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Physical Origins of Thermal Properties of Cement Paste
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Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
(Received 18 October 2014; revised manuscript received 13 March 2015; published 17 June 2015)

Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their
thermal properties at the nanoscale and its connection to the macroscale properties still remain rather
obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of
statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density
of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that
calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (< 2 THz) compared
to the vibrational states predicted by the Debye model. This anomaly is commonly referred to as the boson
peak in glass physics. In addition, the specific-heat capacity of CSH in both dry and saturated states scales
linearly with the calcium-to-silicon ratio. We show that the nanoscale-confining environment of CSH
decreases the apparent heat capacity of water by a factor of 4. Furthermore, full thermal conductivity
tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of
phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability
condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling
schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of
cement paste during the hydration process, independent of fitting parameters.

DOI: 10.1103/PhysRevApplied.3.064010

I. INTRODUCTION

With an average annual consumption rate of 1 m3 per
capita, concrete is the most-used man-made material on
Earth. While well known for its appreciable load-bearing
capacity, concrete’s thermophysical properties are recog-
nized to be important for both construction and use phases.
During cement’s exothermic hydration process, thermal
stresses may cause early-age cracking, which may com-
promise the long-term serviceability of structures. The
dimensional arguments indicate that these thermal stresses
are inversely proportional to the thermal diffusivity of
cement paste [1]. During the use phase, the thermophysical
characteristics of concrete (and all other construction

materials) affect the heating and cooling energy consump-
tion of buildings via either heat conduction through the
envelope or the thermal mass of the buildings, i.e., the
tendency of a building to maintain a constant temperature
despite outdoor temperature oscillations [2]. Both aggre-
gates and the cement paste affect the thermal properties
of concrete, however, the former is the dominant factor.
Despite the importance of thermal properties of concrete,
such studies are truly scarce and are limited to the macro-
scopic measurement of thermal properties of concrete [3–6]
and cement paste [7–12]. More specifically, the interplay
between chemistry and molecular properties of cement
paste’s constituents and their relation to macroscopic
properties remain rather obscure.
This is in part associated with the hierarchical multiscale

structure of cement paste. Here, by cement paste, we invoke
a stoichiometric structural model of hardened cement paste
rather than nonstochiometric materials found in hydrated
cement systems. One can recognize at least four separate
length scales in cement paste, when conceptualized in a
four-level hierarchical thought model (see Fig. 1). At the
nanoscale, molecular properties of individual phases
become available via tools of statistical physics. In this
investigation, we apply these methods to both crystalline
and amorphous phases, namely, alite (Ca3SiO5 or C3S),
belite (Ca2SiO5 or C2S), portlandite [CaðOHÞ2 or CH] and
calcium silicate hydrates [ðCaOÞxðSiO2Þ1ðH2OÞy or CSH],
where S, C, and H, respectively, stand for SiO2, CaO, and
H2O in cement chemistry notation [see Figs. 1(a) and 1(c)].
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The CSH gel at the mesoscale is considered to be
comprised of polydisperse nanoscale CSH particles [13],
based on the results of neutron scattering [14,15] and
statistical nanoindentation experiments [16] [see Fig. 1(b)].
The physical properties of CSH gel at the mesoscale
depend on the saturation level of the interparticle spacing
and can be estimated via mean-field homogenization
theories [17]. At the microscale, the CSH gel is regarded
as an isotropic and homogeneous material with gel porosity
that holds anhydrous cement clinkers and other hydration
products together. This is consistent with a composite view
of cement paste [see Fig. 1(c)]. In this sense, we regard
laboratory measurements as the homogenized response of
this multiscale porous composite [see Fig. 1(d)].
We have previously studied mechanical properties

[18–23] and diffusion dynamics [24] of cement paste at
the molecular level. In this paper, we focus on under-
standing the physical origins of macroscopic thermal
properties of cement paste, starting from the atomic scale.
The paper is organized in seven sections. Section II
describes the molecular structures of calcium-silicate
phases in cement paste and provides details of atomistic
simulations. We dedicate Sec. III to a thorough analysis of
vibrational densities of states (VDOS) of all phases,
because they are at the origins of equilibrium and non-
equilibrium thermal properties of materials. Subsequently,
we employ VDOSs in conjunction with MD calculation
in Sec. IV to measure specific-heat capacity values at
constant volume and pressure. Section V highlights
the nonequilibrium thermal properties of all phases at the
nanoscale from equilibrium molecular dynamics using the
Green-Kubo approach. In Sec. V, we also provide a full
measurement of the thermal conductivity tensor, which is
accompanied by a discussion of the mean free paths of
phonons and their effect on the heat transport in complex

crystalline and amorphous materials. Subsequently, we
use mean-field homogenization techniques in Sec. VI to
provide a seamless link between the nano- and macro-
scopic thermal properties, and we compare our predictions
with experiments. Section VII draws final conclusions and
summarizes our findings.

II. METHODS

A. Molecular models

The molecular structure of solid phases in hardened
cement paste vary from crystalline to amorphous, depend-
ing on the phase and its chemical composition. The
anhydrated clinker phases (alite and belite) and portlandite
are crystalline. From a crystallography viewpoint, alite is a
chemically modified form of pure tricalcium silicate (C3S),
exhibiting a series of reversible phase transitions upon
heating and cooling [25]. The atomic structure of alite
polymorphs is similar, differing in the orientation of
isolated silica tetrahedra (SiO4−

4 ), coordination of calcium
(Ca2þ) and oxygen (O2−) atoms in ionic sites, and hence
symmetry groups [26]. In the present work, we choose
the M3 polymorph of C3S, the most abundant polymorph
in cement clinkers, refined from single crystal by de la
Torre et al. [27]. Belite is similar to alite in many aspects.
It is a chemically modified form of delicacies silicate (C2S),
which also exhibits a sequence of reversible phase tran-
sitions with temperature [25]. The atomic structure of belite
is consisted of isolated SiO4−

4 groups surrounded merely by
Ca2þ cations. Belite has several polymorphs such as α0H,
α0L, and β, which are derived from the α form by decreasing
symmetry because of disorder in silica groups and sub-
sequent modifications in calcium atoms [28]. In the present
study, we employ the β-C2S polymorph after Midgley [29],
as it is the most dominant polymorph in ordinary Portland

FIG. 1. A four-level thought model utilized for upscaling thermal properties of cement paste from the nanoscale to engineering scale.
(a) Snapshot of a nanotexture of CSH at Ca∶Si ¼ 1.5. The brown and cyan spheres represent intra- and interlayer calcium ions.
The Si—O bonds are shown by yellow-red bars. The water molecules and hydroxyl groups are depicted by red-white bars. The
xy plane is parallel and the z axis is perpendicular to the calcium-silicate sheets. (b) The mesotexture of CSH constructed by
agglomeration of randomly oriented CSH nanoparticles with size polydispersity. (c) The microtexture of hardened paste including
anhydrous clinker phases (β-C2S and C3S), hydration products (CSH and CH), and pore space (saturated or dry). (d) The macrotexture
of cement paste at the engineering scale.
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cement (OPC) systems [30]. TheM3 C3S and β-C2S phases
are rarely found in pure forms and usually contain minor
Al3þ, Mg2þ, and Fe3þ substitutions that modulate their
stability, solubility, and chemical reactivity [31]. These
substitutions are neglected in the present study because
they are attributed to a relatively small mass fraction of the
OPC clinker. Beside clinker phases, portlandite (CH), one
of the major hydration products in OPC systems, is also
crystalline and is a fairly well-known mineral. It consists
of planar Ca—O bonds with dangling hydroxyl groups
pointing to the interlayer spacing. In this work, we adopt a
crystalline structure of portlandite after Henderson et al.
[32], which identifies the position of protons via 1H NMR.
The nanotexture of CSH strongly depends on its chemi-

cal composition. In addition to 11-Å tobermorite, we utilize
a set of 150 molecular models constructed to cover a wide
range of calcium-to-silicon ratios (Ca∶Si), spanning from
1.1 to 2.1 [18,24]. Following a combinatorial scheme, these
models are constructed by structural and chemical modi-
fication of 11-Å tobermorite [33,34]. The Ca∶Si ratio of
11-Å tobermorite is systematically increased by randomly
removing charge-neutralized SiO2 groups from its infi-
nitely long silica chains. We create five models for each
Ca∶Si ratio to ensure proper statistical sampling by altering
the arrangement of vacancies. As shown in Fig. 1(a), CSH
consists of negatively charged defective calcium-silicate
layers separated by an interlayer spacing, which is filled
with water molecules and charge-balancing calcium
cations. Vacancies in the silicate chains provide possible
adsorption sites for water molecules. The adsorption of
water molecules in defect sites is performed via grand
canonical Monte Carlo (GCMC) simulation ensuring equi-
librium with bulk water at constant volume and room
temperature. Some of the above-mentioned adsorbed water
molecules are chemically unstable and dissociate into
hydroxyl groups and protons upon first-principle or reac-
tive force-field modeling. REAXFF potential is subsequently
utilized to enforce reaction between the interlayer water
molecules and defective calcium-silicate layers [18,35].
These molecular structures are extensively validated
against nuclear magnetic resonance, elastic and inelastic
neutron scattering, x-ray diffraction, and drying experi-
ments (for further details on model constructions and valid-
ations, see Abdolhosseini et al. [18,24]). These realistic
molecular structures are consistent with the averaged
stoichiometry of CaxSiO2.75ðOHÞCa0.85ðx−1ÞðOHÞSi1.15ðx−1Þþ0.5

×½0.8ðx − 1Þ þ 0.3�H2O, where x is the Ca∶Si ratio and
ðOHÞCa and ðOHÞSi represent hydroxyl groups coordinated
to interlayer calcium atoms and silica groups, respectively.
The collective topological observation of these 150 models
indicates that, while at low Ca∶Si ratios (Ca∶Si < 1.2)
CSH exhibits a lamellar crystalline structure with strong
transversely isotropic mechanical response; the structure of
CSH at high Ca∶Si ratios (Ca∶Si > 1.7) is fairly amor-
phous, exhibiting isotropic mechanical properties [18].

