
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2015-025 July 2, 2015

PhD Thesis Proposal: Human-Machine
Collaborative Optimization via
Apprenticeship Scheduling
Matthew C. Gombolay

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PH.D. THESIS PROPOSAL

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

Human-Machine Collaborative Optimization via
Apprenticeship Scheduling

Ph.D. Candidate:
Matthew GOMBOLAY

Thesis Committee:
Prof. Hamsa BALAKRISHNAN
Prof. Bilge MUTLU
Prof. Julie SHAH (Chair)
Prof. Peter SZOLOVITS
Prof. Andrea THOMAZ

External Evaluator:
Prof. Warren HOBURG

June 28, 2015

1

Abstract

Resource optimization in health care, manufacturing, and military operations requires the careful choreography of people
and equipment to effectively fulfill the responsibilities of the profession. However, resource optimization is a computationally
challenging problem, and poorly utilizing resources can have drastic consequences. Within these professions, there are human
domain experts who are able to learn from experience to develop strategies, heuristics, and rules-of-thumb to effectively utilize
the resources at their disposal. Manually codifying these heuristics within a computational tool is a laborious process and leaves
much to be desired. Even with a codified set of heuristics, it is not clear how to best insert an autonomous decision-support
system into the human decision-making process. The aim of this thesis is to develop an autonomous computational method for
learning domain-expert heuristics from demonstration that can support the human decision-making process. We propose a new
framework, called apprenticeship scheduling, which learns and embeds these heuristics within a scalable resource optimization
algorithm for real-time decision-support. Our initial investigation, comprised of developing scalable methods for scheduling and
studying shared control in human-machine collaborative resource optimization, inspires the development of our apprenticeship
scheduling approach. We present a promising, initial prototype for learning heuristics from demonstration and outline a plan
for our continuing work.

2

I. INTRODUCTION

Resource optimization and scheduling is a costly, challeng-
ing problem that affects almost every aspect of our lives.
One example that affects each of us is health care. Poor
systems design and scheduling of resources can have drastic
consequences on patient wait times. Patients with non-urgent
needs who experience prolonged wait times have higher
rates of noncompliance and missing appointments [53], [78].
Prolonged wait times and other inefficiencies in patient care
contribute to the dissatisfaction and burnout of health care
providers [92]. This issue is so critical that the Institute of
Medicine recently released a report highlighting the need for
better practices in scheduling and resource optimization [12].

In automotive manufacturing, BMW produces approxi-
mately 1 car every 60 seconds in their facility in Spartanburg,
South Carolina. In this plant, approximately 80% of the cars
are customized for individual customers. This customization
requires the tight choreography of supply chain management
and assembly. When a part shortage for one car on an
assembly line occurs, every car is held until the conflict
can be resolved. Every 60 seconds spent re-scheduling work
in response to a disturbance costs the company tens of
thousands of dollars 1. The Boeing Company similarly offers
a high level of customization to its customers. Building an
airplane is a complex process. For example, construction of
a Boeing 747 requires the assembly of 6 million individual
parts, a subset of which are customized for each patron. Ev-
ery minute re-scheduling in response to dynamic disruptions
in the build process can cost up to $100, 000.2.

The military is also highly invested in the effective use of
resources. In naval conflict, defending one’s ship from enemy
anti-ship missiles is a challenging task. This problem requires
the weighing of the pros and cons of using interceptors to
attempt to destroy the incoming anti-ship missile engagement
versus deploying decoys to attempt to divert the attack. The
relative cost and effectiveness of these assets necessitates
deliberate use. However, the cost of taking time to weigh
options and the cost of suboptimal resource allocation can
cost the life of the decision-maker and the lives of his/her
shipmates.

The fields of artificial intelligence (AI) planning and
scheduling and operations research (OR) strive to develop
algorithms to improve resource allocation. However, there
are two primary challenges to improving resource allocation.
First, the problem of optimal task allocation and sequencing
with upper and lower-bound temporal constraints (i.e., dead-
lines and wait constraints) is NP-Hard [7]. The computational
complexity of optimally assigning A agents to N tasks and
ordering those tasks is O

(
2ANN !

)
. Some of the best work

1BMW’s facility in Spartanburg, SC produced 36, 580 cars in March
2015. The base price of the cheapest car produced at the facility is ≈
$38, 500. Assuming a 24/7 work week, that results in ≈ $31, 548 of
revenue earned/lost every minute. Numbers are courtesy of BMW USA.

2Boeing’s facility in Renton, WA is increasing production of Boeing-737
aircraft to 47 per month by 2017. RyanAir and Boeing recently agreed
to a purchase of 100 Boeing 737-Max aircraft for $11 billion, which is
approximately $110 million per plane. Assuming a 24/7 work week, that
results in ≈ $108, 603 of revenue earned/lost every minute. Numbers are
courtesy of The Boeing Company.

in developing autonomous techniques to assign agents (or
resources) to perform a set of tasks employ decomposition
techniques, which allow for more efficient computation [13],
[44]. When constraints between agents, tasks, and resources
become highly interdependent, these techniques can lose
their advantage. Near-optimal approximation techniques for
these problems exist [98], [27], [36], [51]. These methods
rely on the algorithm designer crafting clever heuristics
based on domain expertise to decompose or structure the
scheduling problem and prioritize the manner in which
resources are allocated and tasks are sequenced. However,
manually capturing this domain knowledge and developing
effective algorithms for resource optimization remains a
challenging process, and the solution techniques are often
domain-specific.

The second challenge is fully defining the optimization
problem and encoding the knowledge of the domain experts
into a mathematically precise formulation. For example, re-
cent work in developing human in-the-loop decision support
systems for the scheduling of aircraft carrier deck operations
shows that the heuristics applied by the naval personnel
outperform a mathematical program solver [85]. The key
here is that the mathematical program did not have full
knowledge of the hard and soft constraints and the model of
the uncertainty in the environment that the naval personnel
had learned over many months or years of experience and
apprenticeship.

The aim of this thesis is to develop an autonomous
system that 1) learns the heuristics and implicit rules-of-
thumb developed by domain experts from years of expe-
rience, 2) embeds and leverages this domain knowledge
within a scalable resource optimization framework to reduce
the computational search space, 3) and provides decision
support in a way that engages users and benefits them in
their decision-making process. By intelligently leveraging the
ability of humans to learn heuristics and the speed of modern
computation, we can solve the challenging requirements of
real-time decision-support for these domains.

The ability to seamlessly learn the heuristics from demon-
stration via domain experts and embed this within a scalable
resource optimization framework to solve multi-agent, real-
world problems remains an open problem. While there has
been extensive prior work in scheduling, machine learning,
and human factors engineering, there is a gap in the literature
that effectively brings these sciences together to learn and uti-
lize expert heuristics for resource optimization. For example,
Ryan et al. found that domain-expert heuristics, manually
documented, can outperform the performance of a hand-
crafted mathematical program [85]. However, we propose
an autonomous agent that would learn these heuristics and
directly embed them within the resource optimization (or
mathematical program).

In Section II, we motivate our resource optimization prob-
lem with an application in the obstetrics field by coordinating
resources on the labor and delivery floor at Beth Israel
Deaconess Medical Center. We define the problem statement
and contributions of this thesis in Section III and discuss
our approach in the context of the prior literature in Section

3

IV. We present our work to date on a scheduling domain
in manufacturing in Sections V and VI. This work focuses
on a manufacturing domain where we use our personal
domain expertise to carefully decompose and structure the
problem for a fast, empirically near-optimal approximation
method. We also demonstrate how this method can be used to
coordinate manufacturing resources, vı́s a vı́s a human-robot
team, to improve team performance and the desire of human
workers to utilize this autonomous capability. This work
motivates the use of autonomous algorithms for resource
optimization and the need for clever heuristics to make
the problem computationally tractable. We then present a
prototype for how we can autonomously learn such heuristics
from domain experts in Section VII. In Section VIII, we
discuss a synthetic data set and a real-world data set we will
use to validate our method for learning resource optimization
heuristics from domain experts. In Section X, we discuss our
proposed work to be completed, and we present a time line
to finish this work in Section XI.

II. MOTIVATION: RESOURCE NURSE IN LABOR &
DELIVERY

A labor and delivery floor in an obstetrics department
typically consists of nurses and doctors whose activities must
efficiently coordinate their activities to care for a set of
patients with finite resources. A single resource nurse is
responsible for coordinating these resources during any given
work shift. Specifically, a resource nurse must decide the
following:

1) Nurse Assignment: Each patient needs to be assigned
to a labor nurse while the patient is on the labor floor.
Nurses can handle caring for a set of patients in parallel
provided that the acuity of the patient does not exceed
the limits of the nurse’s bandwidth.

2) Resource Assignment: It is the responsibility of the
resource nurse to assign a room to each patient at
each moment in time. The type of room suitable for
assignment depends on the type of treatment that needs
to be administered to the patient. For example, a patient
requiring a cesarean section requires an operating room
for the surgery, whereas a patient who will have a
spontaneous vaginal delivery requires only a normal
labor room.

3) Start and Finish Times: While the duration of events
on the labor floor are not generally controllable, the
resource nurse is able to partially control when certain
phases of care begin and end. For example, a nurse
can delay a cesarean section for one patient because a
second, more acute patient has a more urgent need for
a cesarean section.

4) Patient Acceptance or Diversion: The resource nurse
must decide whether each patient can be treated by
the labor floor. The resource nurse may decide to close
the labor floor to incoming patients, for example, if the
labor floor is too busy.

We can readily formulate the resource nurse’s job as a
stochastic optimization problem where the goal is to mini-

mize z (Equation 1) such that the probability of satisfying
Equations 2-10 is greater than or equal to 1− ε.

min z,

z ≥ fn
(
{ At a

τji
}, {Ga

τji
}, { Rt r

τji
}, {Hτi}, {sτji , fτji }

)
(1)

∑
a∈A

At a
τji
≥ 1−M (1−Hτi) ,

∀τ ji ∈ τ ,∀t ∈ {0, 1, . . . , T} (2)

M
(
2− At a

τji
−Hτi

)
≥ −Uτji + Gt a

τji
≥

M
(
At a
τji

+Hτi − 2
)
,∀τ ji ∈ τ ,∀t ∈ {0, 1, . . . , T} (3)∑

τji ∈τ
Gt a
τji
≤ Ca,∀a ∈ A,∀t ∈ {0, 1, . . . , T} (4)

∑
r∈R

Rt r
τji
≥1−M (1−Hτi) ,

∀τ ji ∈ τ ,∀t ∈ {0, 1, . . . , T} (5)∑
τji ∈τ

Rt a
τji
≤ 1,∀r ∈ R,∀t ∈ {0, 1, . . . , T} (6)

ubτji
≥ fτji − sτji ≥ lbτji ,∀τ

j
i ∈ τ (7)

sτyx − fτji ≥W〈τi,τj〉,∀τi, τj ∈ τ |,∀W〈τi,τj〉 ∈ TC (8)

fτyx − sτji ≤ D
rel
〈τi,τj〉,∀τi, τj ∈ τ |∃Drel

〈τi,τj〉 ∈ TC (9)

fτji
≤ Dabs

τi ,∀τi ∈ τ |∃Dabs
τi ∈ TC (10)

We model each step in the care of a patient as a subtask
τ ji . Task τi then represents the set of steps required to
care for patient i. Labor nurses are modeled as agents who
have a finite capacity to process tasks in parallel, where
each subtask requires a variable amount of this capacity.
Rooms in the labor floor (e.g., a labor room, an operating
room, etc.) are modeled as resources, which process subtasks
in series. Agents and resource assignments to subtasks are
preemptable, meaning that the agent and resource assigned
to care for any patient during any step in the care process
may be changed during that step.

In this formulation, At a
τji
∈ {0, 1} is a binary decision

variable for assigning agent a to subtask τ ji , the jth subtask
of task τi, during time epoch [t, t + 1). Similarly, Gt a

τji
is

an integer decision variable for assigning a certain portion
of the effort of agent a to task i during phase j during time
epoch [t, t+ 1). Rt r

τji
∈ {0, 1} is a binary decision variable

for whether subtask τ ji is assigned resource r during time
epoch [t, t + 1). Hτi ∈ {0, 1} is a binary decision variable
for whether task τi and its corresponding subtasks are to be
completed. Uτji specifies the effort required from any agent
to work on τ ji . As before in the formulation in Section V-A,
sτji

, fτji
∈ [0,∞) are the start and finish times of τ ji .

4

Equation 1 is a general objective that is a function of
the decision variables { At a

τji
}, {Ga

τji
}, { Rt r

τji
}, {Hτi}, and

{sτji , fτji |τ
j
i ∈ τ}. Equation 2 enforces that each subtask

τ ji during each time epoch [t, t + 1) is assigned one agent.
Equation 3 ensures that each subtask τ ji receives a sufficient
portion of the effort of its assigned agent a during time
epoch [t, t + 1). Equation 4 ensures that agent a is not
oversubscribed. In other words, the sum of the burden of each
subtask τ ji assigned to agent a during time epoch [t, t + 1)
is less than or equal to the capacity Ca of agent a. Equation
5 ensures that each subtask τ ji of each task τi that is to
be completed (i.e., Hτi = 1) is assigned one resource r.
Equation 6 ensures that each resource r is assigned to only
one subtask during each epoch [t, t+ 1)

As in the problem formulation in Section V-A, Equation 7
requires the duration of subtask τ ji to be less than or equal to
ubτji

and at least lbτji units of time. Equation 8 requires that
τyx occurs at least W〈τji ,τyx 〉 units of time after τ ji . Equation

9 requires that the duration between the start of τ ji and the
finish of τyx is less than Drel

〈τji ,τyx 〉. Equation 10 requires that

τ ji finishes before Dabs
τji

units of time has expired since the
start of the schedule.

