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Abstract: In this work, we present a systematic study of the plasmon
modes in a system of vertically stacked pair of graphene discs. Quasistatic
approximation is used to model the eigenmodes of the system.Eigen-
response theory is employed to explain the spatial dependence of the
coupling between the plasmon modes and a quantum emitter. These results
show a good match between the semi-analytical calculation and full-wave
simulations. Secondly, we have shown that it is possible to engineer the
decay rates of a quantum emitter placed inside and near this cavity, using
Fermi level tuning, via gate voltages and variation of emitter location and
polarization. We highlighted that by coupling to the brightplasmon mode,
the radiative efficiency of the emitter can be enhanced compared to the
single graphene disc case, whereas the dark plasmon mode suppresses the
radiative efficiency.
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1. Introduction

Technological advances in the field of nanofabrication haveprovided a powerful tool to tailor
light-matter interaction. Metallic nanoparticles support surface plasmon resonances where col-
lective oscillations of electron and photons can result in alocalization of electromagnetic fields
into subwavelength scales [1]. Apart from localizing the incident plane waves, these plasmon
modes strongly modify spontaneous emission properties of quantum emitters [2], such as quan-
tum dots, placed close to them. In particular, radiative decay rates of such fluorescent particles
can be tuned, depending on whether the emitter couples to a radiative or non-radiative plasmon
mode [3]. This approach of tunable fluorescence quenching and enhancement finds its uses in
applications such as molecular imaging [4]. A number of geometries have been explored for
such decay rate engineering, for instance metallic planar surface [5], photonic crystals [6] and
various collections of metal nanoparticles [3]. In particular, collections of nanoparticles, such
as dimers provide an additional parameter, namely, separation and orientation of the individual
particles with respect to each other to tune the local electromagnetic density of states. In cer-
tain dimer systems with inversion symmetry, symmetric or antisymmetric dipole modes can be
excited, even using a plane wave, in accordance with the plasmon hybridization model. The an-
tisymmetric or dark mode has a cancellation of the two induced electric dipole moments hence
suppresses far field radiation. The converse is true for the symmetric or bright mode where the
electric dipole moments add up constructively.



Fig. 1. Geometry for studying decay rate engineering:A) In this geometry, the emitter can
excite only one of the two modes, depending on its location and polarization B) In this ge-
ometry, the emitter can excite both the dark as well as the bright modes. Hence it is suited to
studying comparatively, the effect of these modes on the thedecay rate of the quantum emitter.
The numerical values of the disc separationD and the radiusR, which were used for the BEM
simulation are shown here.

Metals, as plasmonic materials, however suffer from a number of drawbacks, such as high
losses [7] and limited tunability of electronic carrier concentration. In recent years, graphene
[8] has emerged as a very efficient plasmonic material in the far infrared and terahertz range
[9]. Because of its unique bandstructure, electrons in graphene behave as Dirac fermions. A
consequence of this is that backscattering of electrons from impurities is forbidden [10], which
results in graphene plasmons being much less lossy in the farinfrared compared to metals in the
visible range. In addition to chemical doping, the carrier density or equivalently, the Fermi level
in graphene can be tuned via electrostatic gating [11]. Thusgraphene is an excellent candidate
for tuning light-matter interaction in this wavelength range.

In this work, we discuss how decay rate can be engineered via plasmon modes in a dimer
of vertically stacked graphene nanodiscs. Plasmons in a single Graphene disc have been shown
to provide very high total decay rate enhancements [12]. A dimer system of nanodiscs, while
still having these advantages, provides a route to engineerradiative decay rates via excitation of
dark and bright modes. Such bright dipolar modes have recently been experimentally observed
in the case of graphene micro-disc dimers [13].

We will firstly solve for the eigenmodes of the systems using aquasistatic approximation.
Secondly, a general recipe using the eigenresponse theory will be provided which can be used
to model the spatial and polarization dependence of the local density of states. Some of these
results for the lowest dipolar mode will be compared with full-wave boundary element simula-
tions.

Finally we use the example of the lowest dipolar mode to show that the fluorescence quantum
yield can be tuned by modifying the Fermi level of the graphene nanodiscs and the possibility
of obtaining vacuum Rabi splitting in the cavity.

2. Methods

In this section, we briefly mention the various analytical and numerical techniques that were
employed to arrive at the results in this paper.



