
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-019 May 26, 2015

Prophet: Automatic Patch Generation via
Learning from Successful Human Patches
Fan Long and Martin Rinard

Prophet: Automatic Patch Generation via
Learning from Successful Human Patches

Fan Long and Martin Rinard
MIT CSAIL

{fanl, rinard}@csail.mit.edu

Abstract
We present Prophet, a novel patch generation system that
learns a probabilistic model over candidate patches from a
large code database that contains many past successful hu-
man patches. It defines the probabilistic model as the com-
bination of a distribution over program points based on error
localization algorithms and a parameterized log-linear distri-
bution over modification operations. It then learns the model
parameters via maximum log-likelihood, which identifies
important characteristics of the successful human patches.
For a new defect, Prophet generates a search space that con-
tains many candidate patches, applies the learned model to
prioritize those potentially correct patches that are consis-
tent with the identified successful patch characteristics, and
then validates the candidate patches with a user supplied test
suite.

1. Introduction
Automatic patch generation holds out the promise of cor-
recting defects in production software systems without the
cost for human developers to diagnose, understand, and cor-
rect these defects. The standard generate-and-validate tech-
niques start with a test suite of inputs, at least one of which
exposes a defect in the software [7, 8, 12, 13, 17]. The
patch generation system then applies program modifications
to generate a space of candidate patches, then searches the
generated patch space to find plausible patches - i.e., patches
that produce correct outputs for all inputs in the test suite.

Recent work shows that generate-and-validate techniques
can suffer from weak test suite problem, i.e., these tech-
niques often generate plausible but incorrect patches that
pass the supplied test suite but produce incorrect outputs for
other inputs [8, 13]. These plausible but incorrect patches
often have negative effects such as eliminating desired func-
tionalities or introducing security vulnerabilities in an appli-
cation [13]. This indicates that additional information other
than test suites is desirable for the patch generation tech-
niques.

We present Prophet, a new generate-and-validate patch
generation system that learns from past successful human
patches. Prophet analyzes a large database of human revi-
sion changes collected from open source project repositories
to automatically learn characteristics of successful patches.
It then uses these learned characteristics to recognize and
prioritize correct patches within a larger space of plausible
patches. To the best of our knowledge, Prophet is the first
program repair technique that uses a probabilistic model to
identify important patch characteristics and a machine learn-
ing algorithm to learn the model from past successful human
patches.

2. Basic Approach
Prophet first performs an offline training phase to learn
important characteristics (features) of successful human
patches from a large revision database. For a new defect,
Prophet then generates a search space of potential useful
patches for the defect and uses the learned knowledge to pri-
oritize the patches that tend to be successful, i.e., the learned
knowledge guides the exploration the search space.

2.1 Training

The input to the Prophet training phase is a large revision
change databaseD = {〈p1, p′1〉, . . . , 〈pn, p′n〉}, where each
element of D is a pair of defective and repaired programs
pi and p′i. Prophet learns a probabilistic model such that,
it assigns a high conditional probability to p′i, denoted as
P (p′i | pi), for each pair 〈pi, p′i〉 ∈ D. Note that there
are other possible repaired programs p′ given program pi,
the probability thus can be interpreted as a normalized score
(that is,

∑
p′ P (p′ | pi) = 1) which prioritizes the correct

repaired program p′i among all possible candidates (in the
search space Prophet generates).
Probabilistic Model: More precisely, the probabilistic
model of Prophet assumes that each candidate patch modi-
fies one program point. Specifically, the model assumes that
a repaired program p′ can be derived from a given defective
program p by first localizing a program modification point

1 2015/5/26

` and then performing an AST modification operation m at
this point. Based on this assumption, Prophet factorizes the
probability P (p′ | p) as follow:

P (p′ | p) = P (m, ` | p)
= P (` | p) · P (m | p, `) (chain rule)

P (` | p) is a distribution that corresponds to the proba-
bility of modifying the program point ` given the defective
program p. Prophet runs an error localization algorithm [8]
to obtain a ranked list of potential program points to modify
to generate patches. Prophet empirically defines P (` | p) as
a normalized geometric distribution,

P (` | p) =
(1− α)r−1α

Z

where Z is the normalization divisor, r is the rank of the pro-
gram point ` determined by the error localization algorithm,
and α is the probability of each coin flip trial (which Prophet
empirically sets to 0.08).
P (m | p, `) is a parameterized log-linear model,