B. Atomistic simulation and force fields

In this work, we use molecular dynamics (MD), energy
minimization, and phonon analysis techniques to study
thermal properties of clinker phases and hydration products
using LAMMPS [36], GULP [37,38], and a series of inhouse
codes. In MD, the equations of motion are integrated via
the velocity-Verlet algorithm with periodic boundary con-
ditions applied in all directions. After performing extensive
convergence studies, the suitable time steps are found to be
as small as 0.1 fs for CSH and portlandite and 1 fs for
clinker phases. For crystalline phases, we create a relatively
large supercell containing roughly 1000 atoms. The sizes of
CSH simulation boxes are 5 to 6 times larger than the
characteristic medium-range length scale of calcium-oxide
layers and silica chains [18]. Therefore, we expect no size
effect in our simulations. Initially, all CSH models and the
crystalline phases are relaxed in isobaric isothermal ensem-
ble (NPT) at room temperature and pressure of 0 atm.
To exclude the impact of fictitious forces on the trajectories
of atoms from affecting velocities and heat fluxes along the
MD trajectory, further simulations are carried out in the
microcanonical ensemble (NVE). In order to properly
calculate the statistical errors for each model, 10 indepen-
dent simulations are performed, each 106 time steps long.
Core-only CSH force-field (FF) [39] potential is used in
simulations (see the SupplementalMaterial [40], Sec. A and
Tables I–IV, for force-field details). To avoid the computa-
tional expenses incurred by the calculation of Coulombic
interactions in real and reciprocal spaces, such interactions
are calculated via the Wolf method [41]. We further inves-
tigate the transferability of CSH FF potential to crystalline
phases by comparing its predictions of lattice structure and
mechanical properties including bulk k, shear g moduli,
and with Poisson’s ratio ν, against existing experimental
data [42–46] (see the Supplemental Material [40], Sec. B
and Tables V and VI, for potential validations).

III. VIBRATIONAL DENSITIES OF STATES

In dielectric solids, the atomic vibrations are at the origin
of nanoscale thermal properties. At low temperatures, such
vibrations are considered to be harmonic, which become
progressively anharmonic with increasing temperature.
These collective harmonic vibrations, the so-called phonons,
are closely related to thermodynamic properties such as free
energy, heat capacity, and thermal conductivity. The vibra-
tional density of state, also known as the phonon density of
state, over frequency gðωÞ characterizes the number of
phonons having a frequency in the range of ω and ωþ dω,

gðωÞ ¼ 1

3N − 3

X3N
s¼4

δðω − ωsÞ; ð1Þ

where N is the number of atoms and ωs is the sth eigen
vibrational frequency. The first three frequencies are
neglected as they are associated with translational motion
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of the solid. Within the harmonic approximation theory (i.e.,
small atomic displacements from equilibrium positions),
gðωÞ can be computed via two different approaches. The
first method is the eigenvalue decomposition of the dynami-
cal matrix (EDDM), which is based on the notion of the
normal mode analysis [47]. Any atomic vibration can be
considered as a linear superposition of normal modes, i.e.,
the eigenvectors of the dynamical matrix fen; n ¼ 1;…; Ng,X

q;β

Dp;α;q;βenjβ ¼ ω2
nenpα; ð2Þ

where p and q denote the atoms, α and β are the
Cartesian coordinate indices, and D is the dynamical matrix
defined as

Dpq;αβðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffimpmq

p
�∂2Ulat

∂α∂β
�
eikr; ð3Þ

with mp the mass of the pth atom, Ulat is the lattice energy,
and eikr is the phase factor. There are a number of possible
choices for the set of k points in the first Brillouin zone,
the primitive cell in the reciprocal space. The supercell of
crystalline models and CSH contain, respectively, roughly
1000 and 500 atoms. Although these supercells are relatively
large, a fine 15 × 15 × 15 grid of k points with the
Monkhorst-Pack scheme [48] is utilized to ensure proper
sampling of the Brillouin zone.

The second method to compute gðωÞ employs the
Fourier transform of the velocity autocorrelation function
(VACF) over a long-enough molecular-dynamics trajectory,

gðωÞ ¼ 1

NkBT

XN
j¼1

mj

Z
∞

−∞
hvjðtÞ · vjð0Þieiωtdt; ð4Þ

whereω is the frequency, kB is the Boltzmann constant, T is
the temperature, vjðtÞ is the velocity, and the dot denotes
the dot product. Due to the oscillatory nature of VACF
(hvjðtÞ · vjð0Þi=hvjð0Þ · vjð0Þi), femtosecond and even
subfemtosecond resolution is required to fully capture
gðωÞ (see VACF insets in Fig. 2).
Figures 2(a), 2(c), 2(e), and 2(g) present the VDOS of,

respectively, β-C2S, C3S, CH, and a CSH model with
Ca∶Si ¼ 1.5, showing that VACF and EDDM yield almost
identical results for all molecular models. To better classify
the different atomic bond contribution to the VDOS in
complex materials such as CSH, we divide the phonon
spectrum into five distinct vibrational bands, denoted I
through V in Fig. 2(g). We recognize the underlying atomic
and molecular vibrations populating the aforementioned
bands by decomposing the VACF into its partial contribu-
tions, VACFγ, where γ ¼ fSi;Ca;O;OH;H2Og. These
partial contributions to VDOS are presented in Figs. 2(b),
2(d), 2(f), and 2(h) for β-C2S, C3S, CH, and CSH,
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FIG. 2. Vibrational density of state (VDOS) for β-C2S, C3S, CH, and a CSH sample with Ca∶Si ¼ 1.5. VDOS calculated via the
eigenvalue decomposition of the dynamical matrix (EDDM) and Fourier transformation of the velocity autocorrelation function (VACF)
for (a) β-C2S, (c) C3S, (e) CH, and (g) CSH. The insets shows the evolution of VACF spanning 4 orders of magnitude. Decomposition of
the VDOS to contributions from different atomic and molecular species for (b) β-C2S, (d) C3S, (f) CH, and (g) CSH.
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respectively. The VDOS partial contributions unanimously
assert that the peak in the I band is clearly attributable to the
vibration of Ca—O bonds. This is in full agreement with
the near-infrared spectroscopy experiments of Yu et al.
[49], associating ω < 400 cm−1 to stretching of Ca—O
bonds. Unlike Ca—O phonons, vibrations of SiO4 units
extend over a large band from 0 to 35 THz. As studied in
detail for amorphous silica [50], the Si—O frequencies in
the I band are related to the acousticlike rigid-body rotation
of SiO4 tetrahedra units in the silica network. In the case of
β-C2S and C3S, the vibrations in this band are associated
with the isolated rigid-body rotation of silica monomers.
In the case of CSH, however, these vibrations are related
to the coupled rotation of SiO4 units in the silica chains.
The simulation results indicate that the II band,
400 cm−1 < ω < 750 cm−1, is dominated by the vibration
of silica tetrahedra units. This is in agreement with a
midinfrared experiment [49] relating this band to stretching
of Si—O bonds, and symmetric and asymmetric bending of
Si—O—Si angles. For silica glass, Taraskin and Elliot [50]
suggested that the vibrations in this frequency window are
associated with a complex hybridization of acoustic and
optical modes manifested in quasilocalized internal stretch-
ing and bending of SiO4 units. Furthermore, the III band in
the range of 750 cm−1 < ω < 1200 cm−1 is also populated
with silica tetrahedra vibrations. In β-C2S and C3S, these
vibrations are accumulated into peaks that are associated
with highly localized longitudinal and transverse optical
modes that correspond to stretching and bending of silica
monomers. In particular for CSH, the III band is mainly
associated with the vibration of Q1 and Q0 sites containing
silanol groups (Si—OH), due to the strong presence of
an OH signal in the partial VDOS. The vibrational
frequencies in region IV result from the inplane bending
of the H—O—H angle of water molecules because this
vibrational frequency is only present in the partial VDOS of
water molecules and it is absent in VDOS of portlandite.
The V band represents both the symmetric and asymmetric
stretching of O—H bonds in water molecules, the stretch-
ing of hydroxyl groups coordinated to both Ca and
Si atoms in CSH, and the stretching of hydroxyl groups
in portlandite.
One of the most striking features in VDOS of glasses,

and glass-forming and supercooled liquids is the presence
of a universal excess of states (EOS) compared to that
predicted by the Debye model (gD ∝ ω2) in the low-
frequency region [51]. This EOS is responsible for the
anomalies of the heat capacity and thermal conductivity of
glasses at low temperatures [52]. Highlighted by a broad
peak in the THz region (< 5 THz) when plotting gðωÞ=ω2,
this peak is referred to as the boson peak (BP). The BP can
be experimentally identified via Raman spectroscopy and
one-phonon scattering cross section in inelastic neutron
scattering [53]. Despite decades of work, the origin of BP
remains an open question in condensed matter physics and

material science [54]. Existing theoretical models explain
BP via different mechanisms such as phonon-saddle
transition in the energy landscape [55], local vibrational
modes of clusters [56], locally favored structures [57],
liberation of molecular fragments [58,59], vibrations in
anharmonic potentials [60], and anomaly in transverse
phonon propagation related to the Ioffe-Regel limit [54].
Exhibiting common features of disordered and amorphous
materials [18,19], the VDOS of CSH presents a BP in
the THz region as shown in Fig. 3. The BP is characterized
by the peak position ωBP and the peak intensity IBP. As
observed in many glass-forming materials such as poly-
butadiene, polystyrene [53], LiCl [61], and B2O3 [62], ωBP
is usually found to be shifted to lower frequencies with
increasing temperature. As an exception to this rule [63],
ωBP in silica is slightly shifted to the left with decreasing
density [64,65]. The analysis of all CSH models indicates
that the composition affects both positions and intensities
of BPs. When expressed in terms of density in the inset
of Fig. 3, ωBP of CSH decreases with increasing density
and its IBP behaves conversely. The correlation between the
CSH density and its BP properties are analogous to the
pressure dependence of the BP observed in silica [64],
Na2FeSi3O8 [66], and polymers [67].

IV. NANOSCALE HEAT-CAPACITY
CALCULATIONS

Heat capacity is a thermal property of materials at
equilibrium that links variations of internal energy (U)
and temperature. The internal energy of an insulating solid
is the sum of lattice (Ulat), vibrational (Uvib), rotational
(Urot), and translational (Utra) energetic contributions.
At low temperatures, considerably below the Debye tem-
perature [68], the rotational and translational contributions
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density calculated via atomistic simulation.
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(Urot and Utra) are negligible compared to the other two
components; hence,U ≃Ulat þ Uvib.Uvib can be described
as the number of phonons occupying a particular state nðωÞ
times their vibrational energy level hω, that is,