2.1. Modeling electrodynamic response of graphene

The graphene response is modeled using local random phase approximation (Local RPA). At a
temperature T, the two dimensional conductivity of graphene is given by [14]:

σRPA(ω) =
2e2kT

π h̄2
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whereH(ω ,T) = sinh(h̄ω/kT)/[cosh(µ/kT)+ cosh(h̄ω/kT)].
The first term in Eq. (1) represents intraband contribution and the remaining terms are con-

tributions of the interband transitions to the total graphene conductivity. Hereτ is the electron
relaxation time. The relaxation time typically has contributions from 1) scattering from im-
purities in infinite graphene, 2) coupling to acoustic and optical phonons (̄hωOPh = 0.2 eV)
in graphene and phonon modes of polar substrates and 3) edge scattering in the case of finite
nanostructures, such as the one discussed in the present paper( [15] and references therein). In
literature, relaxation times as high as 1000 fs have been reported [16, 17]. For frequencies larger
than the optical phonon frequency of graphene,τ ∼ 50 fs [9]. For the results of this paper, we
use the conservative lower end of this range. For all the results concerning excitation of the disc
modes via local emitters, we useτ = 50 fs andT = 300 K. For the plane-wave excitation result,
a largerτ of 100 fs is used since for smaller values, the extinction peak for the dark mode is
too broad to be separated out from the background, dominatedby the bright mode. However,
both these values we used forτ are on the very conservative side of the range of experimentally
measured values.

2.2. Simulation of graphene plasmon modes

All the simulations of this paper were performed using a Boundary Element Method (BEM)
code,SCUFF-EM suite [18], a free, open-source software implementation ofthe boundary-
element method that implements specialized algorithms forefficient computation of scattered
and absorbed power in scattering problems [19]. For simulations we consider a very small
thickness “effective graphene” [20]. This now becomes a 3D structure, whose conductivity is
given by dividing the 2D conductivity by the thickness of theeffective graphene. This allows
us to define a permittivity for effective graphene using Maxwells Equations:

ε(ω) = 1+
iσ2D(ω)

ωε0∆
. (2)

where∆ is the thickness of the effective graphene. Convergence tests were performed with
∆ as a parameter and a value of∆ = 0.25 nm was chosen as the appropriate thickness for the
specific range of frequencies and lengthscales of our problem.

2.3. Calculation of decay rates

In the second half of the paper, we will discuss the decay rates of emitters placed close to
or inside the nanodisc cavity. An ideal dipole emitter can get rid of its energy through two
pathways: 1) radiatively into free space propagating modesor 2) non-radiatively into material
absorption. The decay rate into the plasmon mode is mostly dominated by absorption. We
calculate these decay rates as follows. The total decay rateis calculated using the scattered
electric field at the location of the emitter [21]:

Γtot

Γ0
= 1+

6πε0

|µ̂ |2k3 ℑ{µ̂∗ ·Es(x0)}. (3)



whereΓ0 is the decay rate of the emitter, if it were in free space.
The radiative decay rate is given byΓrad/Γ0 =Prad/P0 = 1+Psca/P0, wherePrad is the power

radiated to the far field,Psca is the total scattered power andP0 is the power radiated by the emit-
ter when placed in free-space. The non-radiative decay rate, which is the dominant contribution
from the decay into the plasmon mode is given byΓabs/Γ0 = Pabs/P0 ≈ Γplasmon/Γ0, where
Pabs is the power absorbed in the graphene nanostructure.

Vacuum Rabi splitting calculation: The most common way for describing atom-cavity inter-
action quantum mechanically is through the Jaynes-Cummings Model (JCM) Hamiltonian. The
JCM Hamiltonian, in the rotating wave approximation (RWA) is given by:

H = h̄ω0σ+σ−+ h̄ω
(

a†a+
1
2

)

+
h̄g
2
(a†σ +aσ+) (4)

whereω0 is resonant frequency of the quantum emitter andω is the frequency of the plas-
mon mode.σ+ (σ−) are the atomic raising (lowering) operators anda† (a) are the creation
(annihilation) operators for a cavity photon.

For the present problem we use an open quantum system approach, in order to incorporate
absorption and radiative decay. Thus the evolution of the density matrix is given by [23]:

dρ
dt

=−
i
h̄
[H,ρ ]−

κ
2
(a†aρ −2aρa†+ρa†a)

−
Γ′

2
(σ+σ−ρ −2σ−ρσ++ρσ+σ−) (5)

whereκ is the rate of decay of the plasmon mode.κ contains both the radiation as well and
absorption mechanisms for broadening the plasmon resonance [24]. However, it is usually dom-
inated by absorption.Γ′ is the decay rate of the quantum emitter into free space modes, modified
by geometrical effects. However, in this paper we assume theΓ′ to be equal toΓ0, the sponta-
neous emission rate in free space, in accordance with Wigner-Weisskopf theory.