P (m | p, l) =
exp (φ(p,m, `) · θ)

Σm′∈M exp (φ(p,m′, `) · θ)
where M is the set of all candidate modification operations
(including m) given p and `, φ(p, `,m) is the feature vector
that Prophet extracts for the triple of p, `, and m, and θ is
the feature weight parameter vector Prophet learns from the
revision change database.
Learning Steps: Prophet learns θ by maximizing the aver-
age log likelihood of the observed pairs of the defective and
the repaired programs in D. Specifically, Prophet performs
the following steps:

• AST Structured Diff: For each pair 〈pi, p′i〉 in D,
Prophet performs a structured diff between the ASTs
of pi and p′i to determine the corresponding modifica-
tion operation mi and the modified program point `i for
〈pi, p′i〉.

• Generate Repair Space: For each pair 〈pi, p′i〉 in D,
Prophet then generates a search space that contains a set
of candidate repairs for pi around the identified program
point `i. Each of the candidate repairs correspond to a
modification operation and this gives a set of modifica-
tion operationsMi. Note that one of the candidate repairs
in the generated search space corresponds to the identi-
fied modification operation mi for the repaired program
p′i (i.e., mi ∈Mi).

• Maximum Loglikehood: Prophet initializes θ with ze-
ros and runs the iterative algorithm to maximize:

1
|D| · Σ

|D|
i=1 log(P (mi | pi, `i))

For each iteration Prophet calculates the average log like-
lihood over the collected training pairs inD; Prophet then
updates the θ with the gradient decent algorithm.

• Regularization and Validation Set: To determine when
the iterative algorithm stops, Prophet splits the training
data set and reserves 15% of the training pairs for valida-
tion only. The algorithm records the θ that produces the
best results on the validation set and it stops when the re-
sult on the validation set is no longer improved for 200
iterations. To avoid the overfitting problem, Prophet uses
both L1 and L2 regularizations during training.

2.2 Feature Selection

Prophet extracts two types of features, modification features
and semantic features. In our current implementation, the
feature vector φ in Prophet contains 3425 elements.
Modification Features: Prophet defines a set of modifica-
tion features to characterize the type of the modification op-
eration m given the surrounding code. Specifically, Prophet
uses the same set of transformation schemas in SPR [8] to
generate candidate patches. For each transformation schema,
there is a binary value in φ(p, `,m) that indicates whether
m is generated from this specific schema. For each pair
of a transformation schema and a statement type (e.g., as-
sign statement, branch statement), there is a binary value in
φ(p, `,m) which equals one if and only if m is generated
from the specific schema and the original code around ` con-
tains a statement that is the specific type.
Semantic Features: Prophet also defines a set of semantic
features to capture the common semantic characteristics of
successful or unsuccessful human patches. Specifically, for
each syntactic value v (e.g., a local variable v), Prophet de-
fines a set of binary atomic semantic features ai(v, p, `,m).
Examples of such atomic features are whether v is derefer-
enced in the original code around ` or whether v is used as
the left operand of a less than operation in the new code after
applying the modification m.

For each pair of such atomic semantic features ai and
aj , there is a binary value in φ(p, `,m) which equals one
if and only if there is a syntactic value v such that both
ai(v, p, `,m) and aj(v, p, `,m) are one.

A key benefit of defining semantic features in this way
is that it abstracts (potentially application specific) syntac-
tic elements away from the extracted feature vectors. This
abstraction enables Prophet to learn semantic features from
one application and then applies the learned knowledge to
another application.

2.3 Apply to New Defect

Given a program p that contains a defect and a test suite
that contains at least one test case which exposes the defect,

2 2015/5/26

Prophet performs the following steps to generate a patch for
p:

• Error Localization: Prophet runs all test cases in the
test suite with an error localization algorithm to produce
a ranked list of potential program points (statements) that
may correspond to the root cause of the error. Prophet
uses the same error localization algorithm as SPR [8].
Prophet uses the error localization results to compute
P (` | p).

• Generate Search Space: Prophet then generates a
search space that contains candidate patches for all of the
program points returned by the error localization algo-
rithm. Each candidate patch corresponds to a pair 〈m, `〉,
where m is the modification operation and ` is the pro-
gram point to modify.

• Rank Candidate Patch: For each candidate patch,
Prophet uses the learned θ to compute P (m | p, `) and,
in turn, computes P (m, ` | p) as the product of P (` | p)
and P (m | p, `). Prophet uses P (m, ` | p) as the score
for the candidate patch. Prophet then sorts all of the can-
didate patches in the search space according to this score,
prioritizing candidate patches with higher probability.

