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ABSTRACT:  Molecular O2 dissociates upon interaction with a Ni(111) surface as the spatial 

and energetic overlap between the Ni 3d electrons and the O2 antibonding orbitals is quite 

favorable.  On a Au-Ni(111) surface alloy where the extent of this overlap is greatly reduced, 

exposure to O2 results in adsorption of molecular O2 characterized by three peroxo- or superoxo-

like vibrational bands centered at 743, 856, and 957 cm-1 as observed by high resolution electron 

energy loss spectroscopy.  These bands correspond to the stretch vibrational mode of O2 at 

respective adsorption sites of type pseudo-3-fold fcc/hcp, degenerate-pseudo-2-fold fcc/hcp and 

bridge, and pseudo-3-fold bridge.  These unusual chemical environments are brought about by 

surface alloying, rather than the presence of Au clusters on Ni, and are further stabilized by a 

dramatic reconstruction of the top two surface layers, as explained with an idealized surface 

alloy model in conjunction with electronic structure considerations.  The ability to adjust the 

relative populations of the different oxygen cohorts by varying the Au content suggests the utility 

of surface alloy motifs for engineering applications.   
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I.  INTRODUCTION 

Unlike the Group 10 elements Pd1,2,3 and Pt,4,5,6,7,8 Ni has not been observed to physisorb nor 

chemisorb molecular O2.  Instead, molecular O2 dissociates readily upon interaction with a 

Ni(111) surface, even when the crystal temperature is as low as 8 K.9  Hence, the upper limit of 

the barrier to dissociative chemisorption is approximately 0.016 kcal/mol.  This almost-

barrierless dissociation is due to the energetically favorable overlap between the Ni 3d electrons 

and the O2 antibonding orbitals10 because of the higher energy of the Ni 3d band relative to the 

Pd 4d band and Pt 5d band. 

As part of a low temperature CO oxidation study, molecular O2 has been shown to be 

stabilized on a Au-Ni(111) surface alloy that is formed by deposition of Au onto a Ni(111) 

surface.11,12  The Au atoms displace Ni atoms, forming a hexagonally closed packed alloy.  The 

Au atoms intersperse randomly among the top layer Ni atoms while keeping the two dimensional 

structure of the original Ni surface.13   In addition, the formation of the Au-Ni alloy lowers the 

energy of the Ni 3d band center smoothly from Ni- to more Au-like with increasing Au coverage 

as shown via photoelectron spectroscopy.14  This fact results in less favorable energetic overlap 

with the O2 antibonding orbitals, thereby quenching O2 dissociation.  Molecular O2 adsorbed at 

77 K on Au-Ni alloy surfaces is characterized by O-O vibrational bands spanning 740–990 cm-1 

as obtained via high resolution electron energy loss spectroscopy (HREELS).  Very similar 

frequencies from analogous measurements on Pd, Pt, and Ag15,16,17 are evidence for peroxo- (O2
2-) 

and superoxo-like (O2
1-) species as these internal O2 stretches are much lower in frequency from 

gas phase O2, 1580 cm-1.  These lower O2 stretch mode frequencies are a result of charge transfer 

from the metal to the O2 antibonding orbitals, the extent of which is too low for barrierless 

dissociative chemisorption of O2 as on Ni. 
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This manuscript presents vibrational spectra of molecular O2 adsorbed on Au-Ni(111) alloys 

held at 80 K up to a Au coverage of 0.73 ML (0.8 ML is the saturation coverage) and analyzes 

changes in both O2 adsorption (from dissociative to molecular to non-adsorption) and O2 

adsorption sites on the Au-Ni(111) surface with increasing Au coverage.  We establish that alloy 

formation between Au and Ni rather than the presence of Au clusters on Ni is necessary for 

molecular O2 adsorption at 80 K.  To facilitate understanding of the experimental results, an 

idealized model of the surface alloy valid at all Au coverages is described prior to presenting the 

data.  Next, we apply Nørskov's d-band model18 to qualitatively describe electronic structure 

changes to Ni upon alloying with Au and its effect on O2 adsorption.  With both of these models, 

we can reconcile the results of prior scanning tunneling microscopy (STM) studies with our new 

observations of molecular O2 adsorption on Au-Ni(111) obtained via HREELS. 

