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Comprehensive variation discovery in single human genomes

Neil I. Weisenfeld, Shuangye Yin, Ted Sharpe, Bayo Lau, Ryan Hegarty, Laurie Holmes, 
Brian Sogoloff, Diana Tabbaa, Louise Williams, Carsten Russ, Chad Nusbaum, Eric S. 
Lander, Iain MacCallum, and David B. Jaffe*

The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA

Abstract

Complete knowledge of the genetic variation in individual human genomes is a crucial foundation 

for understanding the etiology of disease. Genetic variation is typically characterized by 

sequencing individual genomes and comparing reads to a reference. Existing methods do an 

excellent job of detecting variants in approximately 90% of the human genome, however calling 

variants in the remaining 10% of the genome (largely low-complexity sequence and segmental 

duplications) is challenging. To improve variant calling, we developed a new algorithm, 

DISCOVAR, and examined its performance on improved, low-cost sequence data. Using a newly 

created reference set of variants from finished sequence of 103 randomly chosen Fosmids, we find 

that some standard variant call sets miss up to 25% of variants. We show that the combination of 

new methods and improved data increases sensitivity several-fold, with the greatest impact in 

challenging regions of the human genome.

Introduction

Accurate determination of an individual’s genome is essential for understanding both human 

hereditary disease and cancer. Advances in genome sequencing have made it possible, at 

*Corresponding author: jaffe@broadinstitute.org. 

AUTHOR CONTRIBUTIONS
D.B.J., I.M and C.R. designed and managed the project. S.Y., N.I.W., T.S., B.L., I.M. and D.B.J. designed algorithms and analyzed 
data. R.H., L.H., B.S., D.T. and L.W. designed and executed laboratory processes.
D.B.J., C.N. and E.S.L. shaped the results and developed the manuscript, to which all authors contributed. All authors read and 
approved the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

URLs
DISCOVAR, http://broad.io/discovar
Segmental Duplication DB,
http://humanparalogy.gs.washington.edu/build37/build37.htm

ACCESSION CODES
NCBI SRA:
SRX297987 (NA12878; primary dataset for this work)
SRX264790, SRX264793 (NA12878; additional PCR-free data)
SRX264763, SRX264794 (NA12892; mother of NA12878)
SRX264762, SRX264792 (NA12891; father of NA12878)
SRX272091, SRX272089 (Fosmid pool data; NA12878; Illumina platform)
SRX272084, SRX272088, SRX272083, SRX272087, SRX276681 (Fosmid pool data; NA12878; PacBio SMRT platform)

GenBank:
PRJNA196715 (BioProject accession for 103 Fosmid reference sequences)

NIH Public Access
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2015 June 01.

Published in final edited form as:
Nat Genet. 2014 December ; 46(12): 1350–1355. doi:10.1038/ng.3121.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://broad.io/discovar
http://humanparalogy.gs.washington.edu/build37/build37.htm


relatively low cost, to generate whole genome shotgun (WGS) sequence reads covering 

nearly the entire human genome. A critical challenge is then to use such WGS reads to fully 

reconstruct an individual’s genome and to identify all of its variation relative to a reference. 

While there has been substantial progress toward this goal, current methods for calling 

variants remain imperfect1–10.

The development of better variant calling methodologies is limited by the difficulty of 

assessing the accuracy and completeness of a new method. In principle, one could assess 

variants called by a given method by comparing to a list of ‘true’ variants, derived from 

perfect knowledge of the sequence of the DNA source and the reference genome. In 

practice, it is impossible to gain perfect knowledge of a target genome, so common 

procedure is to compare to an established reference set of variant calls (e.g. HapMap311). 

Based on such comparisons, current variant calling methods are estimated to be 

approximately 99% complete3.

Because systematic biases against certain genomic regions or variant types cause variants to 

be missing from both the reference dataset and the set being evaluated, such comparisons 

may overestimate the completeness of variant call sets. While ‘ordinary’ variants are readily 

detected, some variants are particularly challenging to identify – for example, those 

occurring in low-complexity sequence, segmental duplications and extremely high %GC 

regions. Importantly, these challenging regions have long been known to contribute to 

mutations underlying human disease12,13.

We therefore set out to define a ‘truth set’ containing all variants present in a random 

sample of the genome, as a foundation for studying the completeness of variant calls. We 

focused on the well-studied cell line GM12878 (DNA sample identifier NA12878), 

generated finished sequence for 103 randomly selected Fosmid clones, mapped these back to 

the human reference sequence, and identified all variants in the ~4 Mb spanned by the 

Fosmids. When we compared the Illumina ‘Platinum’ variant call set (based on 100-base 

reads) to the Fosmid reference set, we found that it omitted ~25% of the variants; these 

missing entries were highly enriched in challenging variant types.