• Validate Candidate Patch: Prophet tests all of the can-
didate patches one by one in the ranked order with the
supplied test suite. Prophet outputs the first candidate
patch that passes the test suite. Note that Prophet uses all
existing optimization techniques in SPR to speed up this
validation step, including the staged condition synthesis
technique [8].

3. Experimental Results
We evaluated Prophet on 69 real world defects in seven
large open source applications, libtiff, lighttpd, the PHP in-
terpreter, gmp, gzip, python, wireshark, and fbc. These de-
fects are from the same benchmark set of GenProg, AE, and
SPR [7, 8, 17]. Note that we exclude 36 cases from the orig-
inal benchmark set because those 36 cases correspond to
functionality changes rather than defects in the application
repositories [8].

3.1 Methodology

We perform all of our experiments except those of fbc on
Amazon EC2 Intel Xeon 2.6GHz machines running Ubuntu-
64bit server 14.04. The benchmark application fbc runs only
in 32-bit environments, so we use a virtual machine with
Intel Core 2.7Ghz running Ubuntu-32bit 14.04 for the fbc
experiments. We perform our experiments as follows:
Collect Successful Human Patches: We collect in total
more than 20000 revision changes from eight open source
project repositories. To control the noise from the training

Project Revisions Used for Training
apr 12
curl 47
httpd 72
libtiff 11
php 162
python 96
subversion 199
wireshark 70
Total 669

Figure 1. Statistics of Collected Code Database

System Correct Avg. Rank in Search Space
Baseline 5 Around 50%
Prophet 14 11.3%
SPR 11 27.2%
GenProg 1 N/A
AE 2 N/A

Figure 2. Experimental results of Prophet, SPR, random-
ized search, GenProg, and AE.

data, we filtered a significant part of the collected revisions
because either 1) these revisions do not correspond to a
patch for a defect, 2) we cannot compile these collected
revisions in our experiment environment, or 3) the AST
modifications of these collected revision changes are outside
the defined search space of Prophet. After filtering, we use
669 revisions in total for the Prophet training. Figure 1
presents the statistics of the collected code database.
Train Prophet with Collected Database: We train Prophet
with the collected database. Note that our collected code
database and our evaluation benchmark share four common
applications, libtiff, php, python, and wireshark. For each
of the four applications, we train Prophet separately and
exclude the revision changes of the same application from
the training data. The goal is to measure the capability of
Prophet to apply the learned characteristics of successful
human patches across different applications.
Apply Prophet to Defects: We then use the trained Prophet
to generate patches for each defect. For comparison, we
also run SPR and a baseline random search algorithm to
generate patches for each defect as well. We terminate a
patch generation system execution if the system fails to
generate a plausible patch (i.e., which passes the supplied
test suite) within 12 hours.

3.2 Result Summary

Figure 2 presents the summary of the experimental results
of Prophet, in comparison with the random search baseline

3 2015/5/26

algorithm, SPR, GenProg, and AE. Note that we collect
GenProg and AE results from previous work [8, 13].

The first column (System) presents the evaluated system
name. Prophet, SPR, and the baseline random search system
operate on the same search space with different candidate
patch test orders. Prophet uses the learned characteristics
of successful human patches to determine the test order;
SPR uses a set of empirical deterministic rules to determine
the order [8]; the baseline algorithm randomly shuffles all
candidate patches to determine the test order. Note that we
found that the staged condition synthesis technique [8] can
significantly improve the efficiency of the patch generation
systems for generating and validating candidate patches that
manipulate conditions. For a fair comparison, the staged
condition synthesis technique [8] is enabled in both of the
baseline, SPR, and Prophet in our experiments.

The second column (Correct) presents the number of de-
fects for which each system generates a correct patch as the
first generated plausible patch. Our results show that Prophet
generates correct patches for 14 defects, 9 more than the
baseline random search and 3 more than SPR. GenProg and
AE generate correct patches for only 1 and 2 defects respec-
tively. One potential explanation is that the search space of
these systems often does not contain correct patches [8, 13].