II.  BACKGROUND – SURFACE MORPHOLOGY 

As the incorporation of Au atoms into the Ni(111) surface is an activated, kinetically hindered 

process, the morphology of the surface alloy is strongly dependent on surface treatment.  Our 

description of these surfaces is largely based on Nielsen's STM studies.19  Below 0.3 ML Au, Au 

atoms directly swap for Ni atoms at surface lattice sites without disturbing the supporting layer.  

These swaps occur at random positions for all Au coverages.  All of these alloy surfaces are 

compressively strained because the Au(111) lattice constant is nearly 16% larger than that of 

Ni(111).  The surface atoms and their supporting lattice atoms do not relax to relieve this strain 

below 0.3 ML Au. 

An extremely complex phase transition occurs just beyond 0.3 ML Au (or possibly 0.4 ML 

Au20) as accommodating extra Au atoms exceeds the maximum compressive surface strain 

possible without lattice reconstruction.  At this coverage, the top layer lattice constant abruptly 
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increases while the supporting layer lattice constant remains the same.  The top two layers now 

behave as two separate layers of atoms with different lattice constants.  To reduce the interfacial 

strain between these two layers, some atoms are expelled from the supporting layer (and are 

assumed to be incorporated into the top layer) while others concurrently shift within the 

supporting layer.  The concerted motion of these subsurface Ni atoms is poorly understood.  This 

strain is perturbatively affected by the layer of atoms immediately below it, as these third layer 

atoms determine whether surface atoms are coordinated to face-centered-cubic (fcc)- or 

hexagonal-closed-packed (hcp)-like 3-fold hollow sites.  The ratio of fcc- to hcp-like 3-fold 

hollow sites in the top layer drops from that of unity on a Ni(111) surface when the 

reconstruction takes place. 

To understand this phase transition, first consider a fictitious monolayer of Au(111) 

physisorbed on Ni(111) (or equivalently, 0.8 ML where a ML is defined relative to the unit cell 

of Ni(111)) and weakly interacting with it.  Figure 1 shows a top view of this system with Au 

and Ni atoms respectively drawn as large and small transparent circles.  A moiré pattern is seen 

due to the lattice mismatch.  The Au overlayer unit cell has a p(9×9) structure and its area is 81 

times larger than the Ni(111) primitive unit cell.  Its sides, shown as bold lines, are drawn so its 

corners align with points of 3-fold rotational symmetry.  Though this choice of unit cell is not 

intuitive, it centers the atoms with the lowest coordination numbers in the unit cell's lower half. 

The thin lines mark domain walls that split the top Au layer into triangular and hexagonal 

regions where Au atoms coordinate differently to the underlying Ni atoms.  They are nearly 

3-fold (fcc or hcp) coordinated in the former, but nearly 2-fold (bridge) and 1-fold (atop) 

coordinated in the latter.  Atoms with intermediate coordination numbers are also present on the 

surface.  These domains show that without surface reconstruction, a large proportion of surface 
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atoms would rest almost directly over Ni atoms, which is an energetically unfavorable 

configuration.  Those under-coordinated atoms are so strained that a novel subsurface 

reconstruction one atomic layer below the surface occurs.  This reconstruction is driven by 

minimizing the total surface energy.  This minimum occurs when the top layer atoms are 

maximally coordinated by resting near 3-fold hollow sites formed from the atoms in the 

supporting layer.  With the top layer atoms fixed, the interfacial strain is reduced by forming a 

stacking fault in the supporting Ni layer whereby some supporting Ni atoms originally in fcc 

sites shift to hcp ones.  The result is a subsurface, triangular misfit dislocation loop that sharply 

demarcates this reconstructed region located inside the hexagonal domain of every unit cell.  

This reconstruction raises the coordination number of many top layer atoms.  Those atoms that 

 
Figure 1.  Triangular and hexagonal domains in an idealized p(9×9) Au(111) on Ni(111) with 
thin line domain walls.  In the former, the Au atoms are nearly 3-fold (hcp/fcc) coordinated with 
the underlying Ni atoms.  In the latter, the Au atoms are pseudo- 2-fold (bridge) and 1-fold (atop) 
coordinated with the underlying Ni atoms.  Top and bottom halves of a sample unit cell are 
drawn with thicker lines. 
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were minimally coordinated in a pseudo-1-fold manner to the supporting layer become 

maximally pseudo-3-fold coordinated. 