The system density operator evolves according to Eq. (5). Inthe single excitation manifold,
only the states{|g〉

⊗

|1〉, |e〉
⊗

|0〉, |g〉
⊗

|0〉} need to be retained. Here|g〉 and |e〉 are the
ground and excited states of the atom and|0〉 and |1〉 denote the number of photons in the
cavity mode. It can then be shown [25] that for Rabi oscillations to exist, on resonance (∆ = 0),
one needs the condition|g/(κ −Γ′)|> 1/2.

In the JCM, the coupling strengthg is determined by the details of the cavity field mode and
the atomic dipole matrix element. For our purpose, we determine g classically, using the limit
of a low finesse cavity. In this limit,g satisfies the following equation:

Γtot = Γ0+
g2(κ −Γ′)

4∆2+(κ −Γ′)2 (6)

where∆ is the detuning between the resonant frequency of the plasmon mode and that of
the quantum emitter. For the present work, the typical spontaneous emission rate of the emit-
ter is much smaller than the cavity line-width. Thus, Eq. (6)suggests that on resonance,
Γtot/κ = (g/κ)2. Hence theg factor can be determined. This expression also points out that
Rabi oscillations should exist whenΓtot/κ > 1/4.

3. Results and discussion

3.1. Calculation of the eigen-modes in the quasistatic limit

Firstly, we discuss the mathematical formulation of the eigenvalue equation in terms of an elec-
trostatic potential. This is essentially a solution of the Laplace equation for the disc geometry.



This section is divided into two subsections. In the first subsection, we repeat the derivation
for the case of single disc, which had been worked out by Fetter[26] in 1986. In the second
subsection, we formulate the eigenvalue problem for the case of a stack of two discs.

In the second section, we discuss a numerical framework to solve the eigenvalue equations
we obtained in the previous section. In the third section, wesummarize the results of the cal-
culation, by providing details of the eigen-mode plots and acomparison to full wave boundary
element simulations.

3.1.1. Mathematical framework for a stacked dimer of discs

The general strategy is to solve the Poisson equation for theelectrostatic potentialΦ(r), with
the surface charge boundary condition due to the graphene discs. The surface charge density
itself can be related to the electrostatic potential via thecontinuity equation and the surface
conductivity of graphene. This leads to an eigenvalue equation with Φ on both sides. Subse-
quently, numerical techniques are used to solve this eigenvalue problem to get the resonant
frequencies as well as the potential profile. This potentialcan then be used to calculate various
other quantities of interest such as surface polarization and surface current density.

The calculation for the single disc case, was carried out in the Fetter’s paper[26] on magne-
toplasmons in disk geometries of 2DEG. For the sake of comparison the notation from a recent
paper[27] on edge plasmons in a single graphene disc, has been used here.

It should also be noted that for a single disc in the quasistatic regime, closed form solution
is possible[28]. However, we use a numerical approach here which can be easily extended
to stacks consisting of arbitrary number of discs, where closed form solution becomes very
cumbersome.

The geometry consists of two identical discs each of radiusR, stacked vertically with a
separationD in between (see Fig. 1). The location of the discs in our chosen coordinate system
is z= ±D/2. The approach that will be presented here can easily incorporate the case where
the two discs are non-identical. However, for the sake of clarity for our specific case, we will
only consider identical discs for now.

First note that because of circular symmetry, the potentialcan be expressed asΦ(r) =
Φ(r,z)eiLφ , in cylindrical coordinates.

We follow a two step procedure to get to the eigenvalue equation:

• Express the surface potentialΦ(r,z= ±D/2) in terms of the surface charge densityσb,
using the Laplace equation and the normal electric field boundary condition

• Express surface charge densityσb in terms of the surface potentialΦ(r,z=±D/2), using
the continuity equation and the current-field relation

ExpressingΦ in terms ofσb: The Poisson equation in this case is given by:

∇2Φ(r,z) =−
σbΘ(R− r)

ε0
(δ (z−D/2)+ δ (z+D/2)) (7)

whereσb is the surface charge density (and not the surface conductivity, which is represented
by σ ).

One way of solving such problems is to write the general form of the solution in the regions
on either side of the the boundaries and then match the boundary conditions. We will use this
approach.

Thus we write the solution for the Laplace equation forz 6= 0 and then use the boundary
condition for the normal electric field. To be specific, theseequations are given below:

∇2 [Φ(r,z)eıLφ ]= 0 (8)
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whereεm is the relative permittivity of the medium in between the discs. Note that theeiLφ

dependence was suppressed in the boundary condition equation. (Note that there is another
boundary condition which is the continuity of the potentialacrossz=±D/2.)