The third column (Avg. Rank in Search Space) presents
an percentage number, which corresponds to the rank, nor-
malized to the size of the search space per defect, of the first
correct patch in patch test order of each system. This num-
ber is an average over the 19 defects for which the search
space of these systems contains at least one correct patch.
Prophet ranks correct patches as top 11.3% among all candi-
date patches on average. In contrast, SPR, which uses a set
of empirical deterministic rules, ranks correct patches as top
27.2% on average. This result highlights the capability of
Prophet to prioritize the correct patches based on the learned
knowledge.

We attribute the success of Prophet to the learned charac-
teristics of successful human patches that enable Prophet to
prioritize a correct patch among multiple plausible patches
that pass a supplied test suite. Note that the search space of
Prophet is identical to that of SPR, which contains correct
patches for 19 out of the 69 evaluated defects [8]. Prophet
generates correct patches for over 70% of the defects for
which the Prophet search space contains any correct patch.

3.3 Correct Patch Results

Figure 3 presents the detailed results of each of the 19 de-
fects for which the Prophet search space contains correct
patches. The first column (Defect) is in the form of X-Y-Z,
where X is the name of the application that contains the de-
fect, Y is the defective revision in the repository, and Z is the
revision in which developer repaired the defect. The second,

third, and forth columns present the result of Prophet, SPR,
and the baseline random search system on each defect. “Cor-
rect” indicates that the system generates a correct patch (as
the first generated plausible patch). “Plausible” indicates that
the system generates a plausible but incorrect patch. “Time-
out” indicates that the system does not generate a plausible
patch in 12 hours.

The fifth column (Search Space) presents the number of
candidate patches in the search space for each defect. The
sixth and seventh columns present the rank of the first correct
patch among all candidate patches in the patch test orders
determined by Prophet and SPR respectively. The eighth
column (Time) presents the execution time of Prophet for
generating the first plausible (and often correct) patch.

We acknowledge that, in general, determining whether a
specific patch corrects a specific defect can be difficult (or in
some cases not even well defined). We emphasize that this
is not the case for the patches and defects that we consider
here. The correct behavior for all of the evaluated defects is
clear, as is patch correctness and incorrectness. Furthermore,
our manual code analysis show that each of the generated
correct patches in our experiments is, in general, semanti-
cally equivalent to the corresponding developer patch in the
repaired revision.

4. Related Work
SPR: SPR is the current state-of-the-art search-based patch
generation system [8]. For the same benchmark set as Gen-
Prog and AE, the SPR search space contains correct patches
for 19 defects. With a staged repair algorithm that enables
SPR to efficiently explore patches that manipulate branch
conditions, SPR is able to generate correct patches for 11
out of the 19 defects (10 more than GenProg and 9 more
than AE). Prophet differs from SPR because Prophet learns
from the past successful human patches and uses this learned
information to guide the search space exploration. Our re-
sults show that Prophet outperforms SPR in generating cor-
rect patches for 3 more defects in the same benchmark set.
CodePhage: CodePhage automatically locates correct code
in one application, then transfers that code into another ap-
plication [16]. This technique has been applied to eliminate
otherwise fatal integer overflow, buffer overflow, and divide
by zero errors. Prophet differs from CodePhage, because
CodePhage relies on the existance of a specific donor ap-
plication that contains the exact program logic to fix an er-
ror, while Prophet learns general characteristics of success-
ful patches to guide the search space exploration of many
candidate patches for a defect.
GenProg, RSRepair, AE, and Kali: GenProg [7, 18] uses a
genetic programming algorithm to search a space of patches,
with the goal of enabling the application to pass all consid-
ered test cases. RSRepair [12] changes the GenProg algo-

4 2015/5/26

Defect Prophet SPR Baseline Search Space Correct Rank SPR Correct Rank Time
php-307562-307561 Correct Correct Correct 15733 1285 6253 10m
php-307846-307853 Correct Correct Correct 62494 9825 22247 264m
php-308734-308761 Correct Correct Correct 6459 1397 2717 105m
php-309516-309535 Correct Correct Timeout 64767 9003 21837 145m
php-309579-309580 Correct Correct Correct 10831 362 604 40m
php-309892-309910 Correct Correct Plausible 16582 388 68 114m
php-310991-310999 Correct Correct Timeout 555622 10838 16563 333m
php-311346-311348 Correct Correct Plausible 69738 14 1042 55m
php-308262-308315 Correct Plausible Timeout 17232 641 6492 63m
php-309688-309716 Plausible Plausible Plausible 8018 881 2986 63m
php-310011-310050 Plausible Plausible Plausible 7220 2270 7163 118m
php-309111-309159 Plausible Plausible Plausible 31245 4090 31005 36m
libtiff-ee2ce-b5691 Correct Correct Timeout 477646 10548 184789 21m
libtiff-d13be-ccadf Correct Plausible Plausible 815190 2539 8453 17m
libtiff-5b021-3dfb3 Plausible Plausible Plausible 268497 110159 62775 10m
gmp-13420-13421 Correct Correct Correct 31570 9392 8585 116m
gzip-a1d3d4-f17cbd Correct Correct Plausible 101651 6224 8211 27m
lighttpd-2661-2662 Plausible Plausible Plausible 77555 13323 3674 19m
fbc-5458-5459 Correct Plausible Plausible 1104 16 46 27m