We choose a fictitious 0.53 ML Au surface with a p(13×13) unit cell to illustrate these 

transformations more clearly.  As in Figure 1, we choose to position the unit cells in Figure 2 so 

that their lower halves are all centered on the reconstructed region.  This Au coverage is 

coincidentally near the middle of the 0.3–0.8 ML Au interval where reconstruction occurs.  The 

unit cell periodicity p is a function of the normalized gold coverage θ = θAu/0.8 given by 

p = 1+aNi/[θ(aAu−aNi)] with aNi = 2.489 Å being the Ni atom diameter and aAu = 2.8 Å being the 

empirically measured length between Au atom centers within a Au island adsorbed on Ni(111).19  

The subsurface Ni atoms in the p(13×13) unit cell that form an idealized triangular misfit 

dislocation loop are shaded in Figure 2a.  The chain of atoms to be removed are shaded more 

darkly.  Its length is about half the moiré periodicity and is also nearly the side length of the 

resulting loop.  Removal of this chain of Ni atoms allows those atoms remaining in the triangular 

region to shift left by the distance between the center of a 3-fold hollow and any of its three 

nearest atop sites.  The result is shown in Figure 2b with the reference center unmoved from that 

in Figure 2a.  The chain in Figure 2a can also be removed from any of three symmetrically 

equivalent orientations to obtain the same configuration shown in Figure 2b.  In Figures 2c and 

2d, the centers of the overlayer atoms are shown in relation to both non-reconstructed and 

reconstructed Ni lattices, respectively.  Without reconstruction, the centers of 28 surface atoms 

are directly, or very nearly on top of supporting Ni atoms (Figure 2c).  No atop coordinated 

surface atoms exist after the reconstruction (Figure 2d). 

As seen in Figure 2d, 18 top layer atoms in each unit cell sink into the shaded loop and 

enclose 10 atoms in its interior.  The center of this entire group of 28 atoms is on average, 
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coincident with the center of the non-reconstructed hexagonal domain.  This new triangular 

 

Figure 2.  Subsurface Ni atoms and their movement within a half of a p(13×13) Au-Ni(111) unit 
cell before [a] and after reconstruction [b].  The coordination number of the top layer atoms [c] 
increases dramatically [d] as a result. 
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domain is different from those other triangular domains shown in Figure 1 that are manifestly 

present on the surface due to the moiré patterned atomic positions.  Since STM images show a 

large contrast between the reconstructed triangular enclosure and its interior, earlier 

descriptions21 of the reconstructed triangular region adopted a convention of counting the 

number of atoms fully inside the dislocation loop as indicative of its size.  Although a practical 

choice, we think the more natural variable to use is the edge length of the triangular loop (which 

is 7 in the case of Figures 2 and 3), as it matches the number of subsurface Ni atoms removed 

and is nearly half the moiré periodicity. 

In Figure 3, the 0.53 ML Au unit cell is shown with identically shaded substrate atoms 

indicating distinct surface electronic environments.  Subsurface layer atoms are respectively 

either pseudo- 3-fold or 2-fold coordinating based on the atoms' proximity to a triangular or 

hexagonal domain.  Chemically similar surface atoms are thought to be resting on top of 

matching shaded regions.  However, atoms at and near the loop experience very strong electronic 

structure perturbations.  Fewer subsurface atoms are near the loop corners, so surface atoms at 

those locations embed proportionally deeper into the bulk compared to those along the loop 

lengths.  Arguably, all sunken atoms (which are those directly over the dislocation loop in 

Figure 3) have higher coordination numbers to the underlying Ni atoms compared to any other 

surface atom.  The 15 top-layer atoms in the loop edge are pseudo-4-fold coordinated to the 

underlying Ni atoms, and the 3 atoms at the corners are pseudo-5-fold coordinated.  The atom 

fraction affected by this loop later explains the relative ratios of adsorbed molecular oxygen 

species on the alloy surface. 