We then set out to generate improved variant calls by generating better WGS data, without 

increasing per-base cost, and then analyzing these data with both existing and new methods. 

Specifically, we obtained WGS data providing approximately 50-fold coverage of NA12878 

by using a PCR-free protocol to reduce coverage bias14 and generated 250-base paired-end 

reads. These data come at comparable cost to data providing 50-fold coverage using PCR-

amplified, 100-base paired-end reads. With these sequence data, we produced variant call 

sets using the state-of-the-art program, GATK, and a new method, DISCOVAR, which we 

developed. The DISCOVAR algorithm (Online Methods; Supplemental Note) was 

specifically designed to address challenging variant types; it involves initial alignment of 

reads to genomic regions followed by careful local assembly.

We show that both GATK and DISCOVAR provide excellent coverage of ordinary variants, 

but that DISCOVAR provides substantially better coverage of ‘challenging’ variants.
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RESULTS

Assessing the completeness of variant calling methods

Assessing the accuracy and precision of variant calling methods is hampered by the lack of a 

true reference variant set and by potential biases in the reference sets used. The traditional 

approach is to generate sequence reads, align them to a reference sequence, apply the 

method in question to create a candidate set of variants, and then compare these variants to a 

reference set. Since reference and candidate sets are typically produced by similar methods, 

systematic biases could lead to an overestimate of the completeness of these datasets. 

Indeed, we expect variants from certain regions to be underrepresented – including regions 

where unique alignment of reads is difficult or impossible such as tandem repeats, segmental 

duplications, complex rearrangements and sequences missing from the reference genome; 

regions where sequencing errors occur at high frequency, such as in simple sequence 

repeats; and regions where sequencing bias occurs, such as sequences at the extremes of 

GC-content.

To facilitate our investigation of this phenomenon, we divide variants into two categories: 

challenging and ordinary. Challenging variants are those (i) in low-complexity sequence 

(4.3% of the genome, as defined by symmetric DUST15); (ii) in segmental duplications 

(5.5% of the genome, defined16 based on sequences of length > 1 kb that agree with another 

sequence at > 90% identity); (iii) in extremely high GC regions (0.1% of the genome, 

defined17 by bases occurring in 200-base windows whose middle 100 bases have %GC ≥ 

85); and (iv) consisting of long insertions of > 100 bases. Challenging variants are 

essentially those that occur in specific regions covering ~10% of the genome (apart from the 

fourth category, which consists of rare events that can occur anywhere). Ordinary variants 

will refer to all other variants (although some may be difficult to call despite not meeting the 

above criteria).

Close inspection suggests that challenging variants are significantly underrepresented in at 

least some current variant call sets. Specifically, we examined Illumina’s Platinum variant 

call set based on 100-base reads from a PCR-free library (which decreases coverage biases 

arising from PCR amplification), providing ~52x coverage of the genome (measured here as 

all purity-filtered bases divided by the genome size). This dataset was analyzed by Illumina 

using an early version of the program GATK3. SNPs in this ‘Platinum-100’ occur at a 2.2-

fold lower rate in segmental duplications and a 1.5-fold lower rate in high GC regions 

compared to the genome as a whole. These deficits seem likely to reflect lower sensitivity 

for variant calling in these regions, rather than a true biological deficit of polymorphism.

To address the need for an accurate reference, we utilized a Fosmid library from NA12878 

and developed finished quality reference sequences for 103 randomly-selected regions 

comprising 0.1% of the genome. These were generated by sequencing with both Illumina 

and Pacific Biosciences technologies, and assembling these data using independent methods. 

To assess how well this worked, we validated portions of the reference sequences using 

Sanger sequencing. Overall, the data are consistent with an error rate in the Fosmid 

reference sequences of less than 10−5 per base, similar to a finished quality reference. 

Details are provided in the Online Methods section.
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Characterization of variant calls in the Fosmid reference

We found 4486 variants in the 3.8 Mb of Fosmid reference sequence, corresponding to a rate 

of 1.2 variants per kb (Table 1). Substitutions comprised the vast majority of variants: 77% 

overall, but 93% outside of low-complexity sequence and 31% in low-complexity sequence. 

Nearly all of the remaining variants were indels, with a nearly equal number of insertions 

and deletions (248, 240) as expected. Roughly half of the indels had length 1, with the 

number falling progressively with size; only 13 had size > 100 bp. There were only two 

inversion events (25 bp and 4 bp, respectively), which we manually identified.

The variants were not uniformly distributed. They showed striking clustering with 24.9% of 

the variants in low-complexity sequence that accounts for only 4.3% of the Fosmid 

reference bases (and the genome). This 5.7-fold enrichment is strongest in bases near A/T 

homopolymers, which comprise ~10% of the low-complexity sequences in the Fosmids but 

harbor ~30% of the variants in low-complexity sequence.