The stochasticity of the problem arises from the un-
certainty in the upper and lowerbound of the durations
(ubτji , lbτji) of each of the steps in caring for a patient,
the number and types of patients τ , and the temporal
constraints TC relating the start and finish of each step
of care. These variables are a function of the resource
allocation variables { Rt a

τji
}. For example, a patient assigned

to the labor ward might have her labor more actively
managed (e.g., expedited with oxytocin or some other in-
tervention), which would in turn change the duration of
that stage of labor. In other words, the duration of the
subtask, τ ji , representing that stage of labor would be affected
vı́s a vı́s random variables {ubτji , lbτji }. Mathematically,

we have
(
{ubτji , lbτji |τ

j
i ∈ τ}, τ ,TC

)
∼ P ({ Rt a

τji
,∀t ∈

[0, 1, . . . , T]}).
We can determine the computational complexity of sat-

isfying the constraints in Equations 2-10. Given |A| agents
where each agent has an integer processing capacity of Ca, n
tasks τi each with mi subtasks, |R| resources, and an integer-
valued planning horizon of T units of time, the complexity
of satisfying these constraints is O

(
2|A||R|T

2
C
|A|T
a

)
. In

practice, there are approximately 10 nurses (agents) who
can carry up to two patients at a time (i.e., Ca = 2,∀a ∈
A), 20 different rooms (resources) of varying types (e.g.,
operating room, recovery room, triage, etc.), 20 patients
(tasks) at any one time, and a planning horizon of 12 hours
or 720 minutes, which yields a worst-case complexity of
∼ 210∗20∗7202

210∗720 ≥ 2106
.

It is natural that one might seek to reduce the complexity
by increasing the duration of each time epoch, which de-
creases the total number of epochs. Another approach would
be to constrain the tasks to be non-preemptable, which would
allow for the removal of time epochs completely although

additional sequencing variables and constraints would need
to be introduced. However, in labor and delivery, as with
many other domains, the scheduling mechanism needs to
be able to account for minute-to-minute (or even second-
to-second) changes to the state of the labor floor and
preemption is often necessary. For example, the health of
patients can sometimes require emergent intervention where
a delay of even minutes can result in death (e.g., umbilical
cord prolapse, fetal bradycardia, antepartum hemorrhage,
etc.). However, even if we ignore the planning horizon (i.e.,
T = 1), then the computational complexity would still be
intractable at 210∗20210 ∼ 1.6× 1063.

Furthermore, the variance of the time and resources re-
quired to care for patients is so great that determining a
schedule with a high probability of feasibility a priori may
not be possible except for the trivial solution of rejecting
most or all patients (i.e., Hτi = 0,∀τi). Even if the vari-
ance allowed for the generation of a schedule with a high
probability of success, human factors studies of decision-
making shows human experts typically make these complex
scheduling decisions in real-time to satisfy relevant con-
straints rather than taking the time to search for the optimal
solution [56]. These experts develop implicit rules-of-thumb,
heuristics to make their scheduling decisions on-the-fly. As
such, we seek to develop a computational technique to learn
from demonstration these heuristics in the form of a ”policy”
to provide the ability to autonomously coordinate resources
in labor and delivery, manufacturing, military applications,
etc.

III. PROBLEM STATEMENT AND CONTRIBUTIONS

The goal of this work is to bring together scheduling,
machine learning, and human factors research to create an
autonomous capability to optimize resource utilization in
complex domains with temporospatial constraints. The pro-
posed work focuses on high-intensity domains, such as health
care, manufacturing, and military operations, where human
experts must coordinate a finite number of resources to
accomplish a set of tasks as efficiently as possible. Resource
optimization in these domains often requires significant a
priori planning and constant adjustment online in response
to dynamic disturbances. This planning is often performed
by people because exact computational methods suffer from
scalability issues, and encoding domain knowledge in a
computational tool is difficult. Furthermore, proprietary tech-
niques, which are developed through an army of consultants,
are financially costly and leave much to be desired [33].
These domains can benefit greatly from algorithms that
embed autonomously-learned heuristics and rules of thumb
used by domain experts within an optimization framework
to improve resource utilization in real-time.

Our motivating application is the problem of resource
scheduling on a labor & delivery floor at Beth Israel
Deaconess Medical Center, as described in Section II. We
investigate this application because 1) it serves as one of
the hardest types of problems in scheduling according to the
taxonomy defined by Korsah, Stenz, and Dias [58] and 2)

5

we have access to a cohort of well-trained resource nurses
who currently perform this role.

There are three building blocks to achieving and demon-
strating the goals of this thesis. First, we must understand
how to develop scalable representations for scheduling with
complex temporospatial constraints. As such, we investigate
a more restricted version of the resource-nurse scheduling
problem. This problem, which we describe in Section V,
requires the coordination of a set of agents to complete a set
of non-preemptive tasks in time and space. Furthermore, a
scheduling decision by one agent affects the utility of the
other agents’ scheduling decisions. This type of problem
arises in real-world settings, such as manufacturing. We
develop scalable methods for scheduling resources with
temporospatial constraints. The key to this work is the
formulation of an analytical test, which leverages problem
structure, to ensure that each scheduling commitment will
not result in schedule infeasibility [36].

Second, we need to demonstrate that an autonomous
scheduling algorithm can improve resource utilization and
gain the appreciation of the human workers whose work
will be controlled by this autonomous algorithm. In Section
VI, we describe a human-subject experiment where subjects
work on a team of three: the subject, a human teammate, and
a robotic teammate. The robot uses our autonomous schedul-
ing algorithm from Section V to coordinate team activities.
We study the effect of decision-making authority (i.e., which
team members have control over which scheduling decisions)
on team performance and the satisfaction of the human team
members. We demonstrate that our scheduling techniques
can both improve team performance and gain the support
of the human team members by providing fully-autonomous
scheduling support [34].

Third, we need to develop a framework to autonomously
learn scheduling and resource optimization heuristics from
expert demonstrators, which can be embedded within scal-
able, autonomous methods for scheduling those resources.
This work is challenging for several key reasons. First, the
amount of data we will be able to collect is small relative
to the size of the state space. Passive learning may not
be enough to accurately encode the wealth of knowledge
domain experts employ in resource optimization decisions.
Thus, it may be necessary to perform active learning, where
the autonomous algorithm carefully crafts scenarios to reduce
model uncertainty. This is a common challenge in many
algorithms that learn from demonstration [19], [20]. Second,
human experts often use satisficing strategies based upon
prior experience. These demonstrations may be near-optimal,
but human experts do not perform an exhaustive search to
find the true optimal solution [56]. Third, human experts
may reasonably disagree with one another about the correct
way to allocate resources. These disagreements will require
intelligently separating the data to learn accurate models for
resource optimization. Generating a separate model for each
demonstrator will make learning in a high-dimensional space
much more difficult, so we need to identify areas where data
across operators can be combined.

The potential contributions of this thesis thus include 1)

scalable models for resource optimization, 2) the ability
to autonomously learn varying scheduling heuristics from
expert demonstrators, and 3) the ability to incorporate these
heuristics within an autonomous optimization framework.

IV. LITERATURE REVIEW

Our work in resource optimization via learning expert
heuristics from demonstration will draw upon work in multi-
agent planning and scheduling, data-driven model learning,
human in-the-loop decision making, and recommender sys-
tems. We now review prior work in these areas.

A. Multi-Agent Planning and Scheduling

Korsah, Stenz, and Dias provide a comprehensive taxon-
omy [58] for the multi-robot task allocation and scheduling
problem, but the same taxonomy holds for scheduling with
human or other resources. The problem of resource man-
agement in labor and delivery consists of nurses who can
manage multiple patients at once (multi-task agents [MT])
and patients whose care requires one nurse and a room
depending on the patient’s needs (multi-agent tasks [SR]).
Nurses must also consider the future actions required to
ensure a high level of care (time-extended allocation [TA]).
Lastly, a resource nurse can decompose the higher level task
of caring for a patient into one of many possible formulations
(Complex Dependencies, CD). Consider a scenario where
the labor floor is full of patients and there is a patient in
the waiting room who will likely deliver imminently. The
resource nurse may choose to move a patient who is not in
active labor from the labor floor to an antepartum bed until
more room is available so that the active labor patient can
be delivered. At a later point, when the floor is less full, the
resource nurse might bring the antepartum patient back to the
labor floor. This example is but one of many decompositions
that are defined with the assignment of resources Rt a

τji
in our

definition in Section II. Thus, the problem fits within the XD
[MT-MR-TA] category, which is the most challenging of all
problems described in the Korsah-Stenz-Dias taxonomy [58].

We note that it is specifically the preemptability of tasks
that allows for task decomposition. The path a patient takes
through the hospital within a specific stage of labor, vı́s a
vı́s the resource assignment variables Rt a

τji
, changes how

the patient’s labor is managed. In turn, the probability
distribution from which comes the duration of each stage
τ ji in the labor progress for patient τi changes based on the
history of the resource assignments. For example, a patient
may receive oxytocin on the labor floor, which tends to
expedite labor. If the labor floor is full and the patient is
progressing slowly, the patient may be moved to the ante-
partum ward and taken off of oxytocin. The patient would
return to the labor floor at a more opportune time. If the labor
floor had not been full, the patient might have remained on
the labor floor despite her slow progress.

As reported by Korsah, Stenz, and Dias, there is no well-
known, general mathematical definition in the combinatorial
optimization literature for problems within the XD [MT-
MR-TA] category class. However, there is some work in

6

application-specific solution techniques. Jones et al. consider
a disaster response scenario where a set of fires, which must
be extinguished by firefighters. Some routes to the fires are
blocked by rubble, which may be cleared by bulldozers.
Thus, one must decide which roads are to be cleared and,
then, how to optimally plan a schedule for the firefighters to
extinguish the fires [51]. To solve this problem, Jones et al.
present both a multi-tiered auction approach and a genetic
algorithm. This problem is slightly easier in that each agent
can only perform one task, and each task only requires one
agent.

Another auction-based approach, called TraderBots, is
proposed by Dias [27]. In this work, agents can bid on task
trees, or possible task decompositions, rather than only on
simple, fully decomposed tasks. Agents may also bid on
decompositions suggested by other agents. The agents, or
bots, then negotiate, form centralized subgroups, and self-
organize to select an assignment of agents to tasks and
decompositions of those tasks to reduce the plan cost. For
problems with tasks requiring multiple agents, Tang and
Parker present an approach for coalition formation where
only the immediate assignment of agents to tasks is required
(i.e., not a time-extended schedule). Tang and Parker present
a greedy, centralized approach, ASyMTRe, where each robot
uses network schemas to solve the coordination problem
[98]. These schemas consist of a list of input and output
variables and an associated behavior that maps inputs to
outputs. ASyMTRe then greedily connects the input and
outputs across the robots to form coalitions which can act
together to complete the task [98].

The approaches presented here commonly employ greedy
techniques to solve tasks with complex dependencies. These
approaches require the algorithms’ architects to solicit do-
main knowledge to cleverly simplify and craft heuristics to
generate a solution. These heuristic approaches lend support
to the need to autonomously learn policies developed by
domain experts and encode this knowledge directly within
the optimization framework.

B. Data-Driven Model Learning
Machine learning is an active area of study in both solving

optimization problems and learning policies from demonstra-
tion. One common approach to learning from observation
that has been quite successful is Inverse Reinforcement
Learning. The problem of inverse reinforcement learning
(IRL) is to take as input 1) a Markov Decision Process
without a known Reward Function R and 2) a set of m expert
demonstrations O = {(so, ao), (s1, a1), . . . , (sm, am)} and
then determine a reward function R that explains the expert
demonstrations. The computational bottleneck of IRL and
dynamic programming, in general, is the size of the state-
space. The algorithms that solve these problems typically
work by iteratively updating the estimate of the future
expected reward of each state until convergence. For many
problems of interest, the number of states is too numerous
to hold in the memory of modern computers, and the time
required for the expected future reward to converge can be
impractical.

Researchers have extended the capability of IRL algo-
rithms to be able to learn from operators with differing skill
levels [80] and identify operator subgoals [70]. IRL is able
to leverage the structure of the Markov-Decision Process
to bind the rationality of the agent. Other researchers have
investigated how robots can learn from demonstration via
reinforcement learning where the operator provides real-time
feedback for the reward an agent should receive at each
location in the state space [72], [100]. Nikolaidis and Shah
use reinforcement learning and an approach, called cross-
training, in which the human and robot switch roles on
a team to improve the rate of learning [72]. Thomaz and
Breazeal have shown how humans teach robots by providing
feedback as a reward signal not just for the current state of
the robot but also for anticipated future states [100]. Thomaz
and Breazeal extend a reinforcement learning framework
to handle the anticipatory feedback from human instruc-
tors [100]. However, resource optimization or scheduling is
highly non-Markovian: the next state of the environment is
dependent upon the history of actions taken to arrive at the
current state and the current time. Some researchers have
tried to extend the traditional Markov Decision Process to
characterize temporal phenomena, but these techniques do
not scale up efficiently [11], [25], [107].

Another main effort in machine learning has been to
learn a function which maps states to actions. Chernova and
Veloso develop a Gaussian Mixture Model, which is able to
interactively learn from demonstration [19]. Their algorithm
first learns a reasonable policy for a given task (e.g., driving a
car on a highway). Next, the algorithm solicits user feedback
by constructing scenarios where there is a high level of
uncertainty. Chernova and Veloso also explore using support
vector machines to learn when an autonomous agent should
request more demonstrations [20].

Sauppé and Mutlu study the problem of learning a model
for the human behavior of back-channeling, which is a form
of communication by an addressee to facilitate turn-taking
and acknowledge speakership [99]. They demonstrate that a
regression-based approach can predict the exhibition of these
behaviors [99]. In more recent work, Huang and Mutlu study
how humans employ multi-modal communication behaviors
to present information in the form of a story [46]. They
note that previous attempts at modeling typically employ a
laborious process of hand-crafting rules and heuristics that
lack generality [46]. Huang and Mutlu develop a robotic
platform that uses a dynamic Bayesian network to learn
how people choreograph their speech, gaze, and gestures for
narration [46].

Ramanujam and Balakrishnan investigate the problem of
learning a discrete-choice model for how air traffic con-
trollers decide which set of runways to use for arriving and
departing aircraft based on weather, arrival and departure
demand, and other environmental factors [81]. Ramanujam
and Balakrishnan train a discrete-choice model on real data
from air traffic controllers and show how the model can
accurately predict the correct runway configuration for the
airport [81].