Uvib ¼
Z

∞

0

hω

�
nðωÞ þ 1

2

�
dω; ð5Þ

where h is the Plank constant and hω=2 is the zero-point
energy contribution. Following Bose-Einstein statistics,
fBEðωÞ ¼ ðe−hω=kBT − 1Þ−1 is the probability distribution
of a boson particle occupying a specific quantum state in
the thermal equilibrium. Thus, the occupation level is the
degeneracy of the vibrational state, described through gðωÞ,
times the probability of the presence of phonons at that
specific state; i.e., nðωÞ ¼ gðωÞfBEðωÞ. This yields the
kinetic energy in terms of vibrational density of states in
Eqs. (1) and (4). The specific-heat capacity at constant
volume can then be calculated from cv ¼ ð∂U=∂TÞv ¼
ð∂Uvib=∂TÞv, noting that Ulat does not depend on T at
constant volume. Experimental measurement of cv is rather
difficult because it requires maintaining constant volume
throughout the experiment. Therefore, laboratory measure-
ment of specific-heat capacity at constant pressure cp is
more popular. From thermodynamics, cv and cp are
related via

cp − cv ¼ T
α2

ρβ
; ð6Þ

where ρ is the density calculated in atomistic simulation,
α ¼ ð1=VÞð∂V=∂TÞP is the coefficient of thermal expan-
sion, and β ¼ −ð1=VÞð∂V=∂PÞT is the compressibility
which is the reciprocal of bulk modulus. Here, we calculate
these two coefficients via a finite difference approach in an
isobaric-isothermal (NPT) ensemble. To this end, three 10-
ns-long simulations are performed on a number of CSH
samples, β-C2S, C3S, and CH at (300 K, 0 atm), (310 K,
0 atm), and (300 K, 100 atm). The results for β-C2S, C3S,
CH, 11-Å tobermorite, and a CSH model with stoichiom-
etry of C1.75SH2.0 are summarized in Table I. The com-
pressibility of the crystalline phases presented in the
Supplemental Material [40], Table II, are almost identical
with those calculated at zero temperature. The densities of
the crystalline phases are compared to experimental values

of bulk measurements [69] and crystallographic density
[27,29,32]. Since the effect of porosity and impurities
are neglected in our atomistic simulations, our predicted
densities are closer to crystallographic measurements than
bulk measurements. The CSH compressibility increases
with increasing Ca∶Si ratio, 1.5 × 10−11 Pa−1 < βCSH <
1.8 × 10−11 Pa−1. These results are in full agreement with
zero-temperature calculations of CSH’s bulk modulus [18]
kCSH, indicating a decrease in kCSH with increasing
Ca∶Si ratio, 55 GPa < kCSH < 65 GPa. CSH’s coeffi-
cient of thermal expansion calculated from MD is
4.5ð�0.9Þ×10−5 K−1, in agreement with 4.2 × 10−5 K−1
microthermoporomechanics backanalysis [70]. The CSH
density is found to decrease with increasing Ca∶Si ratio,
2.55 g=cm3 > ρCSH > 2.35 g=cm3. At a low Ca∶Si ratio,
the density is close to that of experimental density reported
for tobermorite minerals [71,72]. The density of CSH
at a high Ca∶Si ratio is slightly lower than values obtained
from neutron scattering experiments [14,73] and is close to
recent experimental values reported by Muller et al. [74],
after subtracting the monolayer of water adsorbed on the
external surface of CSH nanoparticles. Having computed α,
β, and ρ, the difference between cp and cv is calculated to
be in the range of 0.002–0.025 J=gK for different calcium-
silicate systems.
Table I presents the specific-heat capacities at constant

volume and pressure for β-C2S, C3S, and CH. The
atomistic simulation predictions of constant-pressure heat
capacities are in very good agreement with low-temperature
heat-capacity measurements [75] and with values calcu-
lated from fitted cp-T relations [69]. We regard this
agreement as further validation of the transferability of
CSH FF potential to other calcium-silicate systems that
allows refining not only structural but also vibrational
properties. Figure 4 displays the specific-heat capacity of
both dry (all molecular interlayer water removed) cdryv;p and
hydrated chydv;p CSH in terms of the Ca∶Si ratio. The
specific-heat capacities in both dry and hydrated samples
increase almost linearly with Ca∶Si with a minor scatter
attributable to the polymorphic structure of CSH [18].
Similar to the experimentally observed increase in heat
capacity of rocks [76] and Vycor glass [77], the heat

TABLE I. Equilibrium properties of β-C2S (belite), C3S (alite), CH (portlandite), C1.0SH0.5 (11-Å tobermorite), and C1.75SH2.0
including density, compressibility, coefficient of thermal expansion, constant-volume, and constant-pressure specific-heat capacities
calculated using CSH FF potential and compared against available experimental measurements.

cv ðJ=gKÞ ρ ðg=cm3Þ β ð1=PaÞ α ð1=KÞ cp ðJ=gKÞ
Sim. Sim. Expt. Sim. Sim. Sim. Expt.

β-C2S 0.69 3.55 3.31 [69], 3.36 [29] 8.18 × 10−12 4.99 × 10−5 0.72 0.71 [69], 0.75 [75]
C3S 0.68 3.57 3.13 [69], 3.55 [27] 9.53 × 10−12 4.95 × 10−5 0.71 0.72 [69], 0.75 [75]
CH 1.14 2.25 2.25 [69], 2.08 [32] 3.47 × 10−11 9.91 × 10−5 1.14 1.15 [69]
C1.0SH0.5 0.87 2.55 2.48 [71], 2.46 [72] 1.47 × 10−11 4.50 × 10−5 0.89
C1.75SH2.0 0.95 2.40 2.47 [74], 2.60 [14] 1.82 × 10−11 4.50 × 10−5 0.97
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capacity of hydrated CSH is higher than that of dry
samples. The constant-pressure specific-heat capacities
can be written in the form of cdryp ¼ 0.66xþ 0.75 and
chydp ¼ 1.00xþ 0.75, where x is the Ca∶Si ratio. The two
lines intersect at 0.75 J=gK at Ca∶Si ¼ 0, which is the
experimental heat capacity of amorphous silica (devoid
of calcium) at room temperature [78]. The specific-heat
capacity of CSH is less than those observed for cement
pastes with different water-to-cement ratios and saturation
degree [7]. The heat capacity of cement paste is a composite
response of different phases, including anhydrous clinker,
portlandite, and water, that is discussed in Sec. VI.
The difference between dry and hydrated samples

indicates the effect of interlayer water on the heat capacity
of CSH. In fact, the apparent heat capacity of nanoconfined
water can be considered as the difference between
the specific-heat capacities of wet and dry CSH, Δcp ¼
chydp − cdryp ¼ 0.34x. According to the average chemical
composition (see Sec. II A), the interlayer water content
scales with ΔMw ¼ 0.8x. Since Δcp=ΔMw < 1, the heat
capacity of the nanoconfined water decreases with an
increasing Ca∶Si ratio. It is instructive to display the
variation of the heat capacity of nanoconfined water in
terms of its Voronoi density rather than the Ca∶Si ratio.
To this end, the Voronoi density of interlayer water is
measured via a Voronoi tessellation algorithm, which
finds a portion of space that is closer to a given water
molecule than any other atom in the molecular structure
[24,79]. The inset of Fig. 4 shows the relation between the
normalized apparent heat capacity and the Voronoi density
of the nanoconfined water. The heat capacity of water in the
ultraconfining interlayer spacing of CSH (d < 1.0 nm) is
noticeably smaller than that of bulk water at room temper-
ature, roughly 4.2 J=gK [80]. This is in full agreement with

Bentz’s postulate stating that the heat capacity of chemically
and physically bound water within the hydration gel should
be significantly lower than that of bulk water [7]. Similar to
dynamical properties [24], the heat capacity of nanoconfined
water in CSH and its trend with density behaves like
supercooled water. In fact, although being at room temper-
ature, Δcp is on the order of those observed at 150 K [81].
This is mainly due to the strong interactions between the
water molecules and the substrate [24].

V. NANOSCALE HEAT-CONDUCTIVITY
CALCULATIONS

The thermal conductivity K of a dielectric material is a
second-order tensor relating the temperature gradient ∇T to
the heat flux q through Fourier’s law, q ¼ K · ∇T. There
are three methods to calculate K for an insulating solid via
MD simulation: the equilibrium Green-Kubo method (GK);
direct application of Fourier’s law within a steady-state
conduction regime in a nonequilibrium framework (known
as the direct method); and a transient nonequilibrium
method. In this work, the GK approach is employed
because it is less size dependent, does not involve imposing
unrealistic temperature gradients in the simulation cell, and
it yields the full thermal-conductivity tensor. Heat flux in a
multiparticle system can be simply written as [82]

q ¼ 1

V
d
dt

XN
i¼1

riHi; ð7Þ

where ri and Hi stand for, respectively, the position vector
and the total Hamiltonian (kinetic plus potential energies)
of the ith particle in the system, whereas V is the volume.
To exclude the numerical errors arising from the calculation
of a time derivative in the finite-difference approach,
the above expression can be rearranged considering the
mathematical form of the interatomic potential. Assuming
that the angular contributions in the CSH FF potential are
equally distributed among all atoms in a water molecule,Hi
can be expressed in terms of its components via [83]

Hi ¼
1

2
mivi · vi þ

1

2

X
j

u2ðrijÞ þ
1

6

X
kj

u3ðθjikÞ; ð8Þ

where vi is the velocity of ith particle, u2 represents
pairwise energy terms between the ith particle and its
jth neighbor located rij apart from each other, and includes
van der Waals, Coulomb interactions via Wolf summation
method, and bond-stretching terms. The u3 energy term
considers the bending energy of the central θijk angle in
water molecules. By substituting Eq. (8) in Eq. (7), an
alternative expression for heat flux is achieved,

q ¼ 1

V

XN
i¼1

½eivi − VSi · vi�; ð9Þ
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FIG. 4. The effect of Ca∶Si ratio on specific-heat-capacity
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point corresponding to the heat capacity of amorphous silica [78].
The inset indicates the relation between the Voronoi density of the
nanoconfined water and its apparent heat capacity measured as the
difference between the heat capacity of dry and hydrated CSH.
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where ei is the kinetic energy and Si is the atomic virial
stress tensor, which can be expressed in terms of two- and
three-body potential terms as [84]

Si ¼
1

2V

XNp;Nb

j¼1

rij ⊗ Fij þ
1

6V

XNa

i¼1

ðrij þ rikÞ⊗ Fijk; ð10Þ

where ⊗ is the dyadic product in tensor notation, Fij the
force due to pair potentials, and Fijk ¼ −∇iu3ðθjikÞ is a
three-body force term. We implement the above heat-flux
formulation in GULP source code [37,38]. In equilibrium,
the net heat flux qðtÞ fluctuates around zero along the
molecular-dynamics trajectory. To measure thermal con-
ductivity at equilibrium, the GK approach links K to the
dissipation rate of heat-flux fluctuations at the atomic scale
via the fluctuation-dissipation theorem. The GK formalism
for an anisotropic material can be written as [82]

K ¼ V
kBT2

Z
∞

0

hqðtÞ ⊗ qð0Þidt; ð11Þ

where Ψ̄ðtÞ ¼ hqðtÞ ⊗ qð0Þi=hqð0Þ ⊗ qð0Þi is a second-
order tensor generally known as the heat-flux autocorre-
lation function (HFACF). HFACF elements are one at the
origin and subsequently decay to zero with characteristic
time scales proportional to the thermal conductivity of the
material. Since the length of the MD trajectory is finite,
numerical estimation ofK is usually truncated after tM, the
time corresponding to convergence of HFACF to zero, and
it is calculated via [85]