Variants tended to occur near other variants. Defining a cluster to be a set of at least three 

variants with adjacent pairs separated by ≤50 bp, we found 115 clusters encompassing 510 

variants in total (11.4% of the Fosmid variants). Of clustered variants, 52.0% were in low-

complexity sequence (2.1-fold enrichment = 52.0/24.9). The largest two clusters had 49 and 

21 variants, respectively, comprised of complex arrangements of indels and substitutions in 

low-complexity sequence (whose exact representation would change if alignment 

parameters were perturbed). There are five clusters having 8 or more variants, all in low-

complexity sequence. Long low-complexity regions might mutate rapidly, yielding complex 

relationships between any two given samples. For this reason, clusters of variants in low 

complexity sequence are unsurprising. The low sequence complexity of these regions would 

correlate with in vitro polymerase replication errors, making these regions very difficult to 

call correctly.

Among substitutions overall, the ratio of transitions to transversions was 2.1:1, as 

expected3,18. However, the transition/transversion ratio was much lower (54:60 ≈ 1:1) for 

substitution variants within 10 bases of an indel variant. The likely explanation is that 

sequences containing an indel and substitution in close proximity can often be aligned to a 

reference sequence in multiple plausible ways, and thus depend on the choice of alignment 

algorithm (Supplementary Fig. 1).

Evaluation of Platinum-100 variants calls

With the Fosmid reference variant calls in hand, we set out to evaluate the completeness of 

the Platinum-100 calls (Tables 1,2). We took care to allow for the possibility of complex 

variants represented in different ways (Supplementary Tables 1a, b).

Overall, the Platinum-100 variant calls missed 25% of the Fosmid variant calls. The rate was 

much lower (9%) for ordinary variant calls, but much higher (59%) for challenging variant 

calls. The missing rates were 54% in low-complexity sequence, 78% in segmental 

duplications, 100% (5/5) in extremely high GC-content and 100% (9 of 9) for long insertion 

variants. Poor sensitivity in challenging regions combined with higher variation rate in these 

regions leads to the high false negative rate in the Platinum-100 set. Overall, three-quarters 
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of the missing variants reside in either low-complexity sequence or segmental duplications 

(Table 1).

Assessing DISCOVAR variant calls

To assess the variant calls from DISCOVAR, we generated test data from the human cell 

line GM12878, which has been used as a testbed for human assembly and variant calling 

(Supplementary Note, Section 2). We constructed a single PCR-free library from 0.5 μg of 

genomic DNA and sequenced a single two-lane flowcell on the Illumina HiSeq 2500 

instrument to obtain 250-base paired-end reads providing ~60x coverage of the genome 

(measured here as all read bases divided by the genome size, or ~50x coverage if only 

purity-filtered bases are included). DISCOVAR is designed to work with data of this type. 

Similar data have also been generated for NA12878 and her parents as part of the 1000 

Genomes Project (Supplementary Note, Section 1), and we also use these data in our 

analyses.

We set out to compare variant call sets (Supplementary Note, Section 7; Supplementary 

Data Set 1): (1) the Platinum-100 variant call set described above, based on 100-base paired-

end reads from a PCR-free library and the version of GATK3,7 available at the time it was 

created; (2) a GATK-250 variant call set that we generated using the 250-base reads 

described above and the current version of GATK; (3) a DISCOVAR-250 variant call set 

that we generated by using our DISCOVAR algorithm. The GATK program requires manual 

selection of various parameters, for which we followed the advice of GATK’s authors. The 

DISCOVAR program runs ‘out of the box’, without requiring the selection of parameters. 

Below, we also consider results from the Cortex5 algorithm.

We then sought to understand the properties of the GATK-250 and DISCOVAR-250 call 

sets, which benefit from both longer read lengths and algorithmic improvements.

Sensitivity of variant calling

We studied the sensitivity of the variant call sets by comparison with the Fosmid reference 

variants (Tables 1–3). We began by examining ordinary variants. Whereas the Platinum-100 

set missed 9% of ordinary variants, GATK-250 missed only 3% and DISCOVAR-250 

missed only 1.2%. (Notably, most of the ordinary variants missed by the GATK and 

DISCOVAR programs are actually identified in the course of the analysis but removed by 

post-processing steps (Supplementary Note, Section 7). In principle, they could be recovered 

by using looser settings for their post-processing filters, although this would entail a loss of 

specificity (Supplementary Table 2)). For challenging variants, the differences were striking. 

Whereas Platinum-100 missed 59% of the challenging variants, GATK-250 missed 33% and 

DISCOVAR-250 missed 17%. Considering both ordinary and challenging variants (which 

occur in a ratio of ~2:1), Platinum-100 missed 25%, GATK-250 missed 12% and 

DISCOVAR-250 missed 6%.