Now let us expressΦ in terms of its Hankel transform component:

Φ(r,z)eıLφ =

∫ ∞

0
dp pΦ̄(p,z)JL(pr)eıLφ (11)

where the Hankel transform is only taken in the radial coordinate of the cylindrical system.
Now we substitute Eq. (11) into Eq. (8). After some manipulation and using Bessel’s differ-

ential equation, we obtain the following simplified form:

∫ ∞

0
dp p

[(

∂ 2

∂z2 − p2
)

Φ̄(p,z)

]

JL(pr)eıLφ = 0 (12)

For z 6= ±D/2, Eq. (8) holds for the potentialΦ(r) in real coordinates. Equivalently, for
z 6=±D/2, Eq. (12) holds for the Hankel transformed potential. We can write down the form of
the solution in the three different regions as follows:

Φ̄(p,z) =











Au e−p(z−D/2), if z≥ D/2

A+
m ep(z−D/2)+A−

m e−p(z+D/2), if |z| ≤ D/2

Ad ep(z+D/2), if z≤ D/2

(13)

There are four unknownsAu, A+
m, A−

m, Ad. We also have four equations, two for the continu-
ity of the potential across the discs and the other two for thenormal electric field boundary
condition.

It is quite straightforward to solve for the general case of different relative permittivities. In
the following, we chooseεu = εm = εd = ε for simplicity. Solving the above linear system of
equations, we get the solution for the Hankel-transformed potential on the discs:
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Φ̄d(p)
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σ̄b,u(p)
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 (14)

Now we go to real space, by taking the inverse Hankel transform on each side of the above
equation. For brevity, we denote the Hankel transform operator asĤ(p; r ′) =

∫ ∞
0 dr r ′JL(pr′)

and its inverse operator aŝH−1(r; p) =
∫ ∞

0 dp pJL(pr). With this notation, we can express the
real space solution as:
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Φd(r)
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1

ε0ε
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with Ko
L(r, r

′) = 1
2

∫ ∞
0 dpJL(pr)JL(pr′) being the kernel for on-site term andK i

L(r, r
′) =

1
2

∫ ∞
0 dp e−pDJL(pr)JL(pr′) for the interaction term.



Expressingσb in terms ofΦ: There are two equations that we need to expressσb in terms
of Φ. One is the continuity equation for surface current densityand the other is the relation
between surface current density and the electric field. These equations are given below:

∇|| ·Js+
∂σb

∂ t
= 0 (16)

Js = σ(ω)E|| (17)

Now using the relationE|| =−∇||(Φ(r,z= 0)eıLφ ), we arrive at the relation:
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(18)
Thus, combining Eq. (15) and Eq. (18), we arrive at the final eigenvalue equation for the stacked
discs case:
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As the last step, we move to normalized coordinatesx→ r/R and express the final equation
in operator form:





φu(x)

φd(x)



= η





Î uu
L (x;x′) Î ud

L (x;x′)

Î du
L (x;x′) Î dd

L (x;x′)
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 (20)

whereη = σ(ω)/ıωε0εR. The reader is reminded that herêI uu
L (x;x′) and Î dd

L (x;x′) are
associated with the on-site term for the upper and lower discrespectively, whereas the off-
diagonal terms represent the interaction between the two discs. In terms of normalized coor-
dinates,Φ(r,z= ±D/2) → φu,d(x)eıLφ . Eq. (20) is an eigenvalue problem in the parameter
η = σ(ω)/(iωε0εR), which can be related to the resonant frequencies of the modes. Note that
in the normalized coordinates, the exponential term in the off-diagonal kernel depends on the
ratioD/R instead of justD.

The solution to Eq. (20), will give us the resonant frequencies and the mode-profiles of the
plasmons in stacked dimer of graphene discs.

It should be noted that this kind of approach is easily extensible to more than two discs or
discs with different radii or surface conductivities.

We solve the eigenvalue problems for the single disc and the stacked dimer of discs case
using the standard method of polynomial expansion. The results for the eigen-frequencies are
shown in Fig. 2.