  With our surface model, we can quantitatively reproduce Nielsen's description of 

representative misfit dislocation loops as a function of Au coverage.19  This correspondence is 
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possible because the domain sizes in the unit cell are dependent on the underlying moiré pattern 

periodicity, and this periodicity in turn is dependent on the average size of all atoms that 

constitute the very top layer.  Those prior STM measurements established that the effective 

lattice constant of the entire surface layer is the average of the lattice constant of a pure Au layer 

and a pure Ni layer weighted by the Au coverage.  Our model complements this result by further 

clarifying how the atoms within the unit cell are spatially related to each other before and after 

the reconstruction, and emphasizes the existence of distinct domains and electronic environments 

within the unit cell in addition to those within the reconstructed region.  These domains of 

 

Figure 3.  0.53 ML Au model unit cell. 
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pseudo-2- and 3-fold coordinated surface atoms are well defined so long as the Au atoms are 

dispersed with sufficient randomness.  This randomness is important as otherwise an effective 

model unit cell cannot be constructed. 

Based on this unit cell model and our experimental data, we will later propose that while two 

non-degenerate cohorts of molecular O2 co-adsorb onto these pseudo-3-fold coordinated regions, 

two degenerate cohorts of molecular O2 (appearing as one cohort) adsorb onto pseudo-2-fold 

coordinated regions.  These regions are assigned as the binding sites of three intense molecular 

O2 bands seen in HREELS.  This model relies on knowing that the electronic structure of the 

topmost layer is distinctly heterogeneous within the length scale of half the moiré periodicity.  

Although the topmost layer consists of Au and Ni atoms thoroughly intermixed, large regions of 

surface atoms rest atop distinct electronic environments due to the relative positions of surface 

atoms with respect to the supporting layer.  Experimental preparation of these alloy surfaces is 

discussed in the next section. 

III.  EXPERIMENTAL 

A.  Procedure.  Experiments are conducted in a molecular beam ultra-high vacuum apparatus22 

with a base pressure less than 5×10-11 Torr.  A Ni(111) single crystal, oriented to within 0.2˚, can 

be cooled to 80 K, heated radiatively to 450 K by a W filament mounted behind the crystal, or 

heated to 1300 K by electron bombardment via biasing the crystal relative to the filament.  The 

crystal is cleaned via repeated cycles of Ar+ ion sputtering followed by annealing to between 

1000–1300 K.  Surface cleanliness is verified by the absence of contaminants as detected by 

Auger electron spectroscopy (AES) and HREELS.  Two additional stringent tests of surface 

homogeneity and HREELS consistency are performed by translating the crystal relative to the 

electron beam, and verifying that Auger intensities or vibrational loss features obtained in each 
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position are coincident. 

Gold (Alfa Aesar, Premion, 99.999%) is vapor-deposited at an adjustable rate between 0.01–

0.60 ML Au/min onto the Ni(111) crystal held at 450 K and then annealed at 773 K for 10 

minutes.  This procedure renders the alloy surface nearly atomically smooth at all Au coverages.  

The Au coverage is first estimated during deposition using a quartz crystal microbalance23 

contained within the Au source and then accurately determined after deposition via curve fitting 

of Au and Ni Auger intensities.  Uniformity of the Au dose is verified by measuring the Au 

coverage at 19–22 distinct positions on the crystal.  The Au coverage uniformity is deemed 

acceptable only if the dispersion, defined as the ratio of the standard deviation to the average of 

all measured Au coverages on a single prepared surface, is less than 4%.  Results presented here 

were measured on surfaces with dispersions of 3.8% or lower.  The non-uniformity of Au 

coverage is the dominant contribution to surface alloy heterogeneity.  Additional sources of 

imprecision include the statistical error in the peak-to-peak measurements that results in a 

standard deviation of 5.5×10-3 ML Au error in each Au coverage measurement.  The published 

error in sensitivity factors also contributes an additional relative error on the order of 4×10-5 to 

the final assigned Au coverage. 