We also tested the completeness of each of the variant call sets relative to the HapMap3 

variant collections11, Supplementary Table 3. The HapMap3 set was obtained by mapping 

random reads to the genome, rather than by comparison to finished sequence, and it consists 
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primarily of ordinary SNPs; it is a large collection with ~1.5M variants for NA12878. We 

considered all bi-allelic SNPs reported and genotyped as present in NA12878 in HapMap3 

release 27. We then classified each SNP as present or missing in a given variant call set, 

regardless of whether it was called homozygous or heterozygous. The proportion of missing 

variants for Platinum-100 was 2.5%, for GATK-250 was 1.8% and for DISCOVAR-250 was 

1.2%. These proportions are likely to be slight overestimates: we estimate that roughly 0.6% 

of HapMap3 are false positives, because they were absent from all three variant call sets as 

well as from other available sets (including the trio-based call set in the GATK resource 

bundle 2.3) and, on close inspection, there appeared to be no evidence supporting them. The 

adjusted proportions (1.9%, 1.2% and 0.8%) are consistent with the HapMap3 set being 

strongly biased toward variants that are easy to identify by mapping reads to the genome.

Specificity of variant calling

We studied specificity by estimating false positive rates separately for homozygous and 

heterozygous variants calls (Table 2). We counted a homozygous call as correct if only the 

given allele is present, and a heterozygous call as correct if both alleles are present. For 

homozygous calls, we examined variant calls in the regions covered by the 103 finished 

Fosmids. Any homozygous call that was not present in the Fosmid reference call set was 

deemed to be a false positive. The measured false positive rates for Platinum-100, 

GATK-250 and DISCOVAR-250 were 0.85%, 0.74% and 1.94%, with standard error 

estimates 0.26%, 0.72% and 0.40%, respectively. Most false homozygous calls occur in low 

complexity sequence (Supplementary Table 4). For heterozygous calls, we examined 

variants on chromosome X in the male sample NA12891 (father of NA12878). Any 

heterozygous call on chromosome X (outside the pseudoautosomal regions) must also be a 

false positive. The measured false positive rates for Platinum-100, GATK-250 and 

DISCOVAR-250 were 0.83%, 1.82% and 1.44%, with standard error estimates 0.07%, 

0.45% and 0.23%, respectively. Weighting by the number of heterozygous and homozygous 

calls in each call set, the overall false positives rates for Platinum-100, GATK-250 and 

DISCOVAR-250 are 0.84%, 1.39% and 1.63%, with standard error estimates 0.11%, 0.39% 

and 0.21%, respectively. The difference between GATK-250 and DISCOVAR-250 is not 

statistically significant (p=0.71).

As a further check, we examined the ts/tv ratio of ‘novel’ SNPs, defined as those not present 

in dbSNP v129. The typical value reported for novel SNPs ~2.13,18. When we omit SNPs in 

the immediate vicinity of an indel (for which, as noted above, the ts/tv ratio is low), the ratio 

was 1.84 and 1.81 for novel SNPs in GATK-250 and DISCOVAR-250, respectively. The 

value is 1.62 and 1.63 for novel SNPs present in GATK-250 but not DISCOVAR-250, and 

novel SNPs present in DISCOVAR-250 but not GATK-250, respectively.

Results for Cortex algorithm

Finally, we also tested the Cortex5 variant calling algorithm, which has been used as part of 

the 1000 Genomes Project1. Unlike the other programs tested here, Cortex uses a purely de 

novo approach. This approach has the potential advantage of being unbiased by the 

reference sequence, but is fundamentally challenging to implement because the lack of a 

reference sequence makes it hard to sort out repeat sequences. We found that Cortex had 

Weisenfeld et al. Page 6

Nat Genet. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



low sensitivity, with a false-negative rate of 39.3%, and false-positive rates of 3.46% for 

homozygous variants and 0.33% for heterozygous variants. We note that the developers of 

Cortex plan to incorporate read-pairing information in a new version, which could 

substantially improve its performance.

Representation of variation in disease genes

We wondered if improvements to assembly and variant calling might enable better detection 

of disease-causing mutations. While this question cannot be definitively answered using 

only DNA from healthy individuals, as we have here, we reasoned that increased sensitivity 

at disease-associated loci could be indicative of power to find disease-causing mutations. To 

that end we examined two classes of examples. The first is in low-complexity sequence and 

the second is in segmental duplications.