KijðtMÞ ¼
ΔtV
kBT2

XM
m¼1

1

s −m

Xs−m
n¼1

qiðmþ nÞqjðnÞ
hqið0Þqjð0Þi

; ð12Þ

where Δt is the heat-flux outputting time step, which is
different from the molecular-dynamics time step δt; s is the
total number of output steps; tM is given byMΔt; and qjðnÞ
is the jth component of the heat flux at the nth output step.
A number of complications arise when calculating

the thermal conductivity using Eq. (12). Due to the finite
value of s, imposed by limitations on the disk space and
computational expense, thermal conductivity might be
erroneously shown to be nonsymmetric. However, K is
mathematically shown to be both positive semidefinite and
symmetric [86,87]. This is an artifact of the numerical
calculation of HFACF, ϵ ¼ jΨ̄ijðtÞ − Ψ̄jiðtÞj > 0j for i ≠ j.
ϵ can be minimized by increasing s, which requires
excessive computational expense. Another way to exclude
ϵ is to enforce symmetry via Ψij ¼ ðΨ̄ij þ Ψ̄jiÞ=2. In fact,
the ergodicity of equilibrium processes requires Ψ̄ij ¼ Ψ̄ji
and, therefore, enforcing symmetry is meaningful. Also,
as shown in the insets of Figs. 5(a)–5(d), some oscillations
of HFACF might still be present at large time scales
(t > 105 fs). To better understand the nature of these

oscillations, we note that the GK relation [Eq. (11)] can
be expressed in the frequency domain,

KðωÞ ¼ V
kBT2

Z
∞

0

hqðtÞ ⊗ qð0Þieiωtdt; ð13Þ
where the thermal conductivity can be regarded as the limit
of KðωÞ at zero frequency. Figures 5(a)–5(d) present
different elements of KðωÞ for β-C2S, C3S, CH, and a
CSH molecular structure with Ca∶Si ¼ 1.5. It is noted that
the high frequencies in the IV and V bands defined in
VDOS (Fig. 2) are absent inKðωÞ. This simply means that
the hydroxyl groups and water molecules do not contribute
to the oscillations of heat conduction. This is due to the
dangling nature of hydroxyl groups, which do not con-
tribute to the propagation of phonons, as discussed later in
this section. In the case of K11 and K22 for β-C2S and C3S,
the contributing frequencies to the oscillation of thermal
conductivity extend over the I, II, and III bands and
exhibit distinct peaks. By decomposing Eq. (7) into qu ¼
ð1=VÞPN

i¼1 viUi and qk ¼ ð1=VÞPN
i¼1 ri _Ui, Landry et al.

[88] associated the oscillation in KðtÞ to optical zero-wave
vector phonons. This explanation is consistent with our
observation of the absence of such peaks at low frequencies
in β-C2S and C3S pertaining to the longitudinal and
transverse acoustic phonons. The heat conduction across
the interlayer spacing of CH and CSH is more sophisti-
cated. The absence of bonded interaction between the
layers, also evidenced in elastic properties (C11 > C33

and C22 > C33 following Voigt notation), makes the
measurement of K33 more complicated. In Figs. 5(c) and
5(d), the optical zero-wave vector phonons contributing to
the oscillations of K33ðωÞ are only present at two sharp
peaks in the I and II bands. Unlike β-C2S and C3S,
significant peaks, however, emerge at low frequencies.
This is the evidence of a complex interplay between
acoustic and optical phonons which has also been observed
in the study of VDOS of amorphous silica [50]. As shown
in the enlarged insets of Figs. 5(a)–5(d), KiiðωÞ decays
smoothly at small enough frequencies to its limit value.
To estimate this limit thermal conductivity (kij), we fitted
a power function of the form KijðωÞ ¼ Kij þ ξωζ, where
Kij, ξ, and ζ are estimated using the least-squares approach.
In addition, ten independent simulations with different
initial conditions are performed for each molecular model,
and the mean and standard deviation of the thermal-
conductivity tensor are computed subsequently. Each
simulation is 10 ns long, and qðtÞ is recorded every
0.1 fs for CH and CSH, and every 1.0 fs for β-C2S and
C3S. The thermal conductivity calculated using this method
is found to be close to the average value of thermal
conductivity in the time domain. A particularity of CSH
is that the value of thermal conductivity depends on Δt, the
resolution in which qðtÞ is recorded. In fact, the HFACF
plunges very quickly to zero, meaning that the assessment
of short time-scale behaviors of ΨðtÞ is crucial. To this end,
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we measured the thermal conductivity of CSH with differ-
entΔt resolutions using the above method. The true thermal
conductivity of CSH is then the limit of KijðΔtÞ for
vanishing Δt values. Specifically, we find that the thermal
conductivity of CSH scales linearly with Δt, KijðΔtÞ ¼
ζΔtþ K0

ij, so that the intercept at the origin can be consi-
dered to be the actual thermal conductivity of CSH;
Kij ¼ limΔt→0KijðΔtÞ.
Following the above procedure, the full thermal-

conductivity tensor is computed for all models. In the case
of β-C2S and C3S, we findK to be diagonal (Kij ¼ 0; i ≠ j).
Therefore, the [100], [010], and [001] are the same as
the principal thermal-conductivity directions. For the CH
and CSH models, we generally find that K11 > K22 > K12

andK12 ≫ K0
13; K

0
23. Therefore, the thermal conductivity of

CH and CSH in a Cartesian coordinate system, where 1, 2,
and 3 directions are, respectively, [100], [010], and [001]
crystallographic directions, can be approximated as

K≃
2
64
k11 k12 0

k12 k22 0

0 0 k33

3
75: ð14Þ

This form of the thermal-conductivity tensor presented in
Eq. (14) is not only symmetric but also positive-definite

because of the magnitude of the Kij elements. The tensor
of thermal conductivity can be expressed in terms of its
principal thermal conductivities, the eigenvalues of the K
tensor. The principal thermal-conductivity values for β-C2S,
C3S, CH, 11-Å tobermorite, and a CSH model are summa-
rized in Table II. The three principal conductivity values
for CSH models, KIII < KII < KI, are presented in
Figs. 5(a)–5(c). While the eigenvectors corresponding to
KI and KII are located in the 12 plane (calcium-silicate
layers), the third axis (across the interlayer spacing) is fully
alignedwith the eigenvector associatedwithKIII. Akin to the
anisotropic nature of mechanical properties of CSH [18],
the heat-transport properties also show strong anisotropy
such that the thermal conductivity in the defective calcium-
silicate sheets (12 plane) is statistically larger than that of the
out-of-plane direction (third axis). While the xy plane is
populated with fairly heat conductive Si—O bonds, looser
Ca—O bonds and water molecules in the interlayer space
scatter phonons and diminish the heat transport along the
z direction, perpendicular to the layers.
Despite the clear presence of anisotropy in heat-transport

properties, we find no correlation between the chemical
composition and thermal conductivity of CSH in Fig. 6. To
this end, we investigate the absence of such correlation via
a comparative analysis with crystalline phases. The volume
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thermal conductivity of CSH does not alter with the
Ca∶Si ratio and it is close to that of 11-Å tobermorite
(see Table II). The above Kv values for CSH are close
to those of amorphous silica measured experimentally
[89–93] and calculated numerically [94] and theoretically
[95,96]. Since the variation of the Ca∶Si ratio is merely
achieved by removing SiO2 groups from 11-Å tobermorite,
it can be viewed as a parameter that is inversely propor-
tional to the defect content. In the absence of an interface
and boundaries in the bulk material, there are two phonon
scattering mechanisms: phonon-phonon and phonon-defect
scattering. Assuming that different scattering processes are
independent, Matthiessen’s rule combines the two scatter-
ing mechanisms to an effective process using

1

lm
¼ 1

l̄ph-vacancy
þ 1

l̄ph-ph
; ð15Þ

where lm is the mean free path of phonons and l̄ph-vacancy is
the mean phonon-vacancy scattering length, the distance
that a phonon travels prior to being scattered off a vacancy
defect. l̄ph-ph is the mean phonon-phonon scattering length,
the distance that a phonon travels before being scattered by
another phonon. Matthiessen’s rule specifies two limiting
regimes for phonon transport in a material: vibration-
dominated (l̄ph-ph ≪ l̄ph-vacancy) and defect-dominated

(l̄ph-vacancy ≪ l̄ph-ph) regimes. Therefore, if a material is in
the vibration-dominated regime, then the population of
defects would not affect the heat-transport properties. Here,
the kinetic theory formulation of heat transport can be used
to estimate the characteristic length scale of phonons [97],

Kv ¼ 1
3
ρCvSvlm; ð16Þ

where Sv is the speed of sound estimated by averaging the
longitudinal and transverse sound velocities, Sl and St,
respectively, using [98]

Sv ¼
�
1

3

�
1

S3l
þ 2

S3t

��−1=3
; ð17Þ

where Sl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4gþ 3kÞ=3ρp

and St ¼
ffiffiffiffiffiffiffiffi
g=ρ

p
are the poly-

crystalline averages of these acoustic velocities computed
from the bulk k and shear g moduli and the density
presented in Table I and the Supplemental Material [40],
Table VI. The acoustic velocities and mean free path of
phonons for β-C2S, C3S, CH, 11-Å tobermorite, and a CSH
model are provided in Table II. The mean free path of CSHs
and CH is almost half of that of β-C2S and C3S. The space-
filling structure of the clinker phases explains their rela-
tively high thermal conductivity and the mean free path of

TABLE II. Transport properties of β-C2S (belite), C3S (alite), CH (portlandite), C1.0SH0.5 (11-Å tobermorite), and C1.75SH2.0
including principal thermal conductivity values, volumetric thermal conductivity, longitudinal, transverse, and volumetric acoustic
velocities, and the mean free path of phonons calculated using CSH FF potential.

KI ðW=mKÞ KII ðW=mKÞ KIII ðW=mKÞ Kv ðW=mKÞ Sl ðkm=sÞ St ðkm=sÞ Sv ðkm=sÞ lm (Å)

β-C2S 3.45� 0.4 3.45� 0.4 3.45� 0.4 3.45� 0.4 21.4 12.0 13.3 3.2
C3S 3.35� 0.3 3.35� 0.3 3.35� 0.3 3.35� 0.3 22.4 12.6 14.0 2.9
CH 2.00� 0.2 1.20� 0.2 0.75� 0.2 1.32� 0.2 14.1 7.0 7.9 1.7
C1.0SH0.5 1.25� 0.2 0.95� 0.2 0.74� 0.2 0.98� 0.2 19.9 10.2 11.4 1.4
C1.75SH2.0 1.25� 0.2 0.95� 0.2 0.74� 0.2 0.98� 0.2 19.2 11.67 12.9 1.6
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the phonons. The thermal conductivity values observed
for β-C2S and C3S are close to the thermal conductivity of
crystalline silica [90]. However, the layered structure of
CSH and CH scatters phonons across the interlayer spacing
and significantly reduces the heat transport properties.
In fact, lm is on the order of Si—O and Ca—O bond
lengths (dSi—O ¼ 1.62 Å and dCa—O ¼ 2.42 Å) across the
range of considered Ca∶Si ratios in CSH, which agrees
with experimental measurements of Cahill et al. [89,96] for
fused silica. Therefore, it can be safely assumed that heat
transport in CSH and CH is in the vibration-dominated
regime [Fig. 6(d)]. This explains why the Ca∶Si ratio (or, in
other words, the defect content) does not significantly alter
the thermal conductivity of CSH. Moreover, the absence
of a phonon-defect-scattering mechanism satisfies the scale
separability condition and justifies the use of mean-field
homogenization theories for upscaling purposes.