All O2 exposures are effected using a 10% mixture of scientific grade O2 (MG Scientific) in 

pure Ar (Spectra Gases) supplied as a beam.  The chamber geometry is such that the entire 

crystal surface, held at 80 K, is exposed to the beam.  The estimated O2 exposure of 4–5 L is 

chosen to saturate the vibrational loss features seen between 700–1200 cm-1 near 0.46 ML Au.12 

HREEL spectra are measured using a spectrometer described previously.24  The elastically 

scattered beam of electrons has a full width at half maximum (FWHM) of less than 60 cm-1 and 

an average peak intensity of 44 kHz with a range of 5.7–170 kHz.  Spectral acquisition time is 
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approximately one hour using a channel width of 8 cm-1.  All spectra are recorded with an impact 

energy of 5.5 eV at the specular angle incident at 60˚ to the normal, and normalized to 500 kHz 

total count rate in the fitted elastically scattered loss feature.  All HREEL intensities are absolute 

and normalized in an identical manner.  We assume based on near edge x-ray absorption fine 

structure measurements25 of Ag and Pt, that molecular O2 on Au-Ni(111) also adsorbs with its 

principal axis parallel to the surface.  Charge transfer to the surface fluctuating along with the 

internal stretch vibrational motion results in a changing dipole moment with a perpendicular 

component to the surface.26  Therefore, the stretch vibrational mode is dipole active and 

inelastically scatters electrons which are detected optimally in the specular direction.     

B.  Coverage Calibrations via Auger Measurements.  Gold and oxygen coverages are 

determined using a semi-empirical analysis of Auger electron spectra acquired in derivative 

mode using 2 kV electrons incident at the normal angle.  Associated intensities and linewidths 

are estimated with the peak-to-peak method and assumed to have derivative Gaussian profiles.  

Spectrometer drifts are compensated by averaging over multiple, separate scans. 

1.  Gold coverage calibration via Auger spectroscopy.  The Au coverage is defined as 

the mole fraction of Au atoms accommodated within the top surface layer, which is the ratio 

between the Au (74 eV) Auger transition intensity and the sum of the Au (74 eV) plus Ni (64 eV) 

Auger transition intensities.  All transition intensities are divided by their absolute cross 

section.27  The intensities are determined from fits of two derivative Gaussians centered near 64 

and 74 eV to the experimental data.  However, this method underestimates the Au coverage 

because the experimental Ni intensity originates from Ni atoms both below and at the surface. 

To estimate the intensity solely from the Ni surface atoms, we treat the Auger signal as 

originating from four independent sources: surface Ni and Au atoms, and bulk Ni atoms 
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occluded by those two sets of surface atoms.  Next, we assume that the signal from surface atoms 

and their occluded counterparts is a fixed ratio for all Au coverages.  The Ni intensity arising 

from subsurface Ni atoms occluded by surface Au atoms can now be estimated by rescaling the 

measured Au signal with this ratio.  Subtracting this estimate from the total measured Ni 

intensity yields the Ni intensity originating from Ni atoms without the influence of Au.  A final 

rescaling of this quantity with the same ratio gives the desired intensity from just the Ni surface 

atoms.  This ratio of surface to bulk intensity is determined from the Ni Auger intensity 

measured at θ = 55˚ from the normal angle of a Ni(111) crystal, using the electron mean free 

path at 2 keV and 64 eV obtained from the universal curve.  This ratio is defined as 

Isurface / Ibulk = e3L/2 – eL/2 with L = (λin
-1+λout

-1secθ)(α/√3) which results from electron screening in 

successive [111] layers of nickel23 while assuming the topmost Ni atoms screen to a depth of half 

the lattice plane spacing.  The Ni lattice constant α is taken to be 3.52 Å.  The mean free paths λin 

and λout in nanometers are calculated according to λ = 143(E+W)-2 + 0.054(E+W)1/2 with the 

incoming and outgoing electron energy E set to 2000 eV and 64 eV respectively.  The Ni(111) 

surface work function W is taken to be 5.35 eV.28  Using these parameters, we find that the 

relative intensity from the bulk is 0.519 when the signal from surface atoms is normalized to 

unity. 

As this method for Au coverage calibration uses known absolute ratios of Au and Ni Auger 

transition intensities, it is considered superior to our previous method that required a comparison 

to previous results from another laboratory29 and that yielded Au coverages about a factor of two 

smaller than the present values.  Our present method of absolute Au coverage determination also 

accounts for the relative sizes of Au and Ni atoms.  That is, the minimum Au coverage required 

to block oxygen adsorption completely is observed to be 0.8 ML Au via HREELS.  This 
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coverage is equivalent to a hexagonally close packed layer of larger Au atoms adsorbed on 1 ML 

of smaller Ni atoms on Ni(111).  This coincidence supports our absolute Au coverage 

assignments as very little to no oxygen adsorption is