The first class consists of variable-length trinucleotide repeats associated with disease, and 

occurring roughly equally often in coding and noncoding sequence. We examined the 14 

disease examples shown in ref. 19 that did not involve 100% GC triples (generally 

recalcitrant to Illumina sequencing), Supplementary Table 5. Briefly, by closely examining 

the data we determined the true genotype of NA12878 at each locus. Then we checked the 

Platinum-100, GATK-250 and DISCOVAR-250 call sets to determine if they correctly 

represented this genotype. Platinum-100 had errors in 11 cases, whereas GATK-250 had 

errors in 3 cases, and DISCOVAR-250 had no errors.

The second class consists of large genic tandem duplications, illustrated using the 10 kb × 3 

copy duplicated region in nebulin (NEB). This gene codes for a very large actin-binding 

protein, ‘a major player in muscle health and disease’20. Supplementary Fig. 2 exhibits the 

DISCOVAR assembly graph for the region containing the duplication proper, roughly 

chr2:152,435,700–152,465,200 (for assembly including flanking regions for context). The 

graph is exhibited as a large loop that is traversed in total six times (probably three times 

each by two chromosomes, although other allelic copy number combinations such as 2+4 

cannot be definitively excluded using the data we have).

First we examined variant calls for the region. The number of calls reported for 

Platinum-100, GATK-250 and DISCOVAR-250 are 0, 13 and 55, respectively, suggesting a 

marked increase in sensitivity. This increased sensitivity might be explained in the following 

way. Differences between copies of a duplicated region will be captured by edges in the 

DISCOVAR assembly graph, and these edges may also contain differences with the 

reference sequence for the given copy. Thus under such conditions the edge may align to a 

unique locus on the reference sequence, and further define a variant at that locus. The 

increased sensitivity at this and other segmental duplication loci has nothing to do with 

segmental duplications per se, but is rather a general consequence of how the assembly 

graph is built and how variant calls are inferred from it.

Next, direct examination of the DISCOVAR assembly graph suggested that many more 

variants are readily inferrable from the graph but not called as variants by DISCOVAR. For 

example, any edge that topologically must be part of all loop iterations defines homozygous 

variants on all three repeat copies. For example edge 6 in Supplementary Fig. 2 has 6 
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differences with the third repeat copy, indicating 6 homozgyous variants there – which are 

however not in the variant call set, thus representing a limitation of the DISCOVAR variant 

calling algorithm.

In other cases there are variants that cannot be localized to a repeat copy. For example edge 

4 implies a substitution with each of the three repeat copies, but we do not know which 

copy. In fact all the assembly tells us (via two edges 4, 5 in a ‘bubble’) is that both the 

reference and substituted bases are present in the sample genome. It is plausible that such 

knowledge (without complete localization) would be enough to infer phenotype, thus 

medically useful. This particular variant is not called by DISCOVAR, and indeed to do so, 

adaptation of the VCF format would be needed to allow for cases where a variant is known 

to occur in one or more of several locations.

DISCUSSION

As decreasing sequencing costs make it possible to undertake large projects to study human 

disease, there is an increasing need to identify variation among individuals in an accurate 

and complete manner. It is generally recognized that important classes of variants and parts 

of the genome are underrepresented in current variant call sets, and that improvements are 

needed.

Because rigorous assessment of the accuracy and completeness of variant calls requires 

comparison to finished sequence, we created a complete reference set covering ~3.8 Mb of 

DNA from the widely studied cell line GM12878. Although the set covers only a fraction of 

the genome, the regions were selected in a random manner and provide sufficient data to 

characterize problematic areas of the genome and to assess the performance of variant 

calling methods.

We found that most challenging variants lie in the ~10% of the genome consisting of low-

complexity sequence and segmental duplications. Low-complexity sequence behaves 

differently than the rest of the genome: it is about six-fold enriched for variants overall, with 

an additional three-fold enrichment near A/T homopolymers. Variants in low-complexity 

sequence also tend to be clustered, likely arising from complex evolutionary histories. As a 

result of the enrichment for variants, the 10% of the genome consisting of low-complexity 

sequence and segmental duplications harbor ~30% of the variants in the genome. These 

challenging regions of the human genome have long been known to be associated with 

mutations underlying human disease12,13.

Using the reference set, we assessed the performance of the Platinum-100 variant call set. 

This set was created based on 100-base Illumina reads from a PCR-free library of NA12878, 

and analyzed, by Illumina, with an early version of the GATK program. We found that it 

missed only 9% of ordinary (non-challenging) variants but 59% of challenging variants, 

resulting in 25% of variants being missed overall.

We next turned to improved data and cutting-edge algorithms. We generated a new 

sequence dataset consisting of 250-base Illumina reads from a PCR-free library of 

NA12878, at ~60x coverage (~50x PF), using the recently released HiSeq 2500 instrument; 
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the per-base cost of these longer reads is about the same as for the shorter reads typically 

generated now from PCR-amplified libraries. Cost per Q30 base is in the range of 10–35% 

higher. (Supplementary Note, Section 8.)