3.1.2. Comparison with full wave simulation

We compared the resonant frequencies obtained using the quasi-static solution to those obtained
using a full-wave boundary element simulation (BEM). For this comparison we only choose
theL = 1, n= 1 mode since that is the mode that we will be concerned with in the rest of the



æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

0 1 2 3 4 5
0.5

1.0

1.5

2.0

2.5

3.0

L

Ω
�Ω

R

HAL

æ Dimer Even Mode
æ Dimer Odd Mode
æ Single Disc à

à

à

à

à

à

à

à

à

à

à
à

à
à

à

à

à

à

à

à

à

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.05

0.10

0.15

0.20

0.25

Fermi Level EFHeVL

Ω
1,

1
He

V
L

HBL

Dimer Bright Mode

Dimer Dark Mode

Single Disc

Fig. 2. A) Resonant frequencies of the modes calculated using the quasistatic solutionNormal-
ized resonant frequencies of the modes of different symmetry, whereω2

R = e2EF/(2π h̄2ε0εR).
For eachL, only the lowest two modes are shown. The dashed line is only aguide to the eye.
B) Comparison of the resonant frequencies calculated usingquasistatic approximation versus
the full wave boundary element simulationResonant frequencies of theL = 1, n = 1 modes
as a function of Fermi levelEF . Squares represent the BEM calculation and lines represent
the quasistatic result. Note that in BEM we chose finite absorption whereas in the quasistatic
approach we used a lossless graphene conductivity.

paper, when talking about photon emission rate engineering. It should also be noted that for
the simulations, we use a realistic absorption in the graphene conductivity. The comparison is
presented in Fig.2. Figure 2 suggests that there is a good overall match between the resonant
frequencies found from the BEM and the quasistatic result. The resonant frequencies in the
simulation were obtained from the LDOS spectrum.

Two features in Fig. 2 are worth highlighting. Firstly, the resonant frequencies of both the
modes increase withEF . This is due to the fact that increasingEF results in an increase in
the carrier density, which in turn causes an increase in the restoring force. This explanation
is similar to how the plasma frequency in noble metals increases with carrier concentration.
Secondly, the frequency splittingωB −ωD increases withEF . This is due to the fact that at
higherEF , the plasmon modes of individual discs are more leaky. This results in the interaction
between the two discs being even stronger, resulting in a larger splitting.

3.2. Eigen-response theoretic framework and calculation of overlap

To understand dependence of the spatial and polarization dependence of the LDOS, we resort
to an eigen-response theory [29]. In the present case of a system with a symmetric and an
antisymmetric mode, the polarization density can be expressed as:

|P〉=
∞

∑
L=0

αA,L |PA,L〉 〈PA,L |Eexc〉+αS,L |PS,L〉〈PS,L |Eexc〉 (21)

whereαA,L andαS,L are the eigen-polarizabilities of the antisymmetric and symmetric modes
andPA,L andPS,L are the eigenmodes.

The excitability of the modes is related to the overlap terms, which are the inner products of
the mode profile and the excitation.

Relation between overlap and LDOS: The spatial dependence of the LDOS is contained in
the overlap term, since the eigen-polarizability is usually only frequency dependent. In general
the projected LDOS in Eq. (3) can be written as:

Γtot/Γ0 = 1+6πk∑
i

∣

∣

〈

µ(r0)
∣

∣Ĝ(r , r0)
∣

∣ i
〉
∣

∣

2 ℑ[αi(ω)] (22)



where|i〉 is a quantity proportional to the surface polarization, foreach mode. In the following
section we present the calculation of the surface polarization, which will help us calculate these
overlap terms.

Calculation of surface polarization: From our quasistatic approach, we determined the sur-
face potential on both the discs. Using the surface potential, it is straightforward to obtain the
surface polarization. The surface polarizationPs can be related to the potential on the discs in
the following way. In the absence of magnetization, the surface currentJs can be related toPs

as follows:

Js =
∂Ps

∂ t
=−ıωPs (23)

Js can also related to the electrostatic potential using the relation:

Js = [σ(ω)Θ(R− r)]E|| =−[σ(ω)Θ(R− r)]∇||Φ (24)

Thus we have the relation betweenPs andΦ:

Ps =

[

σ(ω)Θ(R− r)
ıω

]

∇||Φ (25)

The potentialΦ obtained by solving the eigenvalue equation as mentioned inan earlier note,
can be plugged in Eq. (25) to calculatePs and subsequently the overlap terms.

We will consider the source dipole generating a field which excite various infinitesimal
dipoles on the disc surface. For this purpose, we will need the Green’s tensor which is defined
as[21]:

Ĝ(r , r0) =
k

4π

(

A(k|r − r0|)+B(k|r − r0|)
|r − r0〉〈r − r0|

|r − r0|2

)

(26)

In order to keep the mathematical framework completely general, we consider the geometry
shown in Fig. 1. For this geometry,r0 = Xdx̂+Ydŷ+Zdẑ and the location of the infinitesimal
dipolesr = xx̂+ yŷ+ zẑ.