Sammut et al. apply a decision tree model for learning

7

an autopilot to control an aircraft from expert demonstration
[88]. Their approach generates a separate decision tree for
each of the following control inputs: elevators, ailerons, flaps,
and thrust. In their investigation, they note that each pilot
demonstrator could execute a planned flight path differently.
These demonstrations could be in disagreement, thus making
the learning problem significantly more difficult. To cope
with the variance between pilot executions, a separate model
was learned for each pilot. Inamura et al. use a Bayesian
Network to learn which behavior to use and when to use
that behavior via demonstration and interaction with that
demonstrator [48]. Saunders et al. use a k-Nearest Neighbors
approach with feature selection to learn which features to
use in each scenario to predict the appropriate action [90].
In [86], Rybski et al. employ a Hidden Markov Model to
learn which of a pre-learned set of actions must be applied
and in what order to complete a demonstrated box-sorting
task.

Data-driven model learning techniques offer much promise
for learning policies from expert demonstrators. However,
many approaches, such as dynamic programming, require the
enumeration of a large state-space, leading to computational
intractability, and do not naturally capture the temporal struc-
ture of scheduling problems. Approaches that use regression
or classification-based methods for learning policies from
expert demonstrators have promise, but they typically have
not been applied to complex scheduling problems. For these
methods to succeed, the correct modeling of the scheduling
problem is required. In Section VII, we describe how we
model the scheduling problem to take advantage of data-
driven model learning techniques.

C. Human In-The-Loop Decision Making

The field of human factors has pursued complementary
efforts, which focus on developing interfaces between hu-
man supervisors and the agents they are tasking [8], [30],
[68], [87], [104]. The human-robot interface has long been
identified as a major bottleneck for the utilization of these
robotic systems to their full potential [17]. As a result,
significant research efforts have been aimed at easing the
use of these systems in the field, including the careful design
and validation of supervisory and control interfaces [4], [24],
[37], [52], [45].

Many researchers have focused on the inclusion of a
human in the decision-making loop to improve the quality
of task plans and schedules for robots or semi-autonomous
systems [22], [24], [28]. This is particularly important if the
human operators have knowledge of factors not explicitly
captured by the system model or if scheduling decisions have
life or death consequences. In a study of aircraft carrier flight
deck operations, veteran operators used heuristics to quickly
generate an efficient plan and outperformed optimization
algorithms [85]. Other works aimed to leverage the strengths
of both humans and machines in scheduling by soliciting user
input in the form of quantitative, qualitative, hard, or soft
constraints over various scheduling options. Recommended
schedules were then autonomously compiled and provided to

users [3], [39], [41], [67], [108]. Researchers also develop
models for how people weigh exploit-versus-explore actions
when seeking reward in an uncertain environment [82].
Within the medical domain, Szolovits et al describe work
in developing algorithms that mimic the reasoning of human
domain experts [96] rather than explicitly codifying rules
[97]. These attempts to model reasoning are better able to
isolate a key set of possible diagnoses, utilize pathophysio-
logic reasoning, and model the complexities of the illnesses
of specific patients [96].

Supervisory systems have also been developed to assist
human operators in the coordination of the activities of either
four-robot or eight-robot teams [18]. Experiments demon-
strated that operators were less able to detect key surveillance
targets when controlling a larger number of robots. Similarly,
other studies have investigated the perceived workload and
performance of subjects operating multiple ground mobile-
based robots [1]. Findings indicated that a number of robots
greater than two greatly increased the perceived workload
and decreased the performance of the human subjects.

Researchers in scheduling have also tried to create an au-
tonomous scheduling assistant that can learn the preferences
of the user [6]. However, the authors of this work report
that the scheduling preferences of users are hard to learn,
and these autonomous scheduling assistants have thus far not
shown to be helpful enough to employ in practice. Another
example is work by De Grano et al., who present a method
to optimize scheduling shifts for nurses by soliciting nurses’
preferences through an auction process [38]. Other work in
scheduling preferences has focused on developing techniques
to efficiently generate schedules once the preferences have
been solicited [94], [106].

One key area of focus is in modeling preferences as a set
of ceteris paribus (all other things being equal) preference
statements [9], [10], [73]. In this work, researchers solicit
preferences from users typically in the form of binary com-
parisons. For example, consider the problem of determining
which food and drink to serve a guest [9]. You may know
the following:
• The guest prefers to drink red over white wine when

eating a steak.
• The guest prefers steak over chicken.
• The guest prefers white wine when eating chicken.

Interestingly, determining the optimal food-drinking pairing
can be found in polynomial-time; however, determining the
relative optimality of one pairing over another (known as
dominance testing) is NP-complete [9].

D. Recommender Systems

Finally, the study of recommender systems is an important
area of consideration. Recommender systems have become
ubiquitous in the Internet age with services such as Netflix
[57]. Recommender systems generally fall into one of two
categories: collaborative filtering (CF) and content-based
filtering (CB) [77]. In essence, collaborative filtering is a
technique in which an algorithm learns to predict content to
a single user based upon that user’s history and that of other

8

users who share common interests [77]. However, CF suffers
from sparsity and scalability problems [77]. Content-based
filtering works by comparing the similarity between content
that the user has previously viewed and new content [23],
[43], [89]. The challenge of content-based filtering lies in
the difficulty in measuring the similarities between two items,
and these systems can often over-fit, only predicting content
that is very similar to what the user has previously used
[5], [91]. Researchers have employed association rules [21],
clustering [63], [64], decision trees [55], k-nearest neighbor
algorithms [54], neural networks [2], [47], link analysis [15],
regression [69], and general heuristic techniques [77] to
recommend content to users.

Ranking the relevance of web pages is a key focus within
systems that recommend suggested topics to users [16], [40],
[42], [49], [74], [75], [62], [101], [103]. The seminal paper
on page ranking, by Page et al., started the computational
study of web page ranking with an algorithm, PageRank,
which assesses the relevance of a web page by determining
the number of pages that link to the page in question [74].
Since this paper, many have focused on developing better
models for recommending web pages to users, which can
then be trained using various machine learning algorithms
[40], [42], [49], [75]. Within this discipline, there are three
primary approaches to modeling the importance of a web
page: point-wise, pair-wise, and list-wise ranking. In point-
wise ranking, the goal is to determine a score, via regression
analysis, for a web page given features describing its contents
[62], [74]. Pair-wise ranking is typically a classification
problem where the aim is to predict whether one page is more
important than another [49], [75]. More recent efforts have
focused on list-wise ranking, where researchers develop loss-
functions based on entire lists of ranked web pages rather
than individual pages or pair-wise comparisons between
pages [16], [101], [103]. As we discuss in Section VII,
our prototype for apprenticeship learning of heuristics for
resource optimization is directly inspired by work in the area
of machine learning for web page ranking. Intuitively, the
problem of determining the next job to schedule or the best
next action to take in a resource optimization problem is
similar to predicting the most relevant web page in a query.
Instead of ranking web pages, one is now ranking possible
scheduling actions.

V. WORK TO DATE: FAST METHODS FOR
HUMAN-ROBOT TEAM COORDINATION

In our quest to develop an autonomous capability to learn
expert heuristics and embed those rules of thumb within a
dynamic resource optimization framework, we first explore
an area where we have particular domain expertise: assembly
of commercial airplanes. We leverage this domain knowledge
to develop efficient, near-optimal computational methods for
coordinating resources [36].

Consider the example of the Boeing Fully Autonomous
Upright Build (FAUB) for assembly of a Boeing 777, as
shown in Figure 1. A set of robots must work together to
complete a set of riveting tasks. These robots must adapt their

Fig. 1: The Boeing Fully Autonomous Upright Build for
the Boeing 777. Image courtesy of Boeing Research and
Technology.

schedules in response to part shortages or delays, robotic
equipment failure, and human workers who need to enter the
space to perform work on the fuselage or quality assurance
inspections. These robots typically can perform one task at
a time, and the tasks are non-preemptable.

A. Problem Formulation

We can readily formulate this problem as a mixed-integer
linear program (MILP), as shown in Equations 11-24.

min z, z = g
(
{Aa

τji
|τi ∈ τ , a ∈ A},

{J〈τji ,τyx 〉|τ
j
i , τ

y
x ∈ τ}, {sτji , fτji |τ

j
i ∈ τ}

)
(11)

subject to ∑
a∈A

Aa
τji

= 1,∀τ ji ∈ τ (12)

ubτji
≥ fτji − sτji ≥ lbτji ,∀τ

j
i ∈ τ (13)

fτji
− sτji ≥ lb

a
τji
−M

(
1−Aa

τji

)
,∀τ ji ∈ τ , a ∈ A (14)

sτyx − fτji ≥W〈τi,τj〉,∀τi, τj ∈ τ |,∀W〈τi,τj〉 ∈ TC (15)

fτyx − sτji ≤ D
rel
〈τi,τj〉,∀τi, τj ∈ τ |∃Drel

〈τi,τj〉 ∈ TC (16)

fτji
≤ Dabs

τi ,∀τi ∈ τ |∃Dabs
τi ∈ TC (17)

sτyx − fτji ≥M
(
Aa
τji

+Aaτyx − 2
)

+M
(
J〈τji ,τyx 〉 − 1

)
,∀τi, τj ∈ τ ,∀a ∈ A (18)

sτji
− fτyx ≥M

(
Aa
τji

+Aaτyx − 2
)

−M
(
J〈τji ,τyx 〉

)
,∀τi, τj ∈ τ ,∀a ∈ A (19)

sj−fτji ≥M
(
J〈τji ,τyx 〉 − 1

)
,∀τi, τj ∈ τ |Rτi = Rτj (20)

sτji
− fj ≥ −M

(
J〈τji ,τyx 〉

)
,∀τi, τj ∈ τ |Rτi = Rτj (21)

J〈τji ,τyx 〉 = 1,∀τ ji , τyx ∈ τ |∃W〈τji ,τyx 〉 ∈ TC (22)

9

J〈τyx ,τji 〉 = 0,∀τ ji , τyx ∈ τ |∃W〈τi,τj〉 ∈ TC (23)

J〈τba,τyx 〉 − J〈τba,τji 〉 − J〈τji ,τyx 〉 + 1 ≥ 0,∀τi, τj , τk ∈ τ (24)

In this formulation, Aa
τji
∈ {0, 1} is a binary decision

variable for the assignment of agent a to task τi, J〈τji ,τyx 〉 ∈{0, 1} is a binary decision variable specifying whether τi
comes after or before τj , and sτji , fτji ∈ [0,∞) are the start
and finish times of τi. Equation 11 is a general objective that
is a function of the decision variables {Aa

τji
|τ ji ∈ τ , a ∈ A},

{J〈τji ,τyx 〉|τi, τj ∈ τ}, and {sτji , fτji |τ
j
i ∈ τ}. Equation 12

ensures that each task is assigned to a single agent. Equation
13 ensures that the duration of each τi ∈ τ does not exceed
its upper and lowerbound durations. Equation 14 requires
that the duration of task τ ji , fτji − sτji , is no less than the
time required for agent a to complete task τi. Equation 15
requires that τyx occurs at least W〈τji ,τyx 〉 units of time after

τ ji . Equation 16 requires that the duration between the start
of τ ji and the finish of τyx is less than Drel

〈τji ,τyx 〉. Equation 17

requires that τ ji finishes before Dabs
τji

units of time has expired
since the start of the schedule. Equations 18-19 enforce that
agents can only execute one task at a time. Equations 20-
21 enforce that each resource Ri can only be accessed one
agent at a time.

Equations 22-24 are additional constraints to reduce the
computational search space. Equations 22 and 23 leverage
each wait constraint W〈τji ,τyx 〉 to know that τ ji must pre-
cede τyx (i.e., J〈τji ,τyx 〉 = 1 and J〈τyx ,τji 〉 = 0). Equation

24 leverages a triangle inequality: if τ ba precedes τ ji (i.e.,
J〈τba,τji 〉 = 1) and τ ji precedes τyx (i.e., J〈τji ,τyx 〉 = 1), then
τ ba must precede τyx . Thus, we know that J〈τba,τyx 〉 must equal
1.

The worst-case time complexity of a complete solu-
tion technique for this problem is dominated by the bi-
nary decision variables for allocating tasks to agents (Aa

τji
)

and sequencing (J〈τji ,τyx 〉), and the complexity is given by

O
(
2|A||τ |

3
)

, where |A| is the number of agents and |τ | is

the number of tasks. Agent allocation contributes O
(
2|A||τ |

)
,

and sequencing contributes O
(
2|τ |

2
)

.
This problem formulation consists of non-preemptive

tasks. In our motivating example in Section II, we subdivided
agent assignment variables for each subtask τ ji into discrete
epochs to allow for τ ji ’s agent assignment to be preempted at
any time t. In this formulation, each agent can only process
one subtask at a time, which we can enforce by introducing
linear sequencing constraints (Equations 18-19) and binary
sequencing variable J〈τji ,τyx 〉. While we introduce |τ |2 binary
decision variables J〈τji ,τyx 〉 in this more restricted problem,
we actually eliminate (T − 1) ∗ |A| ∗ |τ | agent assignment
variables. This problem has one more simplification in that
resource assignments are fixed, which reduces the search
space by a factor of T ∗ |R| ∗ |τ |.

Fig. 2: Tercio receives a task assignment and scheduling
problem as input and returns a flexible temporal plan, if
one can be found. The input problem is decomposed into a
task allocation and a task sequencing problem. The algorithm
works by iterating through agent allocations until a schedule
can be found that satisfies the maximum allowable makespan
for the problem.