We analyzed (i) the current version of GATK, a widely-used program that is a workhorse 

for human genome analysis and (ii) DISCOVAR, a new program reported here that was 

designed with an eye toward calling challenging variants. In the case of GATK, we 

consulted with the program’s authors to choose multiple parameters that must be set. In the 

case of DISCOVAR, the program runs ‘out of the box’ with no parameters to be set.

The DISCOVAR-250 and GATK-250 variant calls had much higher sensitivity than 

Platinum-100 set. For ordinary variants, the false negative rates were fairly similar (1.2% for 

DISCOVAR and 3% for GATK vs 9% for Platinum-100). As expected, the sensitivity for 

challenging variants was much lower. Notably, DISCOVAR had a much lower false 

negative rate for challenging variants (17% for DISCOVAR vs. 33% for GATK). Across all 

types of variants, DISCOVAR provides the lowest false negative rate (6% for DISCOVAR 

vs. 12% for GATK and 25% for Platinum-100).

The greater sensitivity of DISCOVAR is associated with a modest decrease in specificity, 

adding about 0.8% false positives, as compared to Platinum-100. This suggests that an ideal 

program would provide a transparent and effective method for trading off sensitivity for 

specificity, by binning calls and providing an accurate false positive prediction for each bin. 

This appears to be a hard problem, and has not been accomplished by any of the tested 

programs.

DISCOVAR was designed to work well for the data type that we generated (~60x total 

coverage by 250-base paired reads from a PCR-free library, from fragments of size ~450 bp; 

see Supplementary Fig. 3). Because of the way it closes read pairs, DISCOVAR would not 

work with 100-base reads from fragments of the same size, and reducing coverage by a 

factor of two or more would also be outside the specification of the current version. 

Furthermore, the error correction relies, to some degree, on the PCR-free nature of the data. 

The use of high quality-score discrepancies to differentiate reads from different loci 

precludes the inclusion of data that may contain errors generated during PCR-based library 

preparation.

DISCOVAR provides a more complete inventory of an individual’s genetic variants than 

had been previously possible. As such, it adds to the tools that can be used to probe the 

genetic basis of disease. It may be particularly useful in cases where targeted or exome 

sequencing fails to find causal mutations. As data costs drop and the ability to interpret 

variants improves, we anticipate even wider applicability.

DISCOVAR is freely available for academic use. Although not described here, the program 

can also be used to call variants on non-human genomes and to assemble small genomes de 

novo.
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METHODS

Developing a reference variant call set

To study the completeness of variant calling methods, we sought to generate a complete 

reference set of variant calls based on finished genomic sequence. We utilized a Fosmid 

library previously developed from the GM12878 lymphoblastoid cell line, plated an aliquot, 

randomly selected 106 clones, divided the clones into two pools, and sequenced the pools 

using Illumina and Pacific Biosciences technologies (see Supplementary Note, Section 3). 

We then assembled the data to obtain finished quality sequences for 103 of the Fosmids, 

spanning 3.8 Mb of genomic DNA.

The Fosmids comprise ~0.1% of the human genome, which is simpler to assemble than an 

entire genome. Nonetheless, we took care to assemble the sequence data with two 

independent methods. The first method employed the DISCOVAR algorithm (described 

below). It yielded complete sequence of 103 Fosmids, which we refer to here as the Fosmid 

reference sequences. (We omitted three Fosmids: one could not be assembled because it 

consisted of highly repetitive heterochromatin sequence, one could not be assembled due to 

insufficient coverage, and one consisted of sequence from Epstein-Barr virus, which is used 

to create lymphoblastoid cell lines.) We aligned the Fosmid reference sequences to the 

human genome reference sequence (version hg19), excluding three Fosmids whose 

placements were ambiguous (Supplementary Note, Section 7e). We then parsed the 

alignment into variant calls, defining a Fosmid reference call set based on 100 Fosmids that 

provides a reasonably unbiased representation of the genome.

We reconciled these variant calls with those obtained from a second independent approach. 

The second method used the HGAP program22 to assemble the Pacific Biosciences data, 

followed by iCorn23 to correct the assemblies using the Illumina data. We obtained complete 

assemblies for 57 Fosmids (with the remainder having insufficient coverage in the Pacific 

Biosciences data, owing to variation in molarity within the pools). For 32 of the Fosmids, 

there was perfect agreement with the Fosmid reference sequences obtained from the first 

method. For the remaining 25 Fosmids, we manually analyzed every difference 

(Supplementary Tables 7, 8). We found 9 errors in the Fosmid reference sequences, 29 

errors in the HGAP+iCorn assemblies, and 2 cases where both were wrong. From these data, 

we infer an error rate of ~1/200,000 bases in our Fosmid reference sequences. We corrected 

the detected errors, which had little effect on our analysis (Supplementary Note, Section 3).