VI. MACROSCALE THERMAL PROPERTIES

In Secs. IVand V, we explored the effect of chemistry on
the nanoscale equilibrium and nonequilibrium thermophys-
ical properties of various calcium-silicate phases present
in cement paste. In this section, we employ multiscale
modeling techniques to link the nanoscale properties of
individual constituent phases of cement paste to macroscale
properties [79,99–103]. The upscaling of specific-heat
capacity from the atomic scale (level 0) to the macroscale
(level 3) is rather straightforward. Since energy and volume
are extensive thermodynamic quantities, they can be
written as the sum of those quantities for individual phases
in a composite material. Therefore, the constant-pressure
specific-heat capacity of a composite can be considered as a
linear combination of that of individual phases. This also
holds true during the course of chemical reaction involving
m reactive agents (Ri) and n reaction products (Pi),

α1R1 þ � � � þ αmRm → β1P1 þ � � � þ βnPn; ð18Þ
where αi and βi are the number of moles of reactants
and products in the balanced stoichiometry, respectively.
Investigations on the properties of a mixture of reactants
and products can be performed in terms of reaction degree
η, i.e., the mass of reactants at a given time divided by the
total mass of reactants and products. Hence, the constant-
pressure specific-heat capacity of a mixture of reactants and
products in terms of reaction degree can be written as

cmix
p ¼ ð1 − ηÞ

Xm
i¼1

ϕRi
cRi
p þ η

Xm
i¼1

ϕPi
cPi
p ; ð19Þ

where cRi
p and cPi

p are constant-pressure specific-heat
capacities of, respectively, the ith reactant and product.
ϕRi

¼ αiMRi
=
P

iαiMRi
and ϕPi

¼ βiMPi
=
P

iβiMPi
are the

mass fractions of the ith reactant and product with molar
mass MRi

and MPi
, respectively. Traditionally, cement

paste is regarded as a composite of anhydrous clinker
phases and hydration products that, in the case of CSH, is a
nonstoichiometric product [25]. To simplify the complex
cement hydration reaction, we assume a constant stoichi-
ometry for the resultant CSH. Therefore, the hydration
process is written as [25]

C2Sþ zH → C1.7SH1.9 þ 0.3CHþ ðz − 2.2ÞH; ð20Þ

C3Sþ zH → C1.7SH1.9 þ 1.3CHþ ðz − 3.2ÞH; ð21Þ
where z is the number of water moles used in the hydration
and C1.7SH1.9 is the common form of CSH in OPC systems.
In the current work, we neglect the impact on thermal
properties of cement paste from aluminate phases such as
C3A and C4AF and their hydration products.
By juxtaposing Eqs. (18)–(21) and using the specific-

heat-capacity values provided in Table I, the constant-
pressure specific-heat capacity of hydrating cement paste
can be estimated in terms of hydration degree. Figure 7
presents the constant-pressure specific-heat capacities of
three hydrating cement pastes with water-to-cement ratios
(w=c) of 0.3, 0.4, and 0.5 and their comparison with
macroscopic experimental measurements of Bentz [7].
According to Eq. (19), simulation results are necessarily
linear in terms of η and are in qualitatively good agreement
with the experimental measurements. The slight difference
between the experiment and simulation are attributed to the
presence of other phases in OPC systems and the difference
between the properties of bulk and interfacial water.
Nevertheless, both simulation and experiments indicate
that the heat capacity of the paste decreases with increasing
hydration degree. This can be understood by proper
consideration of the role of water during the course of
hydration. The specific-heat capacity of bulk water is
considerably high (4.18 J=gK), which makes the heat
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FIG. 7. The effect of hydration degree on the macroscopic
specific-heat capacity of hydrating cement paste for three water-
to-cement ratios (w=c). The simulation results derived from
atomistic simulation and mixture laws are compared with
experimental measurements of Bentz [7] for w=c ¼ 0.3 and 0.4.
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capacity of the mixture of water and clinker relatively high.
Throughout the hydration process, the water is consumed to
precipitate CSH, which has significantly lower specific-
heat capacity (see Fig. 4). Also, part of this water is trapped
within the CSH molecular structure, which exhibits fea-
tures of supercooled water with considerably lower spe-
cific-heat capacity compared to that of room-temperature
bulk water (see the inset of Fig. 4). Following the same
lines of thought, we infer that the heat capacity of cement
paste increases with increasing w=c ratio. This is confirmed
by both simulation and experiment and can be rationalized
in the sense that the portion of water that does not
contribute to hydration is trapped in the interparticle and
capillary pores. The large specific-heat capacity of
unreacted water in such pores increases the heat capacity
of the cement paste.
Since heat flux is an intensive thermodynamic quantity,

simple composition-based mixture rules are not suitable for
upscaling heat-transport properties in composite materials.
Fortunately, mean-field homogenization theories present a
consistent mechanophysical framework to upscale such
properties in multiphase and multiscale materials. These
micromechanical models [105] are based on the pioneering
work of Eshelby [104], which considers an ellipsoidal
inclusion embedded in an infinite isotropic matrix. From
the homogenized conductivity viewpoint, the system of
randomly oriented anisotropic ellipsoidal inclusions
embedded in an isotropic matrix with perfect interfaces
between matrix and inclusions KM

v is indistinguishable
from the system of spherical inclusions with a volume
thermal conductivity Kv (see the Supplemental Material
[40] for the derivations of micromechanics models).
Therefore, after proper orientational averaging, the homog-
enized thermal conductivity of matrix-inclusion morphol-
ogy (known as the Mori-Tanaka scheme) KMT

v reduces to

KMT
v ¼ fMKM

v þPnp
s¼1 fsK

s
vA

sph
s

fMv þPnp
s¼1 fsA

sph
s

; ð22Þ

where np, fs, and Asph
s ¼ 3KM

v =ð2KM
v þ Ks

vÞ are, respec-
tively, the number of inclusion phases, the volume fraction,
and the spherical localization factor of the sth phase.
Similarly, the homogenized thermal conductivity for
self-consistent morphology KSC

v reduces to

KSC
v ¼

Pnp
s¼1 fsK

s
vB

sph
sPnp

s¼1 fsB
sph
s

; ð23Þ

where Bsph
s ¼ 3KSC

v =ð2KSC
v þ Ks

vÞ is the spherical locali-
zation factor of the sth phase. It is instructive to note that
the mathematical formula for KSC

v has an implicit nature
requiring an iterative procedure to obtain the solutions.
As discussed in Sec. I and schematically shown in

Fig. 1(b), the CSH paste at the mesoscale is assumed to
be comprised of randomly oriented polydisperse CSH

particles with an average size of roughly 5 nm. The
characteristic length of these nanoparticles is much smaller
than the size of the microscale representative elementary
volume and much larger than the mean free path of
phonons in the order of Si—O and Ca—O bonds. This
means that the conditions of scale separability are fully met
between the nano-, meso-, and microscales. Therefore, the
microthermoporomechanics formulation introduced above
is suitable for homogenization of thermal conductivity of
CSH at the mesoscale. Based on the results presented in
Fig. 6, the principal thermal-conductivity values of CSH
are normally distributed and uncorrelated. Hence, we can
treat Eq. (23) in a probabilistic fashion by randomly
choosing the principal thermal-conductivity values of the
CSH particles from normal distributions. Here, we utilize a
Monte-Carlo-uncertainty-propagation scheme to measure
both the expectations and standard deviations of the
homogenized thermal-conductivity values at microscale.
Figure 8(a) presents the homogenized thermal conductivity
of CSH paste at microscale for two limiting cases of fully
saturated and dry mesopores, as a function of the CSH
packing density, ζ ¼ 1 − φ, where φ is the mesoporosity.
Since the bulk thermal conductivity values of air and water
are lower than that of CSH, the thermal conductivity of
CSH paste decreases with increasing porosity. Note that in
nanoporous media in contact with the outside air, the
composition of confined air will not be that of the outside
air. When engineering the CSH heat conduction properties,
there are two design parameters: the mesostructure design
and the saturation degree of mesopores. Constantinides and
Ulm [16] showed that CSH nanoparticles coalesce at 64%
and 76% packing fractions, attributing them to low-density
(LD) and high-density (HD) CSHs. Given the two limiting
saturation levels and the two packing fractions, the upper
and lower bounds of CSH paste’s thermal conductivity can
be identified. These bounds are displayed by numbered
red and black rectangles in Fig. 8(a), where the saturated
HD (rectangle 1) and dry LD (rectangle 4) CSHs have,
respectively, the highest and lowest homogenized thermal
conductivity values.
The cement paste at microscale can be assumed to be a

multiphase composite consisting of CSH paste embracing
anhydrous clinker phases, portlandite, and fluid inside
capillary pores [see Fig. 1(c) and relevant discussion in
Sec. I]. The microstructure of cement paste at this scale is
akin to that of a matrix-inclusion morphology. Therefore,
the Mori-Tanaka scheme would be the method of choice
for upscaling the thermal conductivity of individual phases
at microscale (level 2) to that of macroscale (level 3). Over
the course of cement hydration [see Eqs. (20), (21), (18)],
the volume fractions of individual phases (fi) (reactant
or product) are known from the reaction degree η and
their mass density ρi (see Table I). Therefore, the homog-
enized thermal conductivity of cement paste can be
implicitly expressed in terms of hydration degree and
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the thermal-conductivity values of individual phases
(Table II) through Eq. (22). Figure 8(b) presents the thermal
conductivity as a function of hydration degree for resulting
cement pastes produced from the hydration of pure C2S and
C3S clinkers at different w=c ratios (w=c ¼ 0.3 and 0.5) for
saturated meso- and micropores compared with experi-
mental measurements of Bentz [7] for cement of varying
w=c ratio and curing conditions. Here, we focus on later
stages of hydration (0.5 < η < 1) as other modes of heat
transport related to dissolution and precipitation mecha-
nisms are rather negligible. We observe that the thermal
conductivity of cement paste decreases with increasing
hydration degree in agreement with experimental observa-
tions of Mounanga et al. as a function of hydration time
[106]. This is because thermal-conductivity values of
clinker phases are higher than those of hydration products
(CSH and CH). Figure 8(b) indicates that the macroscopic
thermal conductivity of cement paste decreases with
increasing w=c ratio in full agreement with recent experi-
ments of Maruyama and Igarashi [10]. While the volume
fraction of portlandite decreases with increasing w=c ratio,
the volume fraction of unreacted water increases.
Considering that the thermal conductivity of bulk water
is less than that of portlandite, then it would make sense
that the thermal conductivity of cement paste at macroscale
decreases with increasing w=c ratio.