B. Tercio: Overview

We describe our approach, which we call Tercio, to
solving this scheduling problem. Tercio’s algorithmic ar-
chitecture is shown in Figure 2. Tercio takes as input a
set of tasks, temporal interval constraints, agents, and an
objective function. The algorithm first computes an optimal
agent allocation by solving a mixed-integer program, which
includes terms for balancing the amount of work across each
agent. Next, Tercio reformulates the problem into a more
restricted structure, which we describe in Section V-D. Given
the agent allocation and a more restricted task structure,
Tercio sequences the tasks using an analytical test to ensure
that all temporal constraints are satisfied. If the schedule is
not within a user-specified makespan (i.e., overall process
duration), Tercio attempts to find the next-best agent alloca-
tion, excluding all previously-tested allocations. If, however,
the schedule does satisfy the user-specified makespan, then
agent and spatial-resource sequencing constraints (interval
form of [0,∞)) are added to the problem. The resulting
Simple Temporal Problem (STP), composed of the interval
temporal constraints, is compiled into a dispatchable form
[71], [105], which guarantees that for any consistent choice
of a time point within a flexible window, there exists a
solution that can be found through one-step propagation of
interval bounds. The dispatchable form maintains flexibility
to increase robustness to disturbances, and has been shown to
decrease the amount of time spent re-computing solutions in
response to disturbances for randomly generated structured
problems by up to 75% [105].

C. Tercio: Agent Allocation

The Tercio agent allocation subroutine performs agent-task
allocation by solving an MILP that includes Equations 12
and 13 ensuring each task is assigned to exactly one agent
and that the agent-task allocation does not violate the upper
and lowerbound temporal constraints. The objective function

10

is formulated as shown in Equation 25, and is application-
specific.

min(z), z = g1(A, AP , τ) + (g2(A)− g3(A)) (25)

For the purposes of this work, we use a g that includes three
terms. The first term minimizes g1(A, AP , τ), the number of
differences between the previous AP a

τji
and the new agent

assignment Aa
τji

. Minimizing this quantity helps to avoid
oscillation among solutions with equivalent quality during
rescheduling.

g1(A, AP a
τji

) =
∑
τi∈τ

 ∑
a∈A| AP a

τ
j
i

=1

1−Aa
τji

 (26)

+

 ∑
a∈A| AP a

τ
j
i

=0

Aa
τji

The second and third terms, g2 and g3, perform work balanc-
ing by minimizing the maximum work assigned to any one
agent (Equation 27) and by maximizing the minimum work
assigned to any one agent (Equation 28). We find in practice
that the addition of these term guides the optimization toward
agent allocations that yield a low makespan.

g2(A) ≥
∑
τi∈τ

Aa
τji
× lbai ,∀a ∈ A (27)

g3(A) ≤
∑
τi∈τ

Aa
τji
× lbai ,∀a ∈ A (28)

Note that by decomposing task allocation from sequencing,
Tercio cannot directly minimize the makespan. The functions
g2(A, τ) and g3(A, τ) are used as a heuristic for guiding
Tercio toward solutions that minimize the makespan. To
establish a basis for comparison in the empirical evaluation,
we solve the MILP defined in Section V-A using a com-
plete solution technique, and instead replace g2(A, τ) and
g3(A, τ) with g2,3−MILP (s, f) as shown in Equation 29.

g2,3−MILP (s, f) = max
〈τji ,τyx 〉

(
f ji − syx

)
. (29)

D. Multi-Agent Task Sequencer

The Tercio sequencing subroutine works by scheduling
through simulation. At each time epoch t, the sequencer
iterates over the set of agents currently idle. For each idle
agent, the sequencer determines highest priority subtask τ ji
to schedule next according to a set of dynamic priority
heuristics. However, in the presence of resource constraints
and deadline constraints, it may not be feasible to schedule
τ ji at time t. To ensure correctness, the sequencing subroutine
uses our analytical schedulability test to determine whether
scheduling subtask τ ji at time t might result in a violated
constraint later in the schedule. If the schedulability test
determines that τ ji might result in such a constraint violation,
the agent determines the next-highest-priority subtask and
repeats the test until the agent either schedules a subtask or
returns a sequence if no subtasks remain.

1) Task Model: While Tercio operates on a general task
network, as described by the MILP in section V-A, we
restrict the structure of task network. With this structure, we
are able to formulate a schedulability test to ensure schedule
feasibility, which we describe in Section V-D.3. For brevity,
we omit the details for how we reformulate a general task
network into our more restricted form. Instead, we refer the
reader to [33].

The basis for our framework is the self-suspending task
model [61], as described in Equation 30.

τi :
((
C1
i , E

1
i , C

2
i , E

2
i , . . . , E

mi−1
i , Cmii

)
, Ti, Di

)
(30)

In this model, there is a task set τ = {τi|i ∈ {1, 2, . . . , n}}
contains n tasks τi that must be processed by a set of
computer processors. Each task has mi subtasks with mi−1
self-suspension intervals. Cji is the expected duration (cost)
of τ ji , and Eji is the expected duration of the jth self-
suspension interval of τi. Ti and Di are the period and
deadline of τi, respectively.

While this self-suspending task model provides a solid
basis for describing many real-world processor scheduling
problems of interest, we augment this model to better capture
problem structure inherent in the manufacturing environ-
ment. First, we set the period Ti and deadline Di of each
task τi equal to a constant, T (i.e., Ti = Di = T, ∀i).
This modification models many assembly line manufacturing
processes where the set of tasks at one location is repeated
once every “pulse” of the production line. Second, we allow
for phase offsets φ for each task τi, where a phase offset is
a delay between the epoch time and the release of the given
task. Third, we allow for intra-task and subtask deadlines.
An intra-task deadline Drel

〈τai ,τbi 〉 constrains the start, sai and

finish time f bi of two subtasks τai and τ bi for a given task
τi by duration drel〈τai ,τbi 〉, as shown in Equation 31. A subtask

deadline Dabs
τji

upperbounds the duration between the epoch

and the finish time f ji of subtask τ ji by duration Dabs
τji

, as
shown in Equation 32.

Drel

〈τai ,τbi 〉 :
(
f bi − sai ≤ Drel

〈τai ,τbi 〉
)

(31)

Dabs
τji

:
(
f ji ≤ Dabs

τji

)
(32)

These deadline constraints provide additional expressiveness
to encode binary temporal constraints relating tasks in the
manufacturing process and are commonly included in AI and
OR scheduling models [7], [26], [71], [105].

We also extend the model to include shared memory
resources R. Each subtask τ ji requires that a set of shared
memory resources Rji be utilized in performing that subtask
(e.g., for memory shared among multiple processors), where
R is the set of all shared memory resources. In the manu-
facturing analogy, a resource r ∈ Rji corresponds to a region
of space in the factory that must be physically unoccupied
for an agent to execute a subtask in that location.

2) Dynamic Priority Heuristics: The Tercio sequencing
subroutine employs a set of heuristics to prioritize the order
in which subtasks are scheduled. Consider first that we want

11

as many agents as possible to work concurrently; however,
the scheduling of one agent restricts the available subtask
options for other agents. As such, we introduce a heuristic
function, πA(τ ji), that prioritizes a subtask τ ji assigned to
agent a in inverse proportion to the number of available
subtasks assigned to a. Second, when subtasks share a re-
source (i.e., are located in close, physical proximity), agents
assigned to those tasks may have to idle due to resource
contention. We introduce a heuristic function, πR(τ ji), that
eases resource contention by prioritizing subtasks that re-
quire higher-demand resources over subtasks that require
lower-demand resources. Third, consider a scenario with
two subtasks, τ ji and τ j+ki with agent assignments a and
a′. If a does not execute τ ji in a timely manner, then a′

will idle. We introduce a heuristic function, πP (τ ji), to
ease bottlenecks due to inter-agent precedence constraints.
The heuristic prioritizes the execution of a subtask τ ji in
proportion to the number of following subtasks in task τi
that are assigned to other agents. Lastly, we utilize the
Earliest-Deadline First priority heuristic, πEDF (τ ji), which
has been shown in the study of real-time systems to have
many benefits when scheduling against deadline constraints
[95]. Tercio uses a weighted, linear combination of these
heuristics. The weighting of these heuristics can be tuned
for specific applications.

3) Schedulability Test: The key to increasing the com-
putational speed of Tercio is a novel, analytical schedula-
bility test within the Tercio sequencing subroutine, which
allows us to near-optimally sequence tasks against dead-
line constraints in polynomial time. During the scheduling
simulation, we perform an online consistency check that
ensures that scheduling of τ ji at time t will not cause τyx
to violate a temporal or shared memory resource constraint.
This work extends our single-agent online consistency test
[35] to handle multiple agents and shared memory resource
constraints.

This work is inspired by the field of real-time systems
research in which dynamic priority heuristics are use to
restrict scheduling behavior [60], [79], [84] and analytical
schedulability tests are employed to determine whether an
additional scheduling commitment can be undertaken [65],
[66], [84]. These tests are designed to be polynomial-time,
sacrificing completeness, to allow for real-time system per-
formance. To our knowledge, our schedulability test is the
first analytical test for non-preemptive, self-suspending tasks
where multiple tasks have more than one self-suspension
with shared memory resource constraints [60], [61], [83].
3

To describe our schedulability test, we introduce a defi-
nition for an active deadline, which we use to describe our
online consistency test.

Definition 1: Active Deadline - Consider an intra-task
deadline Drel

(i,j),(i,b), or an absolute deadline Dabs
τji

. An intra-
task deadline is considered active between 0 ≤ t ≤

3Our online consistency test is similar in spirit to resource edge-finding
[59], [102].

min
(
f ji , D

rel

〈τji ,τbi 〉
)

, and an absolute deadline is considered

active between 0 ≤ t ≤ min
(
f ji , D

abs
τji

)
. Dactive is the set

of all active deadlines.
We readily formulate our online consistency test as a

constraint satisfaction problem, as shown in Equations 33-35,
where D∗ is the union of all active deadlines and the dead-
line we are considering activating. Equation 33 determines
whether a subtask executed by an agent a and using resource
r can be scheduled without resulting in the immediate or
eventual violation of an active deadline. ξa(i, j, k, a) and
βa(i, j, k, a) refer respectively the next and last subtask to
which agent a is assigned to in {τ ji , . . . , τki }. ξr(i, j, k, r)
and βr(i, j, k, r) refer respectively the next and last subtask
in {τ ji , . . . , τki } that require resource r. dβa(i,j,k,a)i and
d
βr(i,j,k,r)
i are the absolute deadlines of the last subtasks

assigned to agent a and that require resource r, respectively.(
δa(i,j),(i,k) ≥ dβa(x,y,z,a)

x − t ∨ δax,y:z ≥ dβa(x,y,z,a)
x − t

)
∧
(
δr(i,j),(i,k) ≥ dβr(x,y,z,r)x − t ∨ δrx,y:z ≥ dβr(x,y,z,r)x − t

)
,

∀Drel
(i,j),(i,k) ∈D∗,∀Dabs

(i,k) ∈D∗, ∀a,∀r (33)

δa(i,j),(i,k) = d
βa(i,j,k,a)
i − t−

(
C
βa(i,j,k,a)
i

+

βa(i,j,k,a)−1∑
ψ=ξa(i,j,k,a)

(
Cψi + Eψi

) (34)

δr(i,j),(i,k) = d
βr(i,j,k,r)
i − t−

(
C
βr(i,j,k,r)
i

+

βr(i,j,k,r)−1∑
ψ=ξr(i,j,k,r)

(
Cψi + Eψi

) (35)

δa(i,j),(i,k) (Equation 34) and δr(i,j),(i,k) (Equation 35) are the
slack time for agent a and resource r, respectively, in relation
to an active deadline Drel

(i,j),(i,k) or Dabs
(i,k). An agent’s or

resource’s slack time for a deadline is a bound on the amount
of time that the agent or resource may feasibly commit to
the execution of subtasks not associated with that deadline.
Temporal feasibility is ensured if, for each deadline, we can
nest the time before one deadline within the slack of another
(or vice versa) for all agents and resources associated with
that deadline. Our multi-agent sequencer uses a polynomial-
time version of this online consistency test to evaluate the
feasibility of scheduling subtasks. The complexity of this
consistency check is O(n(a + r)) where n is the number
of tasks, a is the number of agents, and r is the number of
resources. We refer the reader to [33] for further details.

E. Evaluation and Discussion

In this section, we empirically validate the computational
speed and optimality of Tercio for the multi-agent task
assignment and scheduling problem with temporospatial
constraints. We first compare the solution quality and com-
putational speed of Tercio to the full MILP formulation.
We generate a set of random problems, which we solve

12

optimally. We then run Tercio where we set the makespan
cutoff to be within 10% of the optimal solution. We also
set Tercio to return the best solution after 5 iterations if a
solution within 10% of the optimal solution has not been
found. Figure 3a shows that we are able to generate solutions
within 10% of the optimal makespan, on average. Figure 3b
shows that we are able to find these solutions in less than
one second for up to 25 subtasks. Because the optimization
tool, Gurobi, we used to solve for the exact solution is unable
to test the optimality of Tercio for problem sizes above 25
tasks, we compare the first solution returned by Tercio to a
theoretical lowerbound on the makespan (Equation 36). As
shown in Figure 3, the optimal makespan returned by Tercio
empirically approaches this theoretical lowerbound.

makespan ≥ 1
|A|

∑
τji ∈τ

Cji (36)

We demonstrate the use of Tercio to plan work performed
by two KUKA Youbots, as shown in Figure 4a. Video of
the demonstration is available at http://tiny.cc/t6wjxw. In
this demonstration, two robots were working to assemble
a mock airplane fuselage. The robots performed their sub-
tasks at specific locations on the factory floor. To prevent
collisions, each robot reserved both the physical location
for its subtask, as well as the immediately adjacent subtask
locations. Initially, the robots planned to evenly split 12
identical tasks down the middle of the fuselage. After the
robots finished their first subtasks, a person then requested
time to inspect the work completed on the left half of the
fuselage. In the problem formulation, this corresponds to
adding a resource reservation for the left half of the fuselage
for a specified period of time. Tercio re-planned in response
to the addition of this new constraint, and reallocated the
work between the robots in a reasonable manner to make
productive use of both robots and to keep the number of
interfaces low. We also demonstrate Tercio using a simulated
problem of larger size, as shown in Figure 4b. In this
demonstration, five robots coordinated to perform 110 tasks
around a large cylindrical structure. Tercio was applied to
re-plan in response to a request for a person to enter the
space, in response to a robot breakdown, and in response
to changing task deadlines. Video of the demonstration is
available at http://tinyurl.com/m5bsx6g.

