks,” tech. rep., IBM, Thomas J. Watson Research Center,

Armonk, 1991.

41 of 42

American Institute of Aeronautics and Astronautics

30M. C. Gombolay and J. A. Shah, “Multiprocessor scheduler for task sets with well-formed precedence relations, temporal

deadlines, and wait constraints,” in Proceedings of the AIAA Infotech@Aerospace, 2012.

31P. Laborie, “Algorithms for propagating resource constraints in AI planning and scheduling: existing approaches and

new results,” Artificial Intelligence, vol. 143, no. 2, pp. 151–188, 2003.

32P. Viĺım, R. Barták, and O. Čepek, “Extension of o (n log n) filtering algorithms for the unary resource constraint to

optional activities,” Constraints, vol. 10, no. 4, pp. 403–425, 2005.

33P. Baptiste and C. L. Pape, “Edge-finding consraint propagation algorithms for disjunctive and cumulative scheduling,”

in Proceedings of the 15th Workshop of the U.K. Planning and Special Interest Group, (Liverpool, U.K.), November 21-22

1996.

42 of 42

American Institute of Aeronautics and Astronautics

	Introduction
	Self-Suspending Task Model
	Background
	Challenge Posed by Task Self-Suspension
	Scheduling Anomalies Produced by Reducing Task Cost
	Scheduling Anomalies Produced by Decreasing Phase Offsets

	Schedulability Testing
	Scheduling Algorithms

	Terminology
	Motivating our jth Subtask First (JSF) Priority Scheduling Policy
	Uniprocessor Schedulability Test for Self-Suspending Task Sets
	Schedulability Test Summary

	Uniprocessor Scheduling Algorithm for Self-Suspending Task Sets
	Scheduling Algorithm Pseudocode
	Online Schedulability Test
	Walk-through of Pseudocode

	Results and Discussion
	Tightness of the Schedulability Test and Scheduling Algorithm
	Traditional Self-Suspending Task Model

	Augmented Self-Suspending Task Model
	Computational Complexity
	JSF Schedulability Test
	JSF Scheduling Algorithm

	Conclusion