The overlap terms for the case of a single disc are shown in Fig. 3.

3.3. Decay rate engineering

Single graphene nanodiscs, have been shown to provide very high Purcell factors [12]. Such
high enhancement factors are possible due to the very small plasmon mode volume, which is
a general characteristic of graphene films and nanostructures in the far infrared and terahertz
range [22]. Using a vertical nanodisc dimer cavity, should provide an additional degree of free-
dom for engineering the decay rates. For instance, other than applying gate voltage or changing
the radius of the discs, there is now an additional parameter, which is the separation of the discs,
that can be used to tune the resonances [30].

The dark dipolar plasmon mode only weakly couples to plane waves hence its excitation
using plane wave is not very efficient. However, if we use local emitters, such as quantum dots,
it is indeed possible to excite the dark mode very efficiently[30]. The coupling of quantum
emitters to such plasmon modes is reflected in the modification of the decay rates of the former.
Depending on the nature of the plasmon mode, radiative decayof an emitter can be suppressed
(quenching) or enhanced. In the case of graphene nanodisc dimer cavities, one can easily mod-
ify the radiative or non-radiative processes, by using gatevoltage or disc separation to tune
the dark or the bright mode to be resonant to the quantum dot. In this context, location and
polarization of the emitter is another variable [31], whichwill be discussed in this work.

We consider two situations (Fig. 1) for studying the coupling between the emitter and the
plasmon modes. Firstly, we study the case when the emitter placed inside the cavity. If the



Fig. 3. Semi-analytically calculated overlap terms for a Single Disc: The emitter is located at
a vertical distance of 15nm above the disc and moves alongYd = 0. The colors correspond to
different polarizations of the emitter: ˆx(–), ŷ(–) andẑ(–)

emitters are located at the inversion plane then it allows usto excite either the dark or bright
plasmon mode, depending on the emitter polarization and position. We will use the eigen-
response theory to calculate the overlap terms as a functionof the position and polarization
of the emitter. We will also present a comparison with LDOS for the lowest dipolar mode
calculated via BEM simulation and show that the shape of the LDOS spectrum can be well
explained by the calculated overlap terms. Secondly, we place the emitter outside the cavity,
resulting in it being able to excite both the modes, for the same location and orientation of
the emitter’s dipole moment vector. This enables us to directly compare the bright and dark
modes, in terms of their efficiency in suppressing or enhancing the decay pathways and quantum
efficiency of the emitter, under similar excitation conditions. To avoid repetition, in this section
we will only present simulation results for the radiative decay rates.

3.3.1. Case A: Emitters inside the stacked disc cavity

In principle, one can calculate the decay rates for all emitter positions inside the cavity. A ran-
domly oriented emitter should then couple to both the dark aswell as a bright mode. However,
if the quantum dots are placed inside the cavity, on the inversion symmetry plane parallel to the
plane of the disks, then depending of the alignment of the dipole matrix element, the quantum
dot will only be able to couple to either the dark or bright mode, but not both. Hence in order
to understand the physics of the problem, this is a convenient choice of emitter location.

Position and polarization dependence of the LDOS: Having worked out the matrix elements
for the case of the single disc, we now move on to consider the cases of the dimer of discs.
Because of mirror symmetry we can predict that there are evenand odd modes. In literature,
these are often called the bright and dark modes respectively. If we label the upper disc by U
and the lower disc by L, then the following relations hold:
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Fig. 4.Semi-analytically calculated overlap terms for the disc dimer bright mode:The emitter
is located on the inversion plane parallel to the discs and moves alongYd = 0. The colors
correspond to different polarizations of the emitter: ˆx(–) and ŷ(–). The ẑ-polarization has a
zero overlap at these resonances.

• Bright mode:dpU = dpL, zU =−zL = d/2

• Dark mode:dpU =−dpL, zU =−zL = d/2

Now to calculate the total overlap for the two modes, we add the contributions from the two
discs, taking into account the appropriate sign changes as mentioned in the relations given
above:
Bright Mode: Since the sign of the infinitesimal dipole moment does not change, we only need
to consider the sign change in thez coordinate of the two discs. This results in the total sum of
the overlap term for thez=±d/2 giving a zero for thez−polarization of the emitter. The other
two terms for thex andy polarizations survive and are basically twice of the corresponding
value for the single disc case.
Dark Mode: In this case, the sign of the infinitesimal dipole moment does change, and so does
the sign change in thezcoordinate of the two discs. This results in the total sum of the overlap
term for thez= ±d/2 giving a zero for thex− andy−polarizations of the emitter. The only
nonzero term is the one for thez−polarizations and is just twice of the corresponding value for
the single disc case.