VII. CONCLUSIONS

In this work, thermal properties of cement paste are
studied via a multiscale bottom-up approach, starting from
the nanoscale by calculating properties of individual
constituent phases and connecting them to macroscale

properties using mean-field homogenization theories.
At the nanoscale, the phonon density of states of CSHs,
CH, β-C2S, and C3S and the components’ atomic con-
tributions are studied in detail via the diagonalization of the
dynamical matrix and velocity autocorrelation functions.
Analogous to glassy materials, we find CSH to exhibit
excess of vibrational states characterized by the boson peak
at the low-frequency region. The position of the boson peak
shifts to higher frequencies with increasing CSH density or,
equivalently, by decreasing the Ca∶Si ratio. The constant
volume and pressure specific-heat capacities are calculated
for individual phases including 11-Å tobermorite. We
find that the specific-heat capacity of dry and saturated
CSH models increases linearly with the Ca∶Si ratio.
The apparent heat capacity of nanoconfined water in the
interlayer spacing of CSH is determined to be significantly
lower than that of bulk water at room temperature due to
strong interaction with the calcium-silicate substrate. We
measure the full thermal-conductivity tensor of individual
phases using the Green-Kubo relation. The Fourier trans-
formation of the heat-flux autocorrelation function reveals
long-lasting sharp frequencies associated with optical
phonons with zero group velocities that do not contribute
to the thermal conduction in these complex systems. In
addition, the mean free path of phonons in different phases
are estimated to be on the order of Si—O and Ca—O bond
lengths. The short mean free path of phonons in the cement-
paste-constituent phases meets the condition of scale
separability. We demonstrate the variation of the macro-
scopic heat capacity of cement paste in terms of the
hydration degree using mixture rules. The macroscopic
heat-capacity values predicted via our multiscale bottom-up

FIG. 8. The mean-field homogenization of thermal conductivity values at the meso- and microscales. (a) The effects of CSH
mesostructure (packing density) and saturation degree on the thermal conductivity of CSH paste estimated via probabilistic
microthermoporomechanics. (b) The effect of w=c ratio, saturation degree, and the type of clinker phase on macroscale thermal
conductivity of hydrating cement paste compared with experimental measurements of Bentz [7] for hydrating cement pastes.
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approach are in good qualitative agreement with experi-
ments. We show that the homogenized thermal conduc-
tivity of CSH paste at microscale is only affected by the
packing density and the saturation level of the CSH
mesopores. Our theoretical study indicates that the macro-
scopic thermal-conductivity values should decrease with
increasing w=c ratio in later stages of hydration degree.
Overall, this work provides a bottom-up framework for
upscaling thermal properties with potentially broad appli-
cations in multiscale and multiphase porous materials.
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[6] Ramazan Demirboǧa, Influence of mineral admixtures on
thermal conductivity and compressive strength of mortar,
Energy Build. 35, 189 (2003).

[7] D. P. Bentz, Transient plane source measurements of the
thermal properties of hydrating cement pastes, Mater.
Construc. Mater. Structures 40, 1073 (2007).

[8] Seyoon Yoon, Donald E. Macphee, and Mohammed S.
Imbabi, Estimation of the thermal properties of hardened

cement paste on the basis of guarded heat flow meter
measurements, Thermochim. Acta 588, 1 (2014).

[9] D. Mikulic, B. Milovanovic, and I. Gabrijel, in Nondestru-
ctive Testing of Materials and Structures, RILEM Books-
eries Vol. 6, edited by Oguz Gunes and Yılmaz Akkaya
(Springer Netherlands, Dordrecht, 2013) pp. 465–471.

[10] Ippei Maruyama and Go Igarashi, Cement reaction and
resultant physical properties of cement paste, J. Adv.
Concr. Technol. 12, 200 (2014).

[11] Yunsheng Xu and D. D. L. Chung, Effect of sand addition
on the specific heat and thermal conductivity of cement,
Cem. Concr. Res. 30, 59 (2000).

[12] A. Abdelalim, S. Abdallah, K. Easawi, S. Negm, and H.
Talaat, Thermal properties of hydrated cement pastes
studied by the photoacoustic technique, J. Phys. Conf.
Ser. 214, 012136 (2010).

[13] E. Masoero, E. Del Gado, R. J.-M. Pellenq, F.-J. Ulm, and
S. Yip, Nanostructure and Nanomechanics of Cement:
Polydisperse Colloidal Packing, Phys. Rev. Lett. 109,
155503 (2012).

[14] Andrew J. Allen, Jeffrey J. Thomas, and Hamlin M.
Jennings, Composition and density of nanoscale calcium-
silicate-hydrate in cement, Nat. Mater. 6, 311 (2007).

[15] W.-S. Chiang, G. Ferraro, E. Fratini, F. Ridi, Y.-Q. Yeh,
U-S. Jeng, S.-H. Chen, and P. Baglioni, Multiscale
structure of calcium- and magnesium-silicate-hydrate gels,
J. Mater. Chem. A 2, 12991 (2014).

[16] Georgios Constantinides and Franz-Josef Ulm, The nano-
granular nature of C-S-H, J. Mech. Phys. Solids 55, 64
(2007).

[17] Luc Dormieux, Djimedo Kondo, and Franz-Jozef Ulm,
Microporomechanics, 1st ed. (Wiley, Hoboken, NJ,
2006).

[18] M. J. Abdolhosseini Qomi, K. J. Krakowiak, M. Bauchy,
K. L. Stewart, R. Shahsavari, D. Jagannathan, D. B.
Brommer, A. Baronnet, M. J. Buehler, S. Yip, F.-J. Ulm,
K. J. Van Vliet, and R. J.-M. Pellenq, Combinatorial
molecular optimization of cement hydrates, Nat. Commun.
5, 4960 (2014).

[19] M. Bauchy, M. J. Abdolhosseini Qomi, F.-J. Ulm, and
R. J.-M. Pellenq, Order and disorder in calcium-silicate-
hydrate, J. Chem. Phys. 140, 214503 (2014).

[20] Mathieu Bauchy, Mohammad Javad Abdolhosseini Qomi,
Christophe Bichara, Franz-Joseph Ulm, and Roland J.-M.
Pellenq, Nanoscale structure of cement: Viewpoint of
rigidity theory, J. Phys. Chem. C 118, 12485 (2014).

[21] M. Bauchy, M. J. Abdolhosseini Qomi, C. Bichara, F.-J.
Ulm, and R. J.-M. Pellenq, arXiv:1410.2916.

[22] M. Bauchy, H. Laubie, M. J. Abdolhosseini Qomi, C. G.
Hoover, F.-J. Ulm, and R. J.-M. Pellenq, Fracture tough-
ness of calcium-silicate-hydrate from molecular dynamics
simulations, J. Non-Cryst. Solids 419, 58 (2015).

[23] Mathieu Bauchy, Mohammad Javad Abdolhosseine Qomi,
Christophe Bichara, F. J. Ulm, and Roland J.-M. Pellenq,
Rigidity Transition in Materials: Hardness Is Driven by
Weak Atomic Constraints, Phys. Rev. Lett. 114, 125502
(2015).

[24] Mohammad Javad Abdolhosseini Qomi, Mathieu Bauchy,
Franz-Josef Ulm, and Roland J.-M. Pellenq, Anomalous
composition-dependent dynamics of nanoconfined water

ABDOLHOSSEINI QOMI, ULM, AND PELLENQ PHYS. REV. APPLIED 3, 064010 (2015)

064010-14

http://dx.doi.org/10.1061/(ASCE)0733-9399(2001)127:5(512)
http://dx.doi.org/10.1680/macr.1995.47.172.203
http://dx.doi.org/10.1680/macr.1995.47.172.203
http://dx.doi.org/10.1016/S0008-8846(02)00965-1
http://dx.doi.org/10.1016/S0008-8846(02)01032-3
http://dx.doi.org/10.1016/S0008-8846(02)01032-3
http://dx.doi.org/10.1016/S0378-7788(02)00052-X
http://dx.doi.org/10.1617/s11527-006-9206-9
http://dx.doi.org/10.1617/s11527-006-9206-9
http://dx.doi.org/10.1016/j.tca.2014.04.015
http://dx.doi.org/10.3151/jact.12.200
http://dx.doi.org/10.3151/jact.12.200
http://dx.doi.org/10.1016/S0008-8846(99)00206-9
http://dx.doi.org/10.1088/1742-6596/214/1/012136
http://dx.doi.org/10.1088/1742-6596/214/1/012136
http://dx.doi.org/10.1103/PhysRevLett.109.155503
http://dx.doi.org/10.1103/PhysRevLett.109.155503
http://dx.doi.org/10.1038/nmat1871
http://dx.doi.org/10.1039/C4TA02479F
http://dx.doi.org/10.1016/j.jmps.2006.06.003
http://dx.doi.org/10.1016/j.jmps.2006.06.003
http://dx.doi.org/10.1038/ncomms5960
http://dx.doi.org/10.1038/ncomms5960
http://dx.doi.org/10.1063/1.4878656
http://dx.doi.org/10.1021/jp502550z
http://arXiv.org/abs/1410.2916
http://dx.doi.org/10.1016/j.jnoncrysol.2015.03.031
http://dx.doi.org/10.1103/PhysRevLett.114.125502
http://dx.doi.org/10.1103/PhysRevLett.114.125502


in the interlayer of disordered calcium-silicates, J. Chem.
Phys. 140, 054515 (2014).

[25] H. F. W. Taylor, Cement Chemistry, 2nd ed. (Thomas
Telford, London, 1997).

[26] M. Bigaré, A. Guinier, C. Maziéres, M. Regourd, N.
Yannaquis, W. Eysbl, Th. Hahn, and E. Woermann,
Polymorphism of tricalcium silicate and its solid solutions,
J. Am. Ceram. Soc. 50, 609 (1967).

[27] Ángeles G. De La Torre, Sebastián Bruque, Javier Campo,
and Miguel A. G. Aranda, The superstructure of C3S from
synchrotron and neutron powder diffraction and its role
in quantitative phase analyses, Cem. Concr. Res. 32, 1347
(2002).

[28] D. K. Smith, A. Majumdar, and F. Ordway, The crystal
structure of dicalcium silicate, Acta Crystallogr. 18, 787
(1965).

[29] C. M. Midgley, The crystal structure of dicalcium silicate,
Acta Crystallogr. 5, 307 (1952).

[30] K. E. Hudson and G.W. Groves, The structure of alite in
portland cement clinker—TEM evidence, Cem. Concr.
Res. 12, 61 (1982).

[31] Hegoi Manzano, Engin Durgun, Mohammed Javad
Abdolhosseine Qomi, Franz-Josef Ulm, Roland. J. M.
Pellenq, and Jeffrey. C. Grossman, Impact of chemical
impurities on the crystalline cement clinker phases deter-
mined by atomistic simulations, Cryst. Growth Des. 11,
2964 (2011).

[32] D. M. Henderson and S. H. Gutowsky, A nuclear magnetic
resonance determination of the hydrogen positions in
CaðOHÞ2, Am. Mineral. 47, 1231 (1962).

[33] Sa Hamid, The crystal-structure of the 11a natural tober-
morite Ca2.25½Si3O7.5ðOHÞ1.5�H2O, Z. Kristallogr. 154, 189
(1981).