We also experimentally assessed the accuracy of the reference sequences for 26 of the 

Fosmids (Supplementary Note, Section 4). We identified 162 variants that were not present 

in the Platinum-100 variant set, reasoning that such variants could represent errors in the 

Fosmid reference sequences. These were grouped into 134 loci. We selected 95 cases that 

best suited primer design, amplified the sequences from the Fosmid DNA and Sanger 

sequenced the amplicon. In 93 cases, we obtained a clear PCR product and reads that 

aligned to the targeted Fosmid. The Fosmid reference sequence was confirmed in 87 of these 

93 cases. In 5 cases, we could not adequately resolve the discrepancy. In the remaining case, 

the Sanger reads revealed a 20-base insertion (5 copies of GAAA) that had been missed in 

the Fosmid reference sequence.
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Overall, the data are consistent with an error rate in the Fosmid reference sequences of less 

than 10−5 per base, consistent with ‘finished’ quality24. Our analyses do not account for 

mutations in the Fosmids relative to the source DNA, but past analyses for BACs suggest a 

comparable or lower error rate25, and the rate for the Fosmid pool protocol used here could 

be lower because the Fosmids were not passaged or subjected to single-cell cloning.

The Fosmid reference sequences are available in GenBank (Supplementary Table 9; 

Accession Codes).

DISCOVAR algorithm: sequence assembly

Given the limitations of current variant calling approaches, we set out to design a new 

algorithm, optimized for an improved data type, that might achieve improved results, 

especially for challenging variants. This new algorithm, DISCOVAR, works by (i) assigning 

sequence reads to genomic regions (taking all read pairs for which at least one read had been 

mapped to the region, and without any filtering) (ii) assembling the genome on a region-by-

region basis, and (iii) calling variants within each region. Assembly of regions (rather than 

the whole genome at once) is easier, however may also result in artifacts because of 

mapping errors, and cannot assemble long sequences that are novel to the sample.

DISCOVAR differs from most assembly approaches in the following critical way: at every 

stage it attempts to preserve bases in reads that appear to be present in the sample DNA, 

including bases distinguishing homologous chromosomes and repeat copies. For early 

approaches26,27 based on Sanger sequencing this would not have made sense because 

coverage levels were too low. Subsequent work28 axiomatized removal of biological 

differences during error correction as deliberate ‘data corruption’, and in fact the removal of 

differences in error correction or graph simplification continued in other assemblers9,29. In 

our prior work30, differences were not eliminated in the assembly graph per se, however in 

practice they were often missing from the final assembly, in part because of assembly 

linearization during the process of scaffolding. In our current approach, differences are 

preserved from beginning to end.

The assembly process has two main components: error correction and graph simplification 

(for details, see Supplementary Note, Section 5).

(i) Error correction—DISCOVAR starts by correcting errors in the reads, and as part of 

this process, closing read pairs (Supplementary Fig. 4). The goal is to remove most 

laboratory errors in the sequence data, while preserving biological differences, including 

polymorphisms. Because the laboratory process introduces indel errors at a very low rate, 

the error correction algorithm targets only substitution errors. (Systematic indel errors, for 

example in long homopolymers, would be more likely to be uncorrected, and may result in 

ambiguity ‘bubbles’ in the assembly graph.) To correct a read, DISCOVAR tries to find the 

‘true friends’ of that read – i.e. reads from the same locus on the same chromosome (as 

described below). In particular, where possible because of a proximate polymorphism, 

DISCOVAR will exclude reads arising from the homologous chromosome from the friend 

set. This behavior differs from other error correction algorithms that find friends31,32.
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DISCOVAR uses each read as the ‘founder’ of a stack of friends, which consists of a gap-

free multiple alignment among the founder and its friends (exhibited as a matrix of bases, 

with one row for each read and one column for each position). To do this, for each founder, 

DISCOVAR seeds alignments on perfect matches to define the initial friend reads associated 

to the founder (some of which are not true friends). These friends are arranged in a stack, 

with each friend (or its reverse complement) positioned at a given offset relative to the 

founder.

Posed in this fashion, the central problem of error correction is to remove false friends from 

the stack. This is easy in cases where the friend and the founder both have high quality 

sequence at a column in the matrix corresponding to a base position where true and false 

loci differ. We handle this case by scanning the stack to find columns in which the founder 

and a friend both have quality ≥ 30, but different base calls. Such friends are declared false 

and removed from the stack.