VI. WORK TO DATE: INTEGRATING AUTONOMOUS
SCHEDULING INTO HUMAN-AGENT-ROBOT TEAMS

While Tercio provides the technical capability of per-
forming resource optimization for human-robot teaming in
manufacturing, it is crucial that we demonstrate that our
autonomous scheduling algorithm improves resource opti-
mization and garners the support of the end-users. For
example, human workers often develop a sense of identity
and security from their roles or jobs in a factory, and many
are used to having some degree of autonomy in decision-
making. As a result, a human worker who is tasked by an
automated scheduling algorithm may feel devalued. Even
if the algorithm increases process efficiency at first, taking

(a) Boxplot showing Tercio’s deviation from the optimal
makespan. Whisker bars on the box plots represent the extreme
values

(b) The median and quartiles of Tercio’s computational speed
when minimizing the makespan.

(c) The median and quartiles of Tercio’s deviation from a
theoretical lowerbound on the makespan.

Fig. 3: Computational speed and solution quality are shown
for problems with five agents.

control away from human workers may alienate them and,
in turn, ultimately damage overall productivity. On the other
hand, workers may find the process of scheduling to be
burdensome, and prefer to be part of an efficient team rather
than have a role in the scheduling process, if maintaining
such a role decreases their efficiency. While autonomous
scheduling algorithms can provide near-optimal schedules
within seconds, we also want to determine how much
decision-making authority humans should have in the task
allocation process, so that they feel appreciated while still
maintaining a high level of team efficiency. We conducted

13

(a) Tercio coordinates a set of robots to allow a human quality
assurance agent the time and space necessary to inspect the
work.

(b) Tercio is applied to re-plan in response to a request for a
person to enter the space, a robot breakdown, and changing
task deadlines.

Fig. 4: Demonstrations of Tercio where a team of robots is
assigned to tasks involving a mock fuselage and must adapt
to dynamic disturbances.

a set of human-subject experiments to determine the right
level of autonomy for scheduling algorithm to improve team
performance and the satisfaction of the human workers. We
hypothesized that team performance would increase with
decision-making authority afforded to a robot using Tercio.
On the other hand, we also hypothesized that subjects would
prefer partial authority over the task process rather than total
control, and that having no control is preferable to having
complete control.

A. Experimental Design

Our human-robot manufacturing team consisted of the hu-
man subject, a robotic assistant, and a human assistant. The
human subject was capable of both fetching and building,
and the robot assistant was only capable of fetching. One
of the experimenters played the role of a third teammate
for all subjects and was capable of both fetching and
building. The third human teammate was included to more
realistically represent the composition of a human-robot
team in a manufacturing setting. The human subjects either
performed the task allocation or shared the decision-making
authority over task allocation with the robotic teammate,
depending on the experimental condition. The robot assistant
was always responsible for sequencing the team’s work.
The third teammate did not provide any decision-making
assistance to the subject or the robot. We used a Willow
Garage PR2 platform, as shown in Figure 5, as the robotic
assistant for our human-robot team. The robot used Adaptive
Monte Carlo Localization (AMCL) [31] and the standard
Gmapping package in the Robot Operating System (ROS)
for navigation.

Fig. 5: This figure depicts a diagram of the laboratory room
where the experiment took place. There are two locations
where the human and robot workers can inspect part kits
during a fetching task, and two locations where the human
workers can build the part kits.

In our scenario, there are two types of tasks: fetching parts
kits and assembling parts kits. Fetching a part kit required
walking to one of two inspection stations where the kits
were located, inspecting the part kit and carrying it to the
build area. The architecture of our fetching task is analogous
to what is required in many manufacturing domains: to
adhere to strict quality assurance standards, fetching a part kit
requires verification from one to two people that all correct
parts are in the kit, and certification from another person that
the kit has been verified.

There were a number of constraints imposed on the analog
assembly process, in order to model relevant constraints
encountered during assembly manufacturing: First, a part kit
must have been fetched before it could be built. Also, no two
agents were able to occupy the same fetching or build station
at the same time. There were two fetching and two build
stations, as shown in Figure 5. Four part kits were located at
one fetching station, and four kits were located at the second
fetching station. When fetching a part kit, inspection of that
kit must have occurred at the fetching station where it was
initially located.

Because there were an equal number of building stations
and agents able to build, there were no additional constraints
imposed exclusively on build tasks. However, because there
were three agents who could fetch and only two fetching
stations, the agents were required to take turns using the
fetching stations. Allowing workers to sort through parts
from multiple kits at the same location risked mixing the
wrong part with the wrong kit. We imposed a 10-minute
deadline from the time that the fetching of a part kit began
until that part kit had been built, for similar reasons. In
manufacturing, if a part or part kit is missing from an
expected location for too long, work in that area of the
factory will temporarily halt until the missing pieces are
found.

Assembly of the Lego model involved eight tasks τ =

14

{τ1, τ2, . . . , τ8}, each of which was composed of a fetch
and build subtask τi = {τfetchi , τ buildi }. The time each
subject took to complete each subtask Csubject−fetchi and
Csubject−buildi was measured during an experiment training
round. The timings for the robot Crobot−fetchi and human
assistant Cassist−fetchi and Cassist−buildi (performed by an
experimenter) were collected prior to the experiments.

To enable the robot to schedule with varying degrees
of decision-making input from the subject, we adapted
Tercio. In the autonomous condition, the robot (via Tercio)
optimized both the allocation and sequencing of subtasks.
In the semi-autonomous condition, the subjects chose only
the subtasks that they would complete themselves, and
the robot allocated the remaining subtasks. In the manual
condition, subjects specified the assignment of agent ∈
{subject, robot, assist} to each subtask ∈ {fetch, build}
of τi ∈ τ . In all three experimental conditions (autonomous,
semi-autonomous, and manual) the robot sequenced all
subtasks {J<τji ,τmn >}. Subjects were provided each agent’s
expected time to complete each of the sixteen subtasks in
the semi-autonomous and manual conditions.

B. Results

Twenty-four participants were included in the experiment.
Each participant worked on the human-robot manufacturing
team under each level of decision-making authority for
a within-subjects design. We consider both objective and
subjective measures of the team’s performance. Objective
measures of team fluency consist of assembly time and
rescheduling time. Assembly time is defined as the difference
between the time the last task was completed and the time
the first task was initiated. Rescheduling time is defined as
the sum of the time it took the subject to allocate tasks when
the subject was involved and the time it took the robot to
complete the remainder of the scheduling work. Subjective
measures consisted of the results of a set of questionnaires
administered after each experimental condition to measure
the subjects’ views on the traits of the robotic teammate and
the quality of the alliance amongst the teammates. Subjects
also received a post-test questionnaire after completing the
three experimental conditions to measure their overall pref-
erence for the level of robot autonomy.

We hypothesized that the team would be more fluent,
in terms of both assembly and rescheduling time, when
the robot has more control authority over task allocation.
Rescheduling and assembly times are depicted in Figure
6. Analysis of variance demonstrated statistically significant
differences in the distribution of rescheduling time as a
function of decision-making authority, F (2, 69) = 55.1,
p < 0.01. Rescheduling time in the autonomous condition (M
= 30 s, SD = 0 s) was lower than in the semi-autonomous
condition (M = 108 s, SD = 69 s), t(23) = 7.24, p <
0.01. Likewise, rescheduling time in the semi-autonomous
condition was lower than in the manual condition (M = 315
s, SD = 154 s), t(23) = 7.23, p < 0.01. Repeated-measure
analysis of variances demonstrated significant differences in
assembly time, as a function of condition F (2, 46) = 3.84,

p = .03. Assembly time in the autonomous condition (M
= 520 s, SD = 60.6 s) was faster than in the semi-
autonomous (M = 564 s, SD = 83.9 s), t(23) = 2.37,
p = 0.01, and manual conditions (M = 582 s, SD = 115
s), t(23) = 2.18, p = 0.02.

We also hypothesized that subjects would prefer partial
authority over the task process rather than total control,
and that having no control is preferable to having complete
control. An omnibus Friedman test confirmed a statistically
significant difference in the distribution of a subset of the
Likert-scale responses for the three conditions. A pair-wise
Friedman test confirmed our hypothesis that subjects were
more satisfied under the autonomous and semi-autonomous
conditions than the manual condition. However, there did not
exist a single question for which subjects favored the semi-
autonomous condition over the autonomous condition. A
post-hoc Friedman test with a requisite Bonferroni correction
of α

3 indicated that subjects were significantly more satisfied
with team performance (p = 0.008) under the autonomous
condition than the semi-autonomous condition. Likewise,
subjects agreed more strongly under the autonomous condi-
tion that the team performed the tasks within the least amount
of time (p = .002). For a list of specific questions, we refer
the reader to [34].

The post-test questionnaire included three questions de-
signed to determine whether subjects would be more likely
to work with the robot again given the level of decision-
making authority allotted to the subject and the robot. We
observed a statistically significant difference in subjects’
responses to these questions (p < 0.001). Post-hoc analysis,
using pair-wise Friedman test with a Bonferroni correction,
confirmed that subjects agreed that they were more likely
to work with the robot again if the robot performed task
allocation autonomously than if the subject and the robot
shared task allocation authority (p < 0.001) or if the subject
had complete task allocation authority (p < 0.01).Similarly,
subjects were more likely to report they would work with
the robot again if the robot and the human shared task
allocation authority than if the subject had sole authority
for task allocation (p < 0.01).

Fig. 6: This figure shows the average and standard error for
the assembly times in each condition.

15

C. Future Work
There are two key areas we wish to pursue in future

work. While we know that people prefer working with an
autonomous robot, we want to know how that would change
if the robot explicitly took into account the preferences of
the human team members. We hypothesize that people have
attitudes towards certain types of tasks (e.g., a preference
for building Lego kits over fetching Lego kits) that may
influence their opinion on their desire to work with a robot
teammate who is scheduling the team. For example, if a
person strongly prefers to build, yet the robot decides that it
is best for the team for that person to fetch, the person may
resent the robotic teammate. On the other hand, people may
dislike idling while the rest of the team works. However, peo-
ple may be willing to idle to get to work on more-preferred
tasks or vice versa. Understanding how a robotic teammate,
responsible for scheduling decisions, should incorporate the
preferences of human teammates is an interesting area for
future study. We plan to run a human-subject experiment
varying the way in which the robot schedules the team to
discern the impact of human preferences on team fluency.

Second, we also want to give a robotic teammate the
ability to teach human teammates how to make better
scheduling decisions. Situational awareness is an important
contributor to team fluency for human in-the-loop systems
[29], [50], [76]. If the robotic system malfunctions, it is
important that a human can take up the responsibility of
making the scheduling decisions. Even if the autonomous
system does not malfunction, there are still domains, such
as health care, where a person will retain ultimate control
authority for legal and ethical reasons. However, we can
envision an autonomous agent as an instructor or advisor
for people who are learning to perform resource allocation,
such as a nurse who is new to labor and delivery. In this
way, resource utilization can be enhanced by leveraging
advanced optimization algorithms and human operators can
improve and maintain their proficiency. As such, we want
to understand how an autonomous instructor for resource
optimization could guide people towards better scheduling
decisions. We propose a human-subject experiment where a
robot reviews a schedule generated by a novice scheduler and
offers suggestions to improve the schedule. We hypothesize
that people will benefit from a small number of constructive
changes but will grow weary of an autonomous instructor
that changes many of the decisions by the novice.

VII. PROTOTYPE FOR LEARNING HEURISTICS

Based on work in human factors that shows expert
decision-makers plan on-the-fly using prior experience [56],
we develop a machine learning framework for learning
the heuristics and rules-of-thumb via observations. We em-
phasize that the following formulation is a prototype for
how we can learn heuristics for resource optimization from
expert demonstrators. This prototype is a strong basis for
continuation, as we validate in Section IX, and we expect
improvements in future work.

Many approaches to learning models for predicting the
best action to take given a current state are based on Markov

models, such as reinforcement learning and inverse reinforce-
ment learning [70], [72], [80]. These models, however, do
not capture the temporal dependencies between states and
are computationally intractable for large problem sizes. To
predict the most important subtask, we draw inspiration from
the domain of page ranking [74], as discussed in Section IV.
The problem of predicting the most relevant web page, based
on a search query, is analogous to predicting the highest-
priority subtask to be scheduled based on the current resource
utilization and task parameters. An important component of
page ranking is capturing how pages relate to one another
as a graph with nodes (i.e., web pages) and directed arcs
(i.e., links between those pages) [74]. This connectivity is a
suitable analogy for the complex temporal dependencies (i.e,
precedence, wait, and deadline constraints) relating subtasks
in a scheduling problem.

Recent approaches in page ranking have focused on pair-
wise and list-wise models, which have been shown to have
advantages over point-wise models [101]. In list-wise page
ranking, the goal is to generate a ranked list of web pages di-
rectly [16], [101], [103], whereas a pair-wise approach deter-
mines ranking by performing pair-wise comparisons between
individual web-pages [49], [75]. We choose to model the
problem of predicting the most important subtask to schedule
at time t as a pair-wise, page-rank problem. The pair-wise
model has key advantages over the list-wise approach. First,
classification algorithms (e.g., support vector machines) can
be directly applied [16]. Second, a pair-wise approach is non-
parametric in that the cardinality of the input vector is not
dependent on the number of subtasks (or actions) that can
be taken in any instance. Third, training examples of pair-
wise comparisons in the data can be readily solicited [16].
From a given observation in which a subtask was scheduled,
we only know which subtask was most important - not the
relative importance between all subtasks. Thus, we create
training examples based on pair-wise comparisons between
the scheduled subtask and the unscheduled subtasks. Because
we lack a context to determine the relative rank between two
unscheduled subtasks, the pair-wise approach is most natural.