[34] Mohammad Javad Abdolhosseini Qomi, Franz-Josef Ulm,
and Roland J.-M. Pellenq, Evidence on the dual nature of
aluminum in the calcium-silicate-hydrates based on atom-
istic simulations, J. Am. Ceram. Soc. 95, 1128 (2012).

[35] György Hantal, Laurent Brochard, Hadrien Laubie,
Davoud Ebrahimi, Roland J.-M. Pellenq, Franz-Josef
Ulm, and Benoit Coasne, Atomic-scale modelling of elastic
and failure properties of clays,Mol. Phys. 112, 1294 (2014).

[36] S. Plimpton, Fast parallel algorithms for short-range
molecular dynamics, J. Comput. Phys. 117, 1 (1995).

[37] J. D. Gale, GULP: A computer program for the symmetry-
adapted simulation of solids, J. Chem. Soc., Faraday Trans.
2 93, 629 (1997).

[38] J. D. Gale and A. L. Rohl, The General Utility Lattice
Program (GULP), Mol. Simul. 29, 291 (2003).

[39] Rouzbeh Shahsavari, Roland J.-M. Pellenq, and Franz-
Josef Ulm, Empirical force fields for complex hydrated
calcio-silicate layered materials, Phys. Chem. Chem. Phys.
13, 1002 (2011).

[40] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevApplied.3.064010 for de-
tails of the force field, its transferability to crystalline
phases, and the microthermoporomechanics model.

[41] D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht,
Exact method for the simulation of Coulombic systems
by spherically truncated, pairwise r1 summation, J. Chem.
Phys. 110, 8254 (1999).

[42] G. Constantinides and F. J. Ulm, The effect of two types
of C-S-H on the elasticity of cement-based materials:
Results from nanoindentation and micromechanical mod-
eling, Cem. Concr. Res. 34, 67 (2004).

[43] Paul Acker, in Creep, Shrinkage, and Durability Mechan-
ics of Concrete and Other Quasi-Brittle Materials
(Elsevier, London, 2001), pp. 15–25.

[44] F. H. Wittmann, Estimation of the modulus of elasticity of
calcium hydroxide, Cem. Concr. Res. 16, 971 (1986).

[45] Paulo J. M. Monteiro and C. T. Chang, The elastic moduli
of calcium hydroxide, Cem. Concr. Res. 25, 1605 (1995).

[46] Karine Velez, Sandrine Maximilien, Denis Damidot,
Gilbert Fantozzi, and Fransois Sorrentino, Determination
by nanoindentation of elastic modulus and hardness of
pure constituents of portland cement clinker, Cem. Concr.
Res. 31, 555 (2001).

[47] B. Mihailova, N. Zotov, M. Marinov, J. Nikolov, and
L. Konstantinov, Vibrational spectra of rings in silicate
glasses, J. Non-Cryst. Solids 168, 265 (1994).

[48] Hendrik J. Monkhorst and James D. Pack, Special points
for Brillouin-zone integrations, Phys. Rev. B 13, 5188
(1976).

[49] PingYu,R. JamesKirkpatrick, Brent Poe, Paul F.McMillan,
and Xiandong Cong, Structure of calcium silicate hydrate
(C-S-H): Near-, mid-, and far-infrared spectroscopy, J. Am.
Ceram. Soc. 82, 742 (1999).

[50] S. N. Taraskin and S. R. Elliott, Nature of vibrational
excitations in vitreous silica, Phys. Rev. B 56, 8605 (1997).

[51] FrancescoSette,MichaelH.Krisch,ClaudioMasciovecchio,
Giancarlo Ruocco, andGiulioMonaco, Dynamics of glasses
and glass-forming liquids studied by inelastic x-ray scatter-
ing, Science 280, 1550 (1998).

[52] R. C. Zeller and R. O. Pohl, Thermal conductivity and
specific heat of noncrystalline solids, Phys. Rev. B 4, 2029
(1971).

[53] A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and
A. Wischnewski, Comparison of Raman- and neutron-
scattering data for glass-forming systems, Phys. Rev. B 52,
R9815 (1995).

[54] Hiroshi Shintani and Hajime Tanaka, Universal link
between the boson peak and transverse phonons in glass,
Nat. Mater. 7, 870 (2008).

[55] T. S.Grigera, V.Martín-Mayor,G. Parisi, and P.Verrocchio,
Phonon interpretation of the boson peak in supercooled
liquids, Nature (London) 422, 289 (2003).

[56] E. Duval, A. Boukenter, and T. Achibat, Vibrational
dynamics and the structure of glasses, J. Phys. Condens.
Matter 2, 10227 (1990).

[57] Hajime Tanaka, Physical origin of the boson peak deduced
from a two-order-parameter model of liquid, J. Phys. Soc.
Jpn. 70, 1178 (2001).

[58] U. Buchenau, N. Nücker, and A. J. Dianoux, Neutron
Scattering Study of the Low-Frequency Vibrations in
Vitreous Silica, Phys. Rev. Lett. 53, 2316 (1984).

[59] Bertrand Guillot and Yves Guissani, Boson Peak and High
Frequency Modes in Amorphous Silica, Phys. Rev. Lett.
78, 2401 (1997).

[60] D. A. Parshin, H. R. Schober, and V. L. Gurevich, Vibra-
tional instability, two-level systems, and the boson peak in
glasses, Phys. Rev. B 76, 064206 (2007).

PHYSICAL ORIGINS OF THERMAL PROPERTIES OF … PHYS. REV. APPLIED 3, 064010 (2015)

064010-15

http://dx.doi.org/10.1063/1.4864118
http://dx.doi.org/10.1063/1.4864118
http://dx.doi.org/10.1111/j.1151-2916.1967.tb15009.x
http://dx.doi.org/10.1016/S0008-8846(02)00796-2
http://dx.doi.org/10.1016/S0008-8846(02)00796-2
http://dx.doi.org/10.1107/S0365110X65001780
http://dx.doi.org/10.1107/S0365110X65001780
http://dx.doi.org/10.1107/S0365110X52000964
http://dx.doi.org/10.1016/0008-8846(82)90099-0
http://dx.doi.org/10.1016/0008-8846(82)90099-0
http://dx.doi.org/10.1021/cg200212c
http://dx.doi.org/10.1021/cg200212c
http://dx.doi.org/10.1524/zkri.1981.154.3-4.189
http://dx.doi.org/10.1524/zkri.1981.154.3-4.189
http://dx.doi.org/10.1111/j.1551-2916.2011.05058.x
http://dx.doi.org/10.1080/00268976.2014.897393
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1039/a606455h
http://dx.doi.org/10.1039/a606455h
http://dx.doi.org/10.1080/0892702031000104887
http://dx.doi.org/10.1039/C0CP00516A
http://dx.doi.org/10.1039/C0CP00516A
http://link.aps.org/supplemental/10.1103/PhysRevApplied.3.064010
http://link.aps.org/supplemental/10.1103/PhysRevApplied.3.064010
http://link.aps.org/supplemental/10.1103/PhysRevApplied.3.064010
http://link.aps.org/supplemental/10.1103/PhysRevApplied.3.064010
http://link.aps.org/supplemental/10.1103/PhysRevApplied.3.064010
http://link.aps.org/supplemental/10.1103/PhysRevApplied.3.064010
http://link.aps.org/supplemental/10.1103/PhysRevApplied.3.064010
http://dx.doi.org/10.1063/1.478738
http://dx.doi.org/10.1063/1.478738
http://dx.doi.org/10.1016/S0008-8846(03)00230-8
http://dx.doi.org/10.1016/0008-8846(86)90021-9
http://dx.doi.org/10.1016/0008-8846(95)00154-9
http://dx.doi.org/10.1016/S0008-8846(00)00505-6
http://dx.doi.org/10.1016/S0008-8846(00)00505-6
http://dx.doi.org/10.1016/0022-3093(94)90338-7
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01826.x
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01826.x
http://dx.doi.org/10.1103/PhysRevB.56.8605
http://dx.doi.org/10.1126/science.280.5369.1550
http://dx.doi.org/10.1103/PhysRevB.4.2029
http://dx.doi.org/10.1103/PhysRevB.4.2029
http://dx.doi.org/10.1103/PhysRevB.52.R9815
http://dx.doi.org/10.1103/PhysRevB.52.R9815
http://dx.doi.org/10.1038/nmat2293
http://dx.doi.org/10.1038/nature01475
http://dx.doi.org/10.1088/0953-8984/2/51/001
http://dx.doi.org/10.1088/0953-8984/2/51/001
http://dx.doi.org/10.1143/JPSJ.70.1178
http://dx.doi.org/10.1143/JPSJ.70.1178
http://dx.doi.org/10.1103/PhysRevLett.53.2316
http://dx.doi.org/10.1103/PhysRevLett.78.2401
http://dx.doi.org/10.1103/PhysRevLett.78.2401
http://dx.doi.org/10.1103/PhysRevB.76.064206


[61] N. J. Tao, G. Li, X. Chen, W. M. Du, and H. Z. Cummins,
Low-frequency Raman-scattering study of the liquid-glass
transition in aqueous lithium chloride solutions, Phys. Rev.
A 44, 6665 (1991).

[62] D. Engberg, A. Wischnewski, U. Buchenau, L. Börjesson,
A. J. Dianoux, A. P. Sokolov, and L. M. Torell, Origin of
the boson peak in a network glass B2O3, Phys. Rev. B 59,
4053 (1999).

[63] A. Wischnewski, U. Buchenau, A. J. Dianoux, W. A.
Kamitakahara, and J. L. Zarestky, Sound-wave scattering
in silica, Phys. Rev. B 57, 2663 (1998).

[64] S. Sugai and A. Onodera, Medium-Range Order in
Permanently Densified SiO2 and GeO2 Glass, Phys.
Rev. Lett. 77, 4210 (1996).

[65] P. Jund and R. Jullien, Densification effects on the boson
peak in vitreous silica: A molecular-dynamics study,
J. Chem. Phys. 113, 2768 (2000).

[66] A. Monaco, A. I. Chumakov, G. Monaco, W. A. Crichton,
A. Meyer, L. Comez, D. Fioretto, J. Korecki, and R. Rüffer,
Effect of Densification on the Density of Vibrational States
of Glasses, Phys. Rev. Lett. 97, 135501 (2006).

[67] L. Hong, B. Begen, A. Kisliuk, C. Alba-Simionesco, V. N.
Novikov, and A. P. Sokolov, Pressure and density depend-
ence of the boson peak in polymers, Phys. Rev. B 78,
134201 (2008).

[68] Charles Kittel, Introduction to Solid State Physics, 8th ed.
(Wiley, Hoboken, NJ, 2004).

[69] Thomas Matschei, Barbara Lothenbach, and Fredrik P.
Glasser, Thermodynamic properties of portland cement hy-
drates in the systemCaO-Al2O3-SiO2-CaSO4-CaCO3-H2O,
Cem. Concr. Res. 37, 1379 (2007).