The overlap terms are calculated by evaluating integrals ofthe form
∫

dp∗
mode·Eexc, as dis-

cussed earlier. The calculated overlap terms are presentedin Fig. 4 for the bright mode and Fig.
5 for the dark mode.

To verify our approach, we perform BEM simulations for a dimer of graphene discs, each
100 nm in diameter and separated vertically by 30 nm. The frequency range for the simulation
is chosen to highlight the contribution of the lowest dipolar mode. The semi-analytical cal-
culations using the eigen-response theory gives the dips inthe LDOS spectrum( Fig. 4 for the
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Fig. 5.Semi-analytically calculated overlap terms for the disc dimer dark mode:The emitter
is located on the inversion plane parallel to the discs and moves alongYd = 0. The color (–)
corresponds to the ˆz-polarization of the emitter. The ˆx andŷ-polarizations produce zero overlap
at these resonances.
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Fig. 6. Total decay rate as a function of emitter position and polarization: Using BEM, we
calculate the total decay rate of an emitter placed at (Xd, 0, 0), at the bright (left) and dark
(right) mode frequencies for(L = 1, n= 1) mode. (EF = 0.5 eV andτ = 0.05 ps)

bright mode, Fig. 5 for the dark mode ) at the correct positions, consistent with the results of the
BEM simulations (Fig. 6). Note that there are additional features seen in the simulation results.
For instance, for the dark mode, there is an LDOS feature for the x and y-polarized emitters.
Similarly for the bright mode, there is a contribution from the z-polarized emitter. This effect
is due contributions from neighbouring resonances. in factthis effect can be easily taken in to
account in the eigen-response theory, if we include losses in the eigen-polarizabilities. These
calculations will be published elsewhere. In the next section, we point out how radiative decay
rates can be engineered using these dark and bright modes.
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Fig. 7. a)Simulated (BEM) Spectrum of Decay RatesAn example spectrum of the two decay
rates into the radiative (ΓRAD/Γ0) and plasmon (≈ ΓNR/Γ0) modes. The dipole moment of the
emitter is aligned in the x-direction and it is located atXd = 0 nm andZd = 30 nm, fixed such
that the emitter is located 15 nm above the closest disc. b)Comparison of Radiative Efficiency:
The quantum emitter positioned atXd = 0 nm at a vertical distance of 15 nm above the cavity.
Depending on it’s resonant frequency, it can couple to both the dark as well as bright modes.
It can be seen here that the dark mode suppresses radiative emission, whereas the bright mode
enhances it, compared to the single disc case. (τ = 0.05 ps)

3.3.2. Case B: Emitters outside the stacked disc cavity

In order to compare quantitatively, the effect of the dark and bright modes on the quantum
emitter decay rate, we now study a geometry in which the emitter can excite both modes. Any
location of the emitter other than the inversion plane is a valid choice. However, for simplicity,
we chose to consider the emitter located outside the cavity as shown in Fig. 1. This might
also be a convenient scheme, in as far as experimental realization is concerned. We can study
all three orientations of the emitter dipole moment as done in the previous section. However,
since in this section our main aim is to highlight the engineering of radiative decay rates, we
will consider only one one polarization of the emitter, namely the x-polarization. To gain some
qualitative insight into the excitability of the modes, we analytically calculate the overlap terms.
Based on this calculation (not shown), we find that for an emitter close to the centerXd = 0 nm,
both the modes are excitable, with highest probability.

Radiative decay rate engineering: We then performed simulations to calculate the radiative,
non-radiative and total decay rates, when the quantum emitter, located at(Xd,0,Zd) couples to
either of the modes at their respective resonant frequencies. An example spectrum, forXd = 0
nm is shown in Fig. 7(a). In this case, the total decay rate enhancement, which is close to the
non-radiative part, is almost the same for the two modes. This is consistent with our analytical
calculation of the overlap terms which show that atXd = 0 nm both the modes are equally
excitable. However, there is a difference between the radiative decay rate enhancement. This
situation results because of partial cancellation of the induced moments on two discs, for the
dark mode.

Further, we demonstrate the tunability of the radiative efficiency as a function of carrier con-
centration. Our calculations in Fig. 7(b) show that the contrast in radiative efficiency increases
with increasingEF . The dark mode becomes less, and the bright mode, more radiative, as the
carrier concentration increases. As mentioned before, this is because at higher carrier concen-
trations, the modes of the two discs can interact more strongly.