Consider a set of subtasks τ ji ∈ τ , which each have a set
of features φτji . For example, φτji could include scheduling-
relevant features such as the deadline, the earliest time the
subtask is available, the duration of the subtask, which
resource r is required by this subtask, etc. Next consider
a set of m observations O = {O1, O2, . . . , Om}, such that
Om = (sm, am, tm). Observation Om consists of a feature
vector γτji ∀τ

j
i ∈ τ describing the state of each subtask,

the action taken by the expert demonstrator, and the time at
which the action was taken. This action can consist of either
a scheduled subtask with the associated agents and resources
assigned to that subtask or a null task (i.e., the expert does
not schedule any task at this time step). This action can also
be thought of as a label in machine learning parlance. We
then need to learn a policy that will correctly predict which
action to take. Within each observation where a subtask was
scheduled, we do not know the relative importance of each
action; rather, we only know which subtask was scheduled
and the assigned agents and resources.

16

We decompose the problem of predicting the correct action
into two steps:

Step 1) For each agent-resource pair, determine the most
important subtask.
Step 2) For each such subtask, determine whether to
schedule the subtask from the current state.

Learning to predict the most important subtask to schedule
next (Step 1), we transform each observation Om into a
new set of observations by performing pair-wise comparisons
between the scheduled subtask τ ji and the set of subtasks
that were not scheduled (Equations 37-38). In Equation
37, we create a positive example for each observation in
which a subtask τ ji was scheduled. The example consists
of the input feature vector φm〈τji ,τyx 〉 and a positive label
ym〈τji ,τyx 〉 = 1. The input feature vector φm〈τji ,τyx 〉 represents
the difference between the features describing the scheduled
subtask τ ji and a subtask τyx not scheduled in Om. Intuitively,
this can be thought of as the features of scheduled subtask
τ ji relative to an unscheduled subtask τyx . In Equation 38,
we create a set of negative examples. We set the label to
be negative, ym〈τyx ,τji 〉 = 0. For the input vector, we take
the difference between the unscheduled subtask τyx and the
scheduled subtask τ ji . In other words, φm〈τji ,τyx 〉 = −φm〈τyx ,τji 〉.

φm〈τji ,τyx 〉 := γτji
− γτyx ,

ym〈τji ,τyx 〉 = 1,

∀τyx ∈ τ\τ ji ,∀Om ∈ O|τ ji scheduled in Om (37)

φm〈τyx ,τji 〉 := γτyx − γτji ,

ym〈τyx ,τji 〉 = 0,

∀τyx ∈ τ\τ ji ,∀Om ∈ O|τ ji scheduled in Om (38)

By generating a set of pair-wise comparisons, however,
we lose the context, or high level features that describe the
overall task set τ . For example, consider a scenario where
there is one resource required by many different subtasks,
which serves as a resource bottleneck. If the agents work on
subtasks requiring a resource other than the resource at the
bottleneck, then, at the end of the schedule, the agents will
have to wait in a queue to access the bottleneck resource
to complete the remaining subtasks. This global information
about whether a resource might be a bottleneck would be
lost if we simply generated observations where the examples
consisted of the difference between features of individual
subtasks. To provide this high-level information, we adjust
our definition in Equations 37-38 as shown in Equations 39-
40, where ξτ is a set of high-level features describing the
set of subtasks for observation Om.

rankφm〈τji ,τyx 〉 := [ξτ , γτji − γτyx],

rankym〈τji ,τyx 〉 = 1,

∀τyx ∈ τ\τ ji (39)

rankφm〈τyx ,τji 〉 := [ξτ , γτyx − γτji],
rankym〈τyx ,τji 〉 = 0,

∀τyx ∈ τ\τ ji (40)

We can use these observations to train a classifier
fpriority(τ

j
i , τ

y
x) ∈ {0, 1} to predict whether subtask τ ji is

higher priority than τyx .
Given a pair-wise classifier that can determine whether

subtask τ ji is more important than subtask τyx , we can predict
which single subtask τ ji is the highest priority subtask τ j∗i
according to Equation 41. In essence, the subtask which
is most often predicted to be the higher priority subtask
in comparison to all other subtasks is the subtask that is
predicted to have the highest overall priority.

τ̂ j∗i = arg max
τji ∈τ

∑
τyx∈τ

fpriority(τ
j
i , τ

y
x) (41)

The second challenge (Step 2) is then to determine whether
or not τ̂ j∗i should be scheduled. We train a second classifier,
fact(τ

j
i) ∈ {0, 1}, which predicts whether or not τ ji should

be scheduled given that it is the highest priority subtask. In
our observations set O, we only have examples of scheduled
subtasks, and examples when no task was scheduled. To
train this classifier, we need negative examples describing
which subtask was the highest priority at each time step, and
why this subtask was not scheduled. While we do not know
the relative priority of subtasks during some observation
Om where no subtask was scheduled, we still know which
subtask will be scheduled next in some future epoch t′ > tm.
As such, we construct a new set of examples according to
Equation 42-43.

actφm
τji

:= [ξτ , γτji] (42)

actym
τji

=

 1 : τ ji scheduled in Om
0 : τ∅ scheduled in Om ∧

τ ji scheduled in Om+1

(43)

We can now construct a simple prediction algorithm to act
as an apprentice scheduler, as shown in Figure 7. In Lines 1-
8, we iterate through time. In each time step, we iterate over
all agents (Line 2). For each agent, we predict the highest
priority subtask τ̂ j∗i in Line 3. In Line 4, we predict whether

we should schedule subtask τ̂ j∗i . If our model predicts we

schedule subtask τ̂ j∗i , then we schedule subtask τ̂ j∗i in Line
5.

We emphasize that this formulation for an apprentice
scheduler is merely a prototype. While this formulation
shows promise on a synthetic data set, as we describe in
Section VIII-A, we see room for improvement in future
work.

VIII. DATA SETS

To validate our computational method for apprenticeship
scheduling, we will utilize two data sets: a synthetic data set

17

Apprentice Scheduler(τ , A, TC, τR, AC)
1: for t = 0 to T do
2: for all agents a ∈ A do
3: τ̂ j∗i = arg maxτji ∈τ

∑
τyx∈τ fpriority(τ

j
i , τ

y
x)

//Predict Highest Priority Task
4: if fact(τ̂ j∗i) == 1 //Predict Whether to Schedule

Task then
5: Schedule τ̂ j∗i
6: end if
7: end for
8: end for

Fig. 7: Pseudocode for an Apprentice Scheduler.

and a real-world data set. Our first data set will consider the
scheduling problem in Section V-A. Based on our domain
knowledge, we will craft heuristics to efficiently coordinate
resources for a range of relevant problem parameters. Our
second data set will consider the resource optimization
problem for labor and delivery in Section II. To generate
this real-world data set, we will collect observations of
real resource nurses making scheduling decisions in a high-
fidelity simulation of the labor floor.

A. Synthetic Data Set

We consider a synthetic data set based on the scheduling
problem defined in Section V-A with the addition that the
agents require a finite amount of time to travel between
resources that is proportional to the distance between those
resources. This problem is similar in spirit to the vehicle
routing problem with time windows [14], [32], [93] except
that there are dependencies between tasks. In our test prob-
lem, there are twenty, partially ordered subtasks, and there
are two homogeneous agents able to perform these tasks.
Subtasks are located in a 20× 20 grid.

We construct a set of heuristics to select which agent a ∈
A should perform each subtask τ ji ∈ τ , as shown in Figure 8.
Our heuristics are based on our prior work in scheduling [36]
(Section V-B) and prior work in study of the vehicle routing
problem with time windows [93]. In Line 1, the heuristic
retrieves all alive and enabled subtasks τ ji ∈ τAE . A subtask
τ ji is alive and enabled if all of its wait constraints have
been satisfied (i.e., t ≥ fτyx + Wτyx ,τ

j
i
,∀Wτyx ,τ

j
i

). Next, the
heuristic iterates over each agent and each subtask to find
the highest priority subtask τ j∗i to schedule for each agent
a. In Lines 3-14, the algorithm determines which heuristic
is most appropriate to apply.

If the speed of the agents is sufficiently slow (Line 1),
then the travel distance will become the major bottleneck.
If the agents are fast, but there are one or more resources
that are heavily utilized, then these resources can become the
bottleneck. Otherwise, the duration of the subtasks and their
associated wait constraints are generally the most important
to consider.

In Line 3, the algorithm decides travel distance as the
most important bottleneck. As such, the algorithm applies
a heuristic rule to find the task that maximizes a weighted,

MockHeuristic(τ , A, TC, τR, AC)
1: τAE ← all alive and enabled τ ji ∈ τ
2: for all agents a ∈ A do
3: if Speed ≤ 1m\s then
4: lv ← location of τyx
5: la ← location of agent a
6: lb ← location of agent b ∈ A\a
7: τ j∗i = arg min

τyx∈τAE

(
α1‖lv − la‖+ α2

acos(lv·la)
‖lv‖‖la‖

+α3‖lb − la‖+ α4
acos(lb·lv)
‖lb‖‖lv‖ + 1(∃W〈τyx ,τba〉)

)
8: else if

∑
τji ∈τ

∑
τyx∈τ 1R

τ
j
i
=R

τ
j
x

≥ ε then

9: τ j∗i = arg max
τyx∈τAE

(
α′1

(∑
τqp

1(
Rτyx

=Rτqp

)
)

+

α′′2
(
max

(
dτba
)− dτyx)

)
10: else
11: τ j∗i = arg min

τyx∈τAE

(
dτyx
)

12: end if
13: if a and r can schedule τ j∗i at time t then
14: schedule τ j∗i
15: end if
16: end for

Fig. 8: Pseudocode for the Mock Heuristic.

linear combination of hand crafted features comprised of the
distance and angle relative to the origin between agent a and
τyx as well as the distance, the angle relative to the origin
between agent τyx and agent b, and an indicator term for
whether τyx must be executed to satisfy a wait constraint for
another subtask τ ba . This rule is based on prior work on the
vehicle routing problem [32], [93] and on Tercio’s heuristic
function πP (τ ji) (Section V-D.2).

In Line 8, the algorithm determines that there may be
a resource bottleneck and tries to alleviate this potential
bottleneck. As such, the algorithm applies a heuristic rule
which returns the subtask τ j∗i ∈ τAE that maximizes a
weighted, linear combination of the commonality of the
subtask’s required resource and its deadline. This rule is
based on Tercio’s heuristic functions πR(τ ji) and πEDF (τ ji)
(Section V-D.2).

Lastly, if neither travel distance or resource contention are
perceived to be the major bottlenecks, the algorithm applies
an Earliest Deadline First rule (i.e., πEDF (τ ji) in Section
V-D.2).

With the heuristic shown in Figure 8, we generate a set of
training data with 30, 000 unique task sets, 10, 000 for each
type of bottleneck identified by the heuristic. Scheduling
these task sets provides 533, 737 observations. This data set
is skewed in such a way that a subtask τ ji is scheduled
only 4% of the time. We expect to find a similar trend with
observations of resource nurses, where the majority of the
time is waiting for the next opportunity to make a scheduling
commitment.

18

B. Real-World Data Set

We are currently developing a scheduling simulation to
collect expert demonstrations from resource nurses at Beth
Israel Deaconess Medical Center (BIDMC). A screen capture
of the simulation is shown in Figure 9. This simulation
is being developed in close collaboration with obstetricians
from Beth Israel. The simulation will provide a high-fidelity
virtual representation of the labor and delivery floor, which
provides resource nurses with the ability to make the same
scheduling decisions they would in their normal course of
action.

At BIDMC, the labor floor has a central operating area
where information is displayed and updated on a large
white board. This white board contains information on
each patient’s age, gestational age, gravidity and parity,
comorbidities, etc. Resource nurses also have access to
information about which nurses will be in the hospital and
for which shifts, the schedule for the elective procedures,
and the occupancy in the various obstetrics wards (i.e., ante-
partum ward, post-partum wards, and the neonatal intensive
care unit). This information is represented virtually in our
simulation (Figure 9).

The simulation allows resource nurses to take actions to
control virtual labor floor resources. The resource nurses
playing the simulation can assign a nurse to a patient and
assign a patient to a room in triage, the labor floor, ante-
partum ward, or post-partum ward. The labor nurse also has
loose control over clinical management of each patient. For
example, the labor nurse can ask a physician to consider
performing an amniotomy to expedite labor. A resource nurse
may encourage an amniotomy if the labor floor is nearing
capacity in order to quicken the labor process and open up
more labor beds. In addition to an amniotomy, a resource
nurse can ask a patient’s physician to consider a cesarean
section or send a patient home where appropriate.

We plan to field this simulation during the Summer of
2015 for an initial data collection period. After this data
collection period, we plan to test our prototype for learning
heuristics, address any limitations, and validate the model
we learn for performing the role of a resource nurse.

IX. EMPIRICAL VALIDATION: SYNTHETIC DATA SET

We validate our prototype for apprenticeship learning on
our synthetic data set. This validation is only an initial
step, and we expect future algorithmic improvements and
accompanying validation. In this empirical validation, we
train our model using set of machine learning algorithms
to learn when a subtask should be scheduled and which
subtask is the most important to schedule next. Specifically,
we train a decision tree, KNN classifier, logistic regression
model, support vector machine with a radial basis function
kernel (SVM-RBF), and a neural network. We used 85%
of the data for training and 15% for testing. We compare
the performance of our pair-wise approach with a point-wise
approach and a naı̈ve approach. In the point-wise approach
for predicting the priority of a subtask, the training data
consists of a set of examples where the input vector consists

of the high-level features of the task set ξτ and subtask-
specific features γτji as well as a binary label for whether
subtask τ ji was scheduled in that observation. In the naı̈ve
approach, the examples are comprised of an input vector
that concatenates the high-level features of the task set ξτ
and the subtask-specific features γτji for all subtasks in the
form of {γτji |∀τ

j
i ∈ τ} ∪ ξτ . Each example has a label

consisting of the index of the subtask that was scheduled in
the corresponding observation.

Table I shows the sensitivity (i.e., true positive rate) and
specificity (i.e., true negative rate) of the model. Overall, we
find that a pair-wise model outperforms the point-wise and
naı̈ve approaches. Within the pair-wise model, a decision tree
provides the best performance. The trained decision tree is
able to identify the correct subtask and when to schedule
that subtask 95% of the time, and the decision tree is able
to predict when no subtask should be scheduled for 96% of
the time.