Figure 3. Statistics of the 19 defects for which the Prophet search space contains correct patches

rithm to use random modification instead. AE [17] uses a de-
terministic patch search algorithm and uses program equiv-
alence relations to prune equivalent patches during testing.

Previous work shows that, contrary to the design principle
of GenProg, RSRepair, and AE, the majority of the reported
patches of these three systems are implausible due to errors
in the patch validation infrastructure [13]. Further semantic
analysis on the remaining plausible patches reveals that de-
spite the surface complexity of these patches, an overwhelm-
ing majority of these patches are equivalent to functionality
elimination [13]. The Kali patch generation system, which
only eliminates functionality, can do as well [13].
PAR: PAR [5] is another prominent automatic patch gener-
ation system. PAR is based on a set of predefined human-
provided patch templates. We are unable to directly com-
pare PAR with Prophet because, despite repeated requests to
the authors of the PAR paper over the course of 11 months,
the authors never provided us with the patches that PAR
was reported to have generated [5]. Monperrus found that
PAR fixes the majority of its benchmark defects with only
two templates (“Null Pointer Checker” and “Condition Ex-
pression Adder/Remover/Replacer”) [10]. In general, PAR
avoids the search space explosion problem because its hu-
man supplied templates restrict its search space. However,
the PAR search space (with the eight templates in the PAR
paper [5]) is in fact a subset of the SPR search space [8].
JSNICE: JSNICE [14] is a JavaScript beautification tool
that can automatically predicts variable names and gener-

ates comments to annotate variable types for a JavaScript
program. JSNICE first learns, from a “big code” database, a
probabilisitic model that captures the common relationships
between the syntactic elements (e.g., the variable names) and
the semantic properties (e.g., variable types and operations)
of JavaScript programs. Then for a new JavaScript program,
it produces a prediction that maximize the probability in the
learned model.

Unlike JSNICE, the goal of Prophet is to find a correct
patch for a given defect of a program, which is a deep
semantic-level task to modify the program logic. Prophet
therefore works with a probability model 1) that abstracts
away potentially application-specific syntactic-level features
and 2) that focuses on powerful application-independent
semantic-level features.
ClearView: ClearView is a generate-and-validate system
that observes normal executions to learn invariants that char-
acterize safe behavior [11]. It deploys monitors that detect
crashes, illegal control transfers and out of bounds write de-
fects. In response, it selects a nearby invariant that the input
that triggered the defect violates, and generates patches that
take a repair action to enforce the invariant.
Failure-Oblivous Computing: Failure-oblivious comput-
ing [15] checks for out of bounds reads and writes. It dis-
cards out of bounds writes and manufactures values for out
of bounds reads. This eliminates data corruption from out
of bounds writes, eliminates crashes from out of bounds ac-

5 2015/5/26

cesses, and enables the program to continue execution along
its normal execution path.
Bolt: Bolt [6] attaches to a running application, determines
if the application is in an infinite loop, and, if so, exits the
loop. A user can also use Bolt to exit a long-running loop. In
both cases the goal is to enable the application to continue
useful execution.
RCV: RCV [9] enables applications to survive null deref-
erence and divide by zero errors. It discards writes via null
references, returns zero for reads via null references, and re-
turns zero as the result of divides by zero. Execution contin-
ues along the normal execution path.
DieHard: DieHard [1] provides probabilistic memory
safety in the presence of memory errors. In stand-alone
mode, DieHard replaces the default memory manager with
a memory manager that places objects randomly across a
heap to reduce the possibility of memory overwrites due to
buffer overflows. In replicated mode, DieHard obtains the
final output of the application based on the votes of multiple
replications.
APPEND: APPEND [4] proposes to eliminate null pointer
exceptions in Java by applying recovery techniques such as
replacing the null pointer with a pointer to an initialized
instance of the appropriate class. The presented examples
illustrate how this technique can effectively eliminate null
pointer exceptions and enhance program survival.
Data Structure Repair: Data structure repair enables appli-
cations to recover from data structure corruption errors [3].
Data structure repair enforces a data structure consistency
specification. This specification can be provided by a hu-
man developer or automatically inferred from correct pro-
gram executions [2].