For each read pair, we form friend stacks for its two reads. The stack for the right-hand read 

is reverse complemented, so that both stacks are on the same DNA strand. These stacks are 

truncated on both ends (Supplementary Fig. 4c), so that the stacks do not extend beyond the 

original DNA fragment. Next we derive the consensus sequences for both stacks. These 

consensus sequences typically extend beyond the read ends and usually across the gap (if 

any) between the reads.

We note that the algorithm design relies on the existence of an overlap between the 

consensus sequences, and thus the original fragments should be shorter than four times the 

read length. This is consistent with the laboratory design.

DISCOVAR next finds overlaps between the consensus sequences, allowing for the 

possibility of more than one overlap. For each overlap, we then merge the left and right 

stacks, yielding a joint stack, and find its consensus. This ‘joint consensus’ is a single 

sequence extending from end to end on the original DNA fragment defining the pair, thus 

‘closing’ the pair. We require that the joint consensus for a given overlap is unambiguously 

determined. For example, for a pair where the reads have a gap between them on their 

originating DNA fragment, and there is a SNP in the gap, the pair may not be closed. 

Typically there is exactly one overlap between the left and right consensus sequences, 

yielding a single unambiguous joint consensus. However it is possible for there to be 

multiple overlaps, each yielding an unambiguous joint consensus. In such cases (~1 per 

1000 pairs in human), the pair is not closed, but instead we report as its ‘closure’ a modified 

pair, whose left member is obtained by taking the longest sequence that the consensus 

sequences share on the left, and whose right member is similarly obtained.

(ii) Graph creation—The pair closures are now formed into a unipath graph33. For this we 

set the minimum overlap K to ~0.18 of the median closure length. This graph would have 

rare gaps arising from low coverage. Most such gaps can be eliminated by including the 

hg19 reference sequence (for the region) as an additional input to the graph construction, 

and therefore we do this.
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(iii) Graph improvement—DISCOVAR next simplifies and improves the graph 

(Supplementary Note, Section 5). There are two goals: to remove branches that are not 

present in the sample (likely artifacts of the laboratory process), and to ‘pull apart’ the 

graph. We illustrate the latter using the operation of graph reconstruction (Supplementary 

Fig. 5). Briefly, each pair closure may be represented as a path through the graph, or 

‘closure path’. Graph reconstruction takes the closure paths, each expressed as a sequence of 

assembly edges, and glues the closure paths together along some (but not all) proper 

overlaps between them, yielding a new assembly graph. If we have two paths “abc” and 

“cde”, then those two paths overlap along c, and if glued together would yield “abcde”. 

Gluing many paths together yields a graph. Supplementary Fig. 5 illustrates the method 

using a simple but common scenario where two genomic regions come together in an 

assembly along a repeat r. Depending on the length of r, and the particularities of the data, 

and which proper overlaps are excluded, the reconstructed assembly may be either the same 

assembly, or a ‘pulled apart’ assembly that represents the genome itself (Supplementary Fig. 

5a–d). Exclusion of overlaps depends on a detailed analysis of the closure path counts at a 

particular locale (Supplementary Fig. 5e). Graph reconstruction is akin to the approaches in 

EULER28 and RockBand29, however differs from them in how it thresholds simplification.

DISCOVAR algorithm: Variant calling

Once the graph assembly has been simplified, DISCOVAR creates a list of variants by 

comparing the assembly to the reference sequence (Supplementary Note, Section 6; 

Supplementary Fig. 6). The graph assembly can encode variants either as alternative paths in 

the graph or as unambiguous edges containing base differences with the reference.

In order to identify variants from the assembly graph (Supplementary Fig. 6a), its edges are 

aligned to the reference (Supplementary Fig. 6b). In many cases this would be enough to 

successfully call variants, but for some loci it is not possible due to erroneous or missing 

alignments. The causes of this are varied, and include: alignment artifacts, low complexity 

or repetitive sequence, insertions or deletions near the ends of edges, or larger insertions in 

an edge.

To deal with these difficult loci, we next build an acyclic graph whose edges are anchored to 

the reference. The anchor points, edge order, and edge adjacencies are determined from the 

edge alignments. Initially only high quality alignments are used to build the graph, 

eliminating problems caused by erroneous alignments. This excludes some valid edges, 

which either aligned poorly or not at all. These can be safely recovered by adding back 

unused paths through the original assembly graph that are consistent with both the anchored 

acyclic graph and the reference (Supplementary Fig. 6c).

Given this anchored acyclic graph, variants can then be identified by comparing the edges to 

the portions of the reference to which they are anchored (Supplementary Fig. 6d). 

Probabilities are then computed by realigning the original reads to the edges of this graph 

and scoring these alignments using the read quality scores.

DISCOVAR can be run on a human genome in about two days, using a small cluster (see 

Supplementary Note, Section 7a).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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