A decision tree model seems to work well for a couple
reasons. First, the heuristic described in Figure 8 has several
modes of operation depending on the speed of the agents
and the degree of resource contention. The decision tree is
able to accurately capture these modes by learning accurate
splitting criteria for the features describing these modes.
Second, the heuristic operates according to temporal and
resource constraints: each agent performs only one subtask
at a time, each resource can be accessed by only one agent
at a time, and a certain amount of time must pass for an
agent to travel from one subtask to the next. The decision
tree can learn which features describe the satisfaction of
these constraints. However, a decision tree is limited in a
key regard: a decision tree is a less natural mechanism for
learning a linear (or polynomial) model, as in Lines 7 and
9 of the mock heuristic in Figure 8. We hypothesize that a
model that bridges a decision tree, for learning the modes of
the heuristic and operational constraints, and regression algo-
rithm, for learning prioritization within these modes, would
more accurately mimic the behavior of operator heuristics.

Furthermore, the pair-wise model we propose as our
prototype in Section VII seems to work well because it is
able to effectively capture the information contained within
the data. As we noted in Section VII, for a given observation
in which a subtask was scheduled, we only know which
subtask was scheduled (i.e., highest rank) and which subtasks
were not scheduled (i.e., lower rank). Training a model based
on pair-wise comparison between the scheduled subtask and
the unscheduled subtasks effectively captures the ability to
predict the subtask that should be scheduled next. A point-
wise approach, however, where each subtask is assigned a
relative priority, suffers because a regression model where
training labels are binary (i.e., high for scheduled and low
for unscheduled) loses much of the information contained
within the observations. The naı̈ve approach, in which the
features of all subtasks are provided as an all-encompassing
feature vector, also suffers some major challenges. First,
the size of the input space grows exponentially with the
number of subtasks. In general, one then needs significantly

19

Fi
g.

9:
Sc

re
en

C
ap

tu
re

of
ou

r
Si

m
ul

at
io

n
of

a
la

bo
r

an
d

de
liv

er
y

Fl
oo

r.

20

Prototype Point-wise Naı̈ve Approach
(Pair-wise)

Decision 95.0% / 96.0% 29.4% / 99.3% 2.81% / 70.6%
Tree
KNN 37.5% / 64.8% 4.89% / 27.29% 7.87% / 68.5%
Logistic 73.8% / 69.6% 4.35% / 67.7% - / -
Regression
SVM-RBF 4.38% / 99.3% 2.17% / 99.6% 1.69% / 99.4%
Neural 71.9% / 60.7% 0.00% / 99.9% 2.81% / 94.3%
Network
Random 6.49% / 50.00% 6.49% / 50.00% 6.49% / 50.00%

TABLE I: The empirical performance (i.e., sensitivity /
specificity) of a set of machine learning algorithms when
predicting the priority of a subtask τ ji and whether or not to
schedule that subtask.

more data to learn an accurate model. Second, knowledge
about the structure of the problem is lost. For example,
the model does not know that certain subsets of the input
vector correspond to the same features of different subtasks.
For example, consider a scenario where features 1 − 20
describe the distance agent a will have to travel to subtasks
1−20, and features 21−40 describe the duration of subtasks
1 − 20. By binning the subtasks’ features, the relationship
within and between differing classes of features is hidden
and must be recovered during training. This relationship
could theoretically be recovered with sufficient data and the
right machine learning algorithm. However, the problem of
learning an accurate model becomes much more difficult.

X. PROPOSED WORK

While our prototype for learning heuristics may work in
our synthetic data set, there are challenges remaining to
directly applying our prototype on the real data from resource
nurses. First, resource nurses have a finite reaction time. The
state in which a resource nurse may decide to act will be
after the stimulus that prompted the action. Thus, we need
a mechanism to link the stimulus with the action. Second, a
nurse’s heuristic may find that any one of a set of scheduling
actions would be equally valid, and any one of those actions
may be selected at random. We recall from Section II that
resource nurses can assign nurses to patients, assign patients
to rooms (i.e., resources), loosely control the start and finish
time of the various steps in the care process, and accept
or reject patients. We suspect that we may be able to learn
which type of room to assign a patient (e.g., operating room
versus labor room), but not necessarily which room out of a
set of common rooms. Similarly, we may be able to learn that
resource nurses would give a patient to a nurse who currently
has no other patients. However, if there are multiple nurses
who have no patients, it may be difficult to distinguish which
of them would be given the patient.

To develop and demonstrate an effective apprenticeship
scheduling framework, we propose a two-step process: Step
1 is a passive learning phase and Step 2 is an active learning
phase. In Step 1, we will perform an initial data collection
phase using our high-fidelity simulation of resource nursing
on the labor and delivery floor at Beth Israel Deaconess

Medical Center. With this data, we will test our prototype
model for learning resource optimization heuristics from
Section VII. We anticipate extending this model to handle
the temporal distance between the stimulus and the response
from the demonstrating resource nurse. We hypothesize that
this model will be able to capture important information
about when the state of the labor floor requires action and
what type of action to take (e.g., assign a free nurse to a given
patient). However, we will likely not be able to discern at
the lowest level between an equivalent set of actions (e.g.,
which free nurse should be assigned).

In Step 2, we will embed an active learning capability
within our apprenticeship scheduling technique to improve
model accuracy. With the knowledge we gained during our
first step, we can field an autonomous agent embedded
within the labor floor simulation. Nurses will see the actions
recommended by the autonomous agent and offer correction
when necessary. In this way, by testing which of a set of
seemingly equal-priority subtasks could be scheduled next,
we can tease out which actions are truly of equal value
or if there is a more subtle bias in the manner in which
resource nurses are acting. This second step will require
an algorithmic extension to handle the information provided
from the demonstrators in real-time as a part of an iterative,
active learning framework.

By demonstrating that our apprenticeship scheduling ap-
proach performs well on both a synthetic data set, which
captures elements across many important scheduling prob-
lems (Section VIII-A), and a real-world data set collected
in one of the most challenging scheduling domains (Section
VIII-B), we believe that we can demonstrate a fundamental
advancement in resource optimization.

XI. TIME LINE

• May 2015: Thesis proposal defense.

• Summer 2015: Initial data collection.

• Fall 2015: Analyze data from initial data collection
phase and improve/extend apprentice scheduler
prototype as a part of Step 1.

• Spring 2016: Develop an active learning framework for
apprenticeship scheduling as part of Step 2.

• Summer 2017: Collect data and validate the active
learning framework as a continuation of Step 2.

• Fall 2016: Thesis writing and revision.

• January 2017: Ph.D. thesis defense.

• February 2017: Graduation.

XII. ACKNOWLEDGMENTS

This work was supported by Boeing Research and Tech-
nology and by the National Science Foundation (NSF)

21

Graduate Research Fellowship Program (GRFP) under grant
number 2388357.

REFERENCES

[1] J. A. Adams. Multiple robot-single human interaction: effects on
perceived workload and performance. Behavior and Information
Technology, 28(2):183–298, 2009.

[2] U. Anders and O. Korn. Model selection in neural networks. Neural
Networks, 12(2):309 – 323, 1999.

[3] L. Ardissono, G. Petrone, G. Torta, and M. Segnan. Mixed-initiative
scheduling of tasks in user collaboration. In Proceedings of the
Eighth International Conference on Web Information Systems and
Technologies, pages 342–351, 2012.

[4] M. J. Barnes, J. Y. C. Chen, F. Jentsch, and E. S. Redden. Designing
effective soldier-robot teams in complex environments: training, inter-
faces, and individual differences. In Proceedings of the International
Conference on Engineering Psychology and Cognitive Ergonomics
(EPCE), pages 484–493. Springer, 2011.

[5] C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification:
Using social and content-based information in recommendation.
In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 714–720. AAAI Press, 1998.

[6] P. Berry, B. Peintner, K. Conley, M. Gervasio, T. Uribe, and N. Yorke-
Smith. Deploying a personalized time management agent. In Pro-
ceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1564–1571, New York, NY,
USA, 2006. ACM.

[7] D. Bertsimas and R. Weismantel. Optimization over Integers.
Dynamic Ideas, Belmont, 2005.

[8] E. Blickensderfer, J. A. Cannon-Bowers, and E. Salas. Cross-training
and team performance. In Making decisions under stress: Implica-
tions for individual and team training, pages 299–311. American
Psychological Association, Washington, DC, 1998.

[9] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Pool.
Cp-nets: A tool for representing and reasoning with conditional ce-
teris paribus preference statements. Journal of Artificial Intelligence
Research, 21:135–191, February 2004.

[10] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Rea-
soning with conditional ceteris paribus preference statements. In
Proceedings of the Fifteenth Conference on Uncertainty in Artificial
Intelligence, UAI’99, pages 71–80, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[11] S. J. Bradtke and M. O. Duff. Reinforcement learning methods for
continuous-time markov decision problems. In Advances in Neural
Information Processing Systems, pages 393–400. MIT Press, 1994.

[12] L. Brandenburg, P. Gabow, G. Steele, J. Toussaint, and B. J. Tyson.
Innovation and best practices in health care scheduling. Technical
report, February 2015.

[13] L. Brunet, H.-L. Choi, and J. P. How. Consensus-based auction
approaches for decentralized task assignment. In Proceedings of
the AIAA Guidance, Navigation, and Control Conference (GNC),
Honolulu, HI, 2008.

[14] L. Bush, B. Williams, and N. Roy. Unifying plan-space value-based
approximate dynamic programming policies and open loop feedback
control. In Proceedings of the AIAA Infotech@Aerospace Conference,
2012.

[15] D. Cai, X. He, J.-R. Wen, and W.-Y. Ma. Block-level link analysis. In
Proceedings of the 27th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’04,
pages 440–447, New York, NY, USA, 2004. ACM.

[16] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank:
from pairwise approach to listwise approach. In Proceedings of
the 24th International Conference on Machine Learning, ICML ’07,
pages 129–136, New York, NY, USA, 2007. ACM.

[17] J. Casper and R. R. Murphy. Human-robot interaction in rescue
robotics. IEEE Transaction on Systems, Man, and Cybernetics
(SMCS), 34(2):138–153, 2004.

[18] J. Y. Chen, M. J. Barnes, and Z. Qu. Roboleader: an agent
for supervisory control of mobile robots. In Proceedings of the
International Conference on Human-Robot Interaction (HRI), 2010.

[19] S. Chernova and M. Veloso. Confidence-based policy learning from
demonstration using gaussian mixture models. In Proceedings of
the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 233:1–233:8, New York, NY, USA, 2007.
Association for Computing Machinery.

[20] S. Chernova and M. Veloso. Multi-thresholded approach to demon-
stration selection for interactive robot learning. In 3rd ACM IEEE
International Conference on Human-Robot Interaction (HRI). IEEE,
March 2008.

[21] Y. H. Cho, J. K. Kim, and S. H. Kim. A personalized recommender
system based on web usage mining and decision tree induction.
Expert Systems with Applications, 23(3):329 – 342, 2002.

[22] A. S. Clare, M. L. Cummings, J. P. How, A. K. Whitten, and
O. Toupet. Operator objective function guidance for a real-time
unmanned vehicle scheduling algorithm. AIAA Journal of Aerospace
Computing, Information and Communication, 9:161–173, 2012.

[23] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and
M. Sartin. Combining content-based and collaborative filters in an
online newspaper. In Proceedings of the ACM SIGIR’99 Workshop
on Recommender Systems, 1999.

[24] M. L. Cummings, A. S. Brzezinski, and J. D. Lee. Operator perfor-
mance and intelligent aiding in unmanned aerial vehicle scheduling.
IEEE Intelligent Systems, 22(2):52–59, March 2007.

[25] T. Das, A. Gosavi, S. Mahadevan, and N. Marchalleck. Solving
semi-markov decision problems using average reward reinforcement
learning. Management Science, 45:560–574, 1999.

[26] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. AI,
49(1):61–91, 1991.

[27] M. B. Dias. TraderBots: A New Paradigm for Robust and Efficient
Multirobot Coordination in Dynamic Environments. PhD thesis,
Robotics Institute, Carnegie Mellon University, January 2004.

[28] E. H. Durfee, J. C. B. Jr., and J. Sleight. Using hybrid scheduling for
the semi-autonomous formation of expert teams. Future Generation
Computer Systems, July 2013.

[29] M. R. Endsley. Toward a theory of situation awareness in dynamic
systems. Human Factors: The Journal of the Human Factors and
Ergonomics Society, 37(1):32–64, 1995.

[30] E. E. Entin and D. Serfaty. Adaptive team coordination. Human
Factors, 41:312–325, 1999.

[31] D. Fox. Adapting the sample size in particle filters through
kld-sampling. International Journal of Robotics Research (IJRR),
22:985–1003, 2003.

[32] L. M. Gambardella, Éric Taillard, and G. Agazzi. MACS-VRPTW:
A multiple colony system for vehicle routing problems with time
windows. In New Ideas in Optimization, pages 63–76. McGraw-Hill,
1999.

[33] M. C. Gombolay. Fast methods for scheduling with applications to
real-time systems and large-scale robotic manufacturing of aerospace
structures. Master’s thesis, Department of Aeronautics and Astronau-
tics, Massachusetts Institute of Technology, 2013.

[34] M. C. Gombolay, R. A. Gutierrez, G. F. Sturla, and J. A. Shah.
Decision-making authority, team efficiency and human worker satis-
faction in mixed human-robot teams. In Proceedings of the Robots:
Science and Systems (RSS), Berkeley, California, July 12-16, 2014.

[35] M. C. Gombolay and J. A. Shah. Multiprocessor scheduler for task
sets with well-formed precedence relations, temporal deadlines, and
wait constraints. In Proceedings of the AIAA Infotech@Aerospace,
2012.

[36] M. C. Gombolay, R. J. Wilcox, and J. A. Shah. Fast scheduling of
multi-robot teams with temporospatial constrints. In Proceedings of
the Robots: Science and Systems (RSS), Berlin, Germany, June 24-28,
2013.