5. Conclusion
Generate-and-validate patch generation systems rely solely
on the user supplied test suite to validate a candidate patch
for a defect. This inevitably causes these systems to gener-
ate many plausible but incorrect patches. Prophet is a novel
patch generation system that exploits additional information
other than the test suite, i.e., the characteristics of past suc-
cessful human patches, which Prophet automatically learns
from a large code revision change database. Our experimen-
tal results show that, in comparison with previous systems,
the learned information significantly improves the Prophet
ability to generate correct patches. These results also high-
light how learning characteristics of successful patches from
one application can improve automatic patch generation for
potentially other applications.

References
[1] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory

safety for unsafe languages. In Proceedings of the 2006 ACM

SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’06’, pages 158–168. ACM, 2006.

[2] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H.
Perkins, and M. C. Rinard. Inference and enforcement of data
structure consistency specifications. In Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20,
2006, pages 233–244, 2006.

[3] B. Demsky and M. C. Rinard. Goal-directed reasoning for
specification-based data structure repair. IEEE Trans. Soft-
ware Eng., 32(12):931–951, 2006.

[4] K. Dobolyi and W. Weimer. Changing java’s semantics for
handling null pointer exceptions. In 19th International Sym-
posium on Software Reliability Engineering (ISSRE 2008),
11-14 November 2008, Seattle/Redmond, WA, USA, pages 47–
56, 2008.

[5] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch gener-
ation learned from human-written patches. In Proceedings of
the 2013 International Conference on Software Engineering,
ICSE ’13’, pages 802–811. IEEE Press, 2013.

[6] M. Kling, S. Misailovic, M. Carbin, and M. Rinard. Bolt:
on-demand infinite loop escape in unmodified binaries. In
Proceedings of the ACM international conference on Object
oriented programming systems languages and applications,
OOPSLA ’12’, pages 431–450. ACM, 2012.

[7] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer.
A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In Proceedings of the 2012 In-
ternational Conference on Software Engineering, ICSE 2012,
pages 3–13. IEEE Press, 2012.

[8] F. Long and M. Rinard. Staged Program Repair in SPR.
Technical Report MIT-CSAIL-TR-2015-008, 2015.

[9] F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic
runtime error repair and containment via recovery shepherd-
ing. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’14’, pages 227–238, New York, NY, USA, 2014. ACM.

[10] M. Monperrus. A critical review of "automatic patch gen-
eration learned from human-written patches": Essay on the
problem statement and the evaluation of automatic software
repair. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 234–242, New
York, NY, USA, 2014. ACM.

[11] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sulli-
van, W.-F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Au-
tomatically patching errors in deployed software. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating sys-
tems principles, SOSP ’09, pages 87–102. ACM, 2009.

[12] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In Proceedings
of the 36th International Conference on Software Engineer-
ing, ICSE 2014, pages 254–265, New York, NY, USA, 2014.
ACM.

6 2015/5/26

[13] Z. Qi, F. Long, S. Achour, and M. Rinard. An anlysis of patch
plausibility and correctness for generate-and-validate patch
generation systems. In Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis,
ISSTA 2015, 2015.

[14] V. Raychev, M. Vechev, and A. Krause. Predicting program
properties from "big code". In Proceedings of the 42Nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15’, pages 111–124, New
York, NY, USA, 2015. ACM.

[15] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and
W. S. Beebee. Enhancing server availability and security
through failure-oblivious computing. In OSDI, pages 303–
316, 2004.

[16] S. Sidiroglou, E. Lahtinen, F. Long, and M. Rinard. Automatic
error elimination by multi-application code transfer. In Pro-
ceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. ACM, 2015.

[17] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program
equivalence for adaptive program repair: Models and first
results. In ASE’13, pages 356–366, 2013.

[18] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Au-
tomatically finding patches using genetic programming. In
Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09’, pages 364–374. IEEE Computer So-
ciety, 2009.

7 2015/5/26