We also study the dependence of the radiative efficiency, as afunction of positionXd of the
emitter, in Fig. 8(a). Clearly, the bright mode has a higher radiative efficiency compared to the
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Fig. 8. a)Simulated (BEM) Radiative efficiency as a function of emitter position and polariza-
tion: An x-polarized emitter is located at (Xd, 0,Zd). Zd is fixed such that the emitter is located
15 nm above the closest disc. The bright mode is found to enhance radiative decay rate, but
the dark mode does not. b)Vacuum Rabi splitting versus Fermi level:Normalized vacuum Rabi
splitting for the dark and bright modes when an x-polarized emitter is located at (0, 0,Zd) out-
side the cavity.Zd is fixed such that the emitter is located 15 nm above the closest disc. The
dashed line representsg/κ = 1/2 below which splitting will not be observed. (κ ≈10 meV).

dark mode, for various locations of the emitter. We find that the radiative efficiency drops from
a maximum atXd = 0 nm to a local minimum, as the emitter approaches a certain horizontal
distance (Xd = 40 nm in the specific case of Fig. 8(a)) and then rises again. This behaviour can
be qualitatively explained by looking at the overlap term (not shown), which predicts that the
mode excitability being maximum atXd = 0 nm, drops to zero at a certainXd to subsequently
rise again. Similar pattern in observed for the dark mode.

In the analysis provided here, one must note that the dominant decay pathway for the emitter
in this geometry is still non-radiative. Hence the overall quantum efficiency when the emitter
couples to either the dark or the bright mode, is rather smallfor both cases.

Strong coupling regime: Strong coupling regime in a system composed of a single graphene
disc and a quantum emitter was predicted in [12]. Here we briefly mention that the same can be
obtained in the dimer system as well. However, so far we have not carried out a complete study
in this direction.

In our classical electrodynamic simulations carried out for the graphene nanodisc cavity,
we obtainΓtot ≈ Γplasmon> κ on resonance. This condition ensures the existence of coherent
coupling between the plasmon and the emitter and the possibility of observing vacuum Rabi
splitting [23].

Using the approach mentioned in the Methods section, we calculatedg factors for different
Fermi-level energies, ranging from 0.2− 0.8 eV, for different positions of the emitter both
inside and outside the cavity. Our calculations for the normalized Rabi splitting are shown in
Fig. 8(b), for an example case of the emitter placed outside the cavity (same geometr y as
considered earlier in this section). We find that for a range of values of the doping level, we do
obtaing/κ > 1/2 and we predict Rabi splitting valuesg of up to 10 meV at room temperature.
Here for calculating the absolute value ofg, we have usedΓ0 ≈ 5× 107s−1 [12]. We note
that it should possible to increase the vacuum Rabi splitting by using higher quality graphene
samples, so thatτ is larger. Another important trend suggested by Fig. 8(b) isthat the value of
g/κ decreases with increasingEF . This can be qualitatively understood as resulting from the
increasing leakiness of the plasmon mode as the carrier concentration is increased. This results
in a larger mode volumeV, which is expected to cause a decrease in the decay rateΓtot. Since



κ ∼ 1/τ is almost independent of Fermi LevelEF , thereforeg/κ ≈
√

Γtot/κ decreases with
increasingEF .

4. Conclusion

We have performed a complete study of the plasmon modes of a vertically stacked dimer of
graphene discs. The eigenmodes and resonant frequencies ofthe modes were calculated semi-
analytically using a quasistatic approximation. We showeda convincing match between full
wave BEM simulations and the quasistatic approach. Secondly we explained the position and
polarization dependence of the LDOS using the framework of eigen-response theory. In this
case also, results were consistent with simulations.

Subsequently, we focused on the dark and bright plasmon modes formed out of dipolar modes
of each constituent disc of vertically stacked graphene disc dimer cavity. Due to the different
symmetry of these two modes, completely different behaviour is observed in the far field re-
sponse as well as decay rates. We have shown that it is possible to engineer the decay rates of a
quantum emitter placed inside and near this cavity, using Fermi level tuning, via gate voltages
and variation of emitter location and polarization. We highlighted that by coupling to the bright
plasmon mode, the radiative efficiency of the emitter can be enhanced compared to the single
graphene disc case, whereas the dark plasmon mode suppresses the radiative efficiency. Such a
system can offer new degrees of freedom for controlling radiative and non-radiative emission
properties of quantum emitters.
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