[37] M. A. Goodrich, B. S. Morse, C. Engh, J. L. Cooper, and J. A.
Adams. Towards using UAVs in wilderness search and rescue:
Lessons from field trials. Interaction Studies, Special Issue on Robots
in the Wild: Exploring Human-Robot Interaction in Naturalistic
Environments, 10(3):453–478, 2009.

[38] M. L. D. Grano, D. J. Medeiros, and D. Eitel. Accommodating indi-
vidual preferences in nurse scheduling via auctions and optimization.
Healthcare Management Science, 12:228–242, September 2009.

[39] M. Hamasaki, H. Takeda, I. Ohmukai, and R. Ichise. Scheduling
support system for academic conferences based on interpersonal
networks. In Proceedings of ACM Hypertext, 2004.

[40] T. H. Haveliwala. Topic-sensitive PageRank. In Proceedings of the
11th International Conference on World Wide Web, pages 517–526,
New York, NY, USA, 2002. ACM.

[41] T. Haynes, S. Sen, N. Arora, and R. Nadella. An automated meeting
scheduling system that utilizes user preferences. In Proceedings of
the First International Conference on Autonomous Agents, AGENTS
’97, pages 308–315, New York, NY, USA, 1997. ACM.

[42] R. Herbrich, T. Graepel, and K. Obermayer. Large Margin Rank
Boundaries for Ordinal Regression, chapter 7, pages 115–132. MIT
Press, January 2000.

22

[43] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluat-
ing collaborative filtering recommender systems. ACM Transactions
on Information Systems, 22(1):5–53, Jan. 2004.

[44] J. N. Hooker. Logic-based benders decomposition. Mathematical
Programming, 96:33–60, 2003.

[45] E. R. Hooten, S. T.Hayes, and J. A. Adams. A comparison of
communicative modes for map-based tasking. In IEEE International
Conference on Systems, Man, and Cybernetics, 2011.

[46] C.-M. Huang and B. Mutlu. Learning-based modeling of multi-
modal behaviors for humanlike robots. In Proceedings of the 2014
ACM/IEEE International Conference on Human-robot Interaction,
pages 57–64, New York, NY, USA, 2014. ACM.

[47] M. Ibnkahla. Applications of neural networks to digital communica-
tions - a survey. Signal Processing, 80(7):1185 – 1215, 2000.

[48] T. Inamura, M. Inaba, and H. Inoue. Acquisition of probabilistic
behavior decision model based on the interactive teaching method. In
”Proceedings of the International Conference on Advanced Robotics,
1999.

[49] R. Jin, H. Valizadegan, and H. Li. Ranking refinement and its
application to information retrieval. In Proceedings of the 17th
International Conference on World Wide Web, pages 397–406, New
York, NY, USA, 2008. Association for Computing Machinery.

[50] D. G. Jones and M. R. Endsley. Sources of situational errors in
aviation. Aviation, Space, and Environmental Medicine, 67(6):507–
512, 1996.

[51] E. Jones, M. Dias, and A. Stentz. Time-extended multi-robot
coordination for domains with intra-path constraints. Autonomous
Robots, 30(1):41–56, 2011.

[52] H. L. Jones, S. M. Rock, D. Burns, and S. Morris. Autonomous robots
in SWAT applications: Research, design, and operations challenges.
Association for Unmanned Vehicle Systems International, 2002.

[53] S. M. Kehle, N. Greer, I. Rutks, and T. Wilt. Interventions to improve
veterans access to care: A systematic review of the literature. Journal
of General Internal Medicine, 26(2):689–696, 2011.

[54] H. K. Kim, J. K. Kim, and Y. Ryu. Personalized recommendation
over a customer network for ubiquitous shopping. IEEE Transactions
on Services Computing, 2, April 2009.

[55] J. K. Kim, Y. H. Cho, W. J. Kim, J. R. Kim, and J. H. Suh.
A personalized recommendation procedure for internet shopping
support. Electronic Commerce Research and Applications, 1(34):301
– 313, 2002.

[56] G. A. Klein. A recognition-primed decision (RPD) model of rapid
decision making. Ablex Publishing Corporation, New York, NY,
USA, 1993.

[57] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, Aug. 2009.

[58] G. A. Korsah, A. Stentz, and M. B. Dias. A comprehensive taxonomy
for multi-robot task allocation. The International Journal of Robotics
Research, 32(12):1495–1512, 2013.

[59] P. Laborie. Algorithms for propagating resource constraints in
AI planning and scheduling: existing approaches and new results.
Artificial Intelligence, 143(2):151–188, February 2003.

[60] K. Lakshmanan, S. Kato, and R. R. Rajkumar. Open problems in
scheduling self-suspending tasks. In Proceedings of the Real-Time
Scheduling Open Problems Seminar (RTSOPS), Brussels, Belgium,
July 6 2010.

[61] K. Lakshmanan and R. R. Rajkumar. Scheduling self-suspending
real-time tasks with rate-monotonic priorities. In Proceedings of the
Real-Time and Embedded Technology and Applications Symposium
(RTAS), Stockholm, Sweden, April 12-15 2010.

[62] P. Li, Q. Wu, and C. J. Burges. Mcrank: Learning to rank using
multiple classification and gradient boosting. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 897–904. MIT Press, Cambridge, MA,
2007.

[63] W. Lihua, L. Lu, L. Jing, and L. Zongyong. Modeling user multiple
interests by an improved {GCS} approach. Expert Systems with
Applications, 29(4):757 – 767, 2005.

[64] G. S. Linoff and M. J. Berry. Data Mining Techniques: For
Marketing, Sales and Customer Relationship Management. Wiley,
Hoboken, New Jersey, 2004.

[65] C. Liu and J. H. Anderson. Task scheduling with self-suspensions
in soft real-time multiprocessor systems. In Proceedings of the
30th IEEE Real-Time Systems Symposium (RTSS), Washington DC,
U.S.A., December 1-4 2009.

[66] C. Liu and J. H. Anderson. Improving the schedulability of sporadic
self-suspending soft real-time multiprocessor task systems. In Pro-
ceedings of the 16th IEEE International Conference on Real-Time
Computing Systems and Applications (RTCSA), Hong Kong, China,
August 23-25 2010.

[67] S. Macho, M. Torrens, and B. Faltings. A multi-agent recommender
system for planning meetings. In Proceedings of the ACM Conference
on Autonomous Agents, Workshop on Agent-based Recommender
Systems, 2000.

[68] C. F. Mackenzie, Y. Xiao, and R. Horst. Video task analysis in high
performance teams. Cognition, Technology, and Work, 6:139–147,
2004.

[69] N. K. Malhotra. Marketing Research: an Applied Orientation.
Prentice Hall, Upper Saddle River, New Jersey, 2010.

[70] B. Michini and J. P. How. Bayesian nonparametric inverse rein-
forcement learning. In Machine Learning and Knowledge Discovery
in Databases, volume 7524 of Lecture Notes in Computer Science,
pages 148–163. Springer Berlin Heidelberg, 2012.

[71] N. Muscettola, P. Morris, and I. Tsamardinos. Reformulating
temporal plans for efficient execution. In Proceedings of the 6th
International Conference on Principles of Knowledge Representation
and Reasoning (KR&R), Trento, Italy, June 2-5, 1998.

[72] S. Nikolaidis and J. Shah. Human-robot cross-training: computational
formulation, modeling and evaluation of a human team training
strategy. In Proceedings of the International Conference on Human-
Robot Interaction (HRI), pages 33–40, 2013.

[73] M. Öztürké, A. Tsoukiı̀s, and P. Vincke. Preference modelling.
In Multiple Criteria Decision Analysis: State of the Art Surveys,
volume 78 of International Series in Operations Research & Man-
agement Science, pages 27–59. Springer New York, 2005.

[74] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical Report 1999-
66, Stanford InfoLab, November 1999. Previous number = SIDL-
WP-1999-0120.

[75] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and T. Salakoski.
Learning to rank with pairwise regularized least-squares. In SIGIR
2007 Workshop on Learning to Rank for Information Retrieval, pages
27–33, 2007.

[76] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. Situation aware-
ness, mental workload, and trust in automation: Viable, empirically
supported cognitive engineering constructs. Journal of Cognitive
Engineering and Decision Making, 2(2):140–160, 2008.

[77] D. H. Park, H. K. Kim, I. Y. Choi, and J. K. Kim. A literature review
and classification of recommender systems research. Expert Systems
with Applications, 39(11):10059 – 10072, 2012.

[78] S. D. Pizer and J. C. Prentice. What are the consequences of waiting
for health care in the veteran population? Journal of General Internal
Medicine, 26(2):676–682, 2011.

[79] R. R. Rajkumar. Dealing with self-suspending period tasks. Technical
report, IBM, Thomas J. Watson Research Center, Armonk, New York,
1991.

[80] D. Ramachandran and E. Amir. Bayesian inverse reinforcement
learning. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, pages 2586–2591, San Francisco,
CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[81] V. Ramanujam and H. Balakrishnan. Estimation of maximum-
likelihood discrete-choice models of the runway configuration selec-
tion process. In American Control Conference (ACC), 2011, pages
2160–2167, June 2011.

[82] P. Reverdy, V. Srivastava, and N. E. Leonard. Modeling human
decision-making in generalized gaussian multi-armed bandits. CoRR,
abs/1307.6134, 2013.

[83] P. Richard. On the complexity of scheduling real-time tasks with self-
suspensions on one processor. In Proceedings of the 15th Euromicro
Conference on Real-Time Systems (ECRTS), Porto, Portugal, July 2-4
2003.

[84] F. Ridouard and P. Richard. Negative results for scheduling indepen-
dent hard real-time tasks with self-suspensions. In Proceedings of
the Real-Time and Network Systems (RTNS), Poitiers, France, May
30-31 2006.

[85] J. C. Ryan, A. G. Banerjee, M. L. Cummings, and N. Roy. Comparing
the performance of expert user heuristics and an integer linear
program in aircraft carrier deck operations. IEEE Transaction on
Cybernetics, PP(9), August 2013.

[86] P. E. Rybski and R. M. Voyles. Interactive task training of a mobile
robot through human gesture recognition. In IEEE International
Conference on Robotics and Automation, pages 664–669, 1999.

23

[87] E. Salas, J. E. Fowlkes, R. J. Stout, D. M. Milanovich, and C. Prince.
Does CRM training improve teamwork skills in the cockpit?: Two
evaluation studies. Human Factors, 41:326–343, 1999.

[88] C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly.
In Proceedings of the Ninth International Conference on Machine
Learning, pages 385–393, July 1992.

[89] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application
of dimensionality reduction in recommender system - a case study.
In Proceedings of the ACM WEBKDD workshop, 2000.

[90] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching robots
by moulding behavior and scaffolding the environment. In Proceed-
ings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot
Interaction, pages 118–125, New York, NY, USA, 2006. ACM.

[91] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen. Collaborative
filtering recommender systems. In The Adaptive Web, pages 291–324.
Springer-Verlag, Berlin, Heidelberg, 2007.

[92] S. A. Shipman and C. A. Sinsky. Expanding primary care capacity
by reducing waste and improving efficiency of care. Health Affairs
(Millwood), 32(11):1990–1997, 2013.

[93] M. M. Solomon. Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research,
35(2):254–265, 1987.

[94] M. Soomer and G. Franx. Scheduling aircraft landing using airlines’
preferences. European Journal of Operational Research, 190:277–
291, October 2008.

[95] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo.
In Deadline Scheduling for Real-Time Systems, volume 460 of The
Springer International Series in Engineering and Computer Science.
1998.

[96] P. Szolovits, R. S. Patil, and W. B. Schwartz. Artificial intelligence
in medical diagnosis. Annals of Internal Medicine, 108(1):80–87,
1988.

[97] P. Szolovits and S. G. Pauker. Categorical and probabilistic reasoning
in medical diagnosis. Artificial Intelligence, 11(12):115 – 144, 1978.
Applications to the Sciences and Medicine.

[98] F. Tang and L. E. Parker. ASyMTRe: Automated synthesis of multi-
robot task solutions through software reconfiguration. In Proceedings
of the International Conference on Robotics and Automation, May
2005.

[99] A. Terrell and B. Mutlu. A regression-based approach to modeling
addressee backchannels. In Proceedings of the 13th Annual Meeting
of the Special Interest Group on Discourse and Dialogue, pages 280–
289, Stroudsburg, PA, USA, 2012. Association for Computational
Linguistics.

[100] A. L. Thomaz and C. Breazeal. Reinforcement learning with human
teachers: Evidence of feedback and guidance with implications for
learning performance. In Proceedings of the 21st National Confer-
ence on Artificial Intelligence, pages 1000–1005. AAAI Press, 2006.

[101] H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to rank by
optimizing NDCG measure. In Y. Bengio, D. Schuurmans, J. Lafferty,
C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 1883–1891. Curran Associates, Inc.,
2009.

[102] P. Vilı́m, R. Barták, and O. Čepek. Extension of O(n log n) filtering
algorithms for the unary resource constraint to optional activities.
Constraints, 10(4):403–425, 2005.

[103] M. N. Volkovs and R. S. Zemel. Boltzrank: Learning to maximize ex-
pected ranking gain. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pages 1089–1096, New
York, NY, USA, 2009. ACM.

[104] C. Volpe, J. Cannon-Bowers, E. Salas, and P. Spector. The impact
of cross-training on team functioning: an empirical investigation.
Human Factors, 38:87–100, 1996.

[105] R. J. Wilcox, S. Nikolaidis, and J. A. Shah. Optimization of
temporal dynamics for adaptive human-robot interaction in assembly
manufacturing. In Proceedings of Robotics: Science and Systems
(RSS), Sydney, Australia, July 9-13 2012.

[106] R. J. Wilcox and J. A. Shah. Optimization of multi-agent work-
flow for human-robot collaboration in assembly manufacturing. In
Proceedings of the AIAA Infotech@Aerospace, 2012.

[107] S.-Z. Yu. Hidden semi-markov models. Artificial Intelligence,
174(2):215 – 243, 2010. Special Review Issue.

[108] H. Zhang, E. Law, R. Miller, K. Gajos, D. Parkes, and E. Horvitz.
Human computation tasks with global constraints. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pages 217–226, New York, NY, USA, 2012. ACM.