[70] Siavash Ghabezloo, Micromechanics analysis of thermal
expansion and thermal pressurization of a hardened cement
paste, Cem. Concr. Res. 41, 520 (2011).

[71] John A. Thomas, Joseph E. Turney, Ryan M. Iutzi, Cristina
H. Amon, and Alan J. H. McGaughey, Predicting phonon
dispersion relations and lifetimes from the spectral energy
density, Phys. Rev. B 81, 081411 (2010).

[72] I. G. Richardson, The calcium silicate hydrates, Cem.
Concr. Res. 38, 137 (2008).

[73] Jeffrey J. Thomas, Hamlin M. Jennings, and Andrew J.
Allen, Relationships between composition and density
of tobermorite, jennite, and nanoscale CaO-SiO2-H2O,
J. Phys. Chem. C 114, 7594 (2010).

[74] Arnaud C. A. Muller, Karen L. Scrivener, Agata M.
Gajewicz, and Peter J. McDonald, Densification of
C-S-H measured by 1H NMR relaxometry, J. Phys. Chem.
C 117, 403 (2013).

[75] S. S. Todd, Low-temperature heat capacities and entropies
at 298.16 K. of crystalline calcium orthosilicate, zinc
orthosilicate and tricalcium silicate, J. Am. Chem. Soc.
73, 3277 (1951).

[76] Christoph Clauser and Ernst Huenges, in Rock Physics
and Phase Relations, Vol. 1, edited by Thomas J. Ahrens
(American Geophysical Union, New York, 1995),
pp. 105–126.

[77] E. Tombari, G. Salvetti, C. Ferrari, and G. P. Johari, Heat
capacity of water in nanopores, J. Chem. Phys. 123,
214706 (2005).

[78] Bruce S. Hemingway, Quartz: Heat capacities from 340 to
1000 K and revised values for the thermodynamic proper-
ties, Am. Mineral. 72, 273 (1987).

[79] M. J. Abdolhosseini Qomi, A. Aghaei, and A. R. Khoei,
Multi-scale modeling of surface effect via the boundary
Cauchy-Born method, Int. J. Numer. Methods Eng. 85,
827 (2011).

[80] Takahiro Kuroki, Noboru Kagawa, Harumi Endo, Seizou
Tsuruno, and Joseph W. Magee, Specific heat capacity at
constant volume for water, methanol, and their mixtures at
temperatures from 300 K to 400 K and pressures to
20 MPa, J. Chem. Eng. Data 46, 1101 (2001).

[81] C. Austen Angell, Insights into phases of liquid water from
study of its unusual glass-forming properties, Science 319,
582 (2008).

[82] Donald A McQuarrie, Statistical Mechanics, 1st ed.
(Harper and Row, New York, 1975).

[83] Patrick K. Schelling, Simon R. Phillpot, and Pawel
Keblinski, Comparison of atomic-level simulation meth-
ods for computing thermal conductivity, Phys. Rev. B 65,
144306 (2002).

[84] Young Hee Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang,
C. T. Chan, and K. M. Ho, Molecular-dynamics simulation
of thermal conductivity in amorphous silicon, Phys. Rev. B
43, 6573 (1991).

[85] Konstantin V. Tretiakov and Sandro Scandolo, Thermal
conductivity of solid argon from molecular dynamics
simulations, J. Chem. Phys. 120, 3765 (2004).

[86] Joseph M. Powers, On the necessity of positive semi-
definite conductivity and Onsager reciprocity in modeling
heat conduction in anisotropic media, J. Heat Transfer 126,
670 (2004).

[87] W. A. Day and Morton E. Gurtin, On the symmetry of the
conductivity tensor and other restrictions in the nonlinear
theory of heat conduction, Arch. Ration. Mech. Anal. 33,
26 (1969).

[88] E. S. Landry, M. I. Hussein, and A. J. H. McGaughey,
Complex superlattice unit cell designs for reduced thermal
conductivity, Phys. Rev. B 77, 184302 (2008).

[89] D. G. Cahill and R. O. Pohl, Lattice vibrations and heat
transport in crystals and glasses, Annu. Rev. Phys. Chem.
39, 93 (1988).

[90] E. H. Ratcliffe, Thermal conductivities of fused and
crystalline quartz, Br. J. Appl. Phys. 10, 22 (1959).

[91] David G. Cahill, S.-M. Lee, and Torbjorn I. Selinder,
Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-
resistant coatings, J. Appl. Phys. 83, 5783 (1998).

[92] Y. S. Touloukian, Thermal Conductivity: Nonmetallic
Solids, 1st ed. (Springer, New York, 1971).

[93] A. Eucken, Ann. Phys. (Berlin) 339, 185 (1911).
[94] Philippe Jund and Rémi Jullien, Molecular-dynamics

calculation of the thermal conductivity of vitreous silica,
Phys. Rev. B 59, 13707 (1999).

[95] Philip B. Allen and Joseph L. Feldman, Thermal Conduc-
tivity of Glasses: Theory and Application to Amorphous
Si, Phys. Rev. Lett. 62, 645 (1989).

[96] David G. Cahill and R. O. Pohl, Heat flow and lattice
vibrations in glasses, Solid State Commun. 70, 927
(1989).

ABDOLHOSSEINI QOMI, ULM, AND PELLENQ PHYS. REV. APPLIED 3, 064010 (2015)

064010-16

http://dx.doi.org/10.1103/PhysRevA.44.6665
http://dx.doi.org/10.1103/PhysRevA.44.6665
http://dx.doi.org/10.1103/PhysRevB.59.4053
http://dx.doi.org/10.1103/PhysRevB.59.4053
http://dx.doi.org/10.1103/PhysRevB.57.2663
http://dx.doi.org/10.1103/PhysRevLett.77.4210
http://dx.doi.org/10.1103/PhysRevLett.77.4210
http://dx.doi.org/10.1063/1.1305861
http://dx.doi.org/10.1103/PhysRevLett.97.135501
http://dx.doi.org/10.1103/PhysRevB.78.134201
http://dx.doi.org/10.1103/PhysRevB.78.134201
http://dx.doi.org/10.1016/j.cemconres.2007.06.002
http://dx.doi.org/10.1016/j.cemconres.2011.01.023
http://dx.doi.org/10.1103/PhysRevB.81.081411
http://dx.doi.org/10.1016/j.cemconres.2007.11.005
http://dx.doi.org/10.1016/j.cemconres.2007.11.005
http://dx.doi.org/10.1021/jp910733x
http://dx.doi.org/10.1021/jp3102964
http://dx.doi.org/10.1021/jp3102964
http://dx.doi.org/10.1021/ja01151a084
http://dx.doi.org/10.1021/ja01151a084
http://dx.doi.org/10.1063/1.2131063
http://dx.doi.org/10.1063/1.2131063
http://dx.doi.org/10.1002/nme.2995
http://dx.doi.org/10.1002/nme.2995
http://dx.doi.org/10.1021/je0002437
http://dx.doi.org/10.1126/science.1131939
http://dx.doi.org/10.1126/science.1131939
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1103/PhysRevB.43.6573
http://dx.doi.org/10.1103/PhysRevB.43.6573
http://dx.doi.org/10.1063/1.1642611
http://dx.doi.org/10.1115/1.1798913
http://dx.doi.org/10.1115/1.1798913
http://dx.doi.org/10.1007/BF00248154
http://dx.doi.org/10.1007/BF00248154
http://dx.doi.org/10.1103/PhysRevB.77.184302
http://dx.doi.org/10.1146/annurev.pc.39.100188.000521
http://dx.doi.org/10.1146/annurev.pc.39.100188.000521
http://dx.doi.org/10.1088/0508-3443/10/1/306
http://dx.doi.org/10.1063/1.367500
http://dx.doi.org/10.1002/andp.19113390202
http://dx.doi.org/10.1103/PhysRevB.59.13707
http://dx.doi.org/10.1103/PhysRevLett.62.645
http://dx.doi.org/10.1016/0038-1098(89)90630-3
http://dx.doi.org/10.1016/0038-1098(89)90630-3


[97] J. M. Ziman, Electrons and Phonons: The Theory of
Transport Phenomena in Solids, 1st ed. (Oxford University
Press, New York, 2001).

[98] Somnath Bhowmick and Vijay B. Shenoy, Effect of strain
on the thermal conductivity of solids, J. Chem. Phys. 125,
164513 (2006).

[99] A. R. Khoei, M. J. Abdolhosseini Qomi, M. T. Kazemi,
and A. Aghaei, An investigation on the validity of
Cauchy-Born hypothesis using Sutton-Chen many-body
potential, Comput. Mater. Sci. 44, 999 (2009).

[100] A. Aghaei, M. J. Abdolhosseini Qomi, M. T. Kazemi,
and A. R. Khoei, Stability and size-dependency of
Cauchy-Born hypothesis in three-dimensional applica-
tions, Int. J. Solids Struct. 46, 1925 (2009).

[101] A. R. Khoei, P. Ghahremani, M. J. Abdolhosseini Qomi,
and P. Banihashemi, Stability and size-dependency of
temperature-related Cauchy-Born hypothesis, Comput.
Mater. Sci. 50, 1731 (2011).

[102] Davoud Ebrahimi, Andrew J. Whittle, and Roland J.-M.
Pellenq, Mesoscale properties of clay aggregates from
potential of mean force representation of interactions
between nanoplatelets, J. Chem. Phys. 140, 154309
(2014).

[103] Davoud Ebrahimi, Roland J.-M. Pellenq, and Andrew J.
Whittle, Nanoscale elastic properties of montmorillonite
upon water adsorption, Langmuir 28, 16855 (2012).

[104] J. D. Eshelby, The determination of the elastic field of an
ellipsoidal inclusion, and related problems, Proc. R. Soc. A
241, 376 (1957).

[105] H. Hatta and M. Taya, Effective thermal conductivity of a
misoriented short fiber composite, J. Appl. Phys. 58, 2478
(1985).

[106] P. Mounanga, A. Khelidj, and G. Bastian, Experimental
study and modelling approaches for the thermal conduc-
tivity evolution of hydrating cement paste, Adv. Cem. Res.
16, 95 (2004).

PHYSICAL ORIGINS OF THERMAL PROPERTIES OF … PHYS. REV. APPLIED 3, 064010 (2015)

064010-17

http://dx.doi.org/10.1063/1.2361287
http://dx.doi.org/10.1063/1.2361287
http://dx.doi.org/10.1016/j.commatsci.2008.07.022
http://dx.doi.org/10.1016/j.ijsolstr.2009.01.013
http://dx.doi.org/10.1016/j.commatsci.2011.01.004
http://dx.doi.org/10.1016/j.commatsci.2011.01.004
http://dx.doi.org/10.1063/1.4870932
http://dx.doi.org/10.1063/1.4870932
http://dx.doi.org/10.1021/la302997g
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1063/1.335924
http://dx.doi.org/10.1063/1.335924
http://dx.doi.org/10.1680/adcr.2004.16.3.95
http://dx.doi.org/10.1680/adcr.2004.16.3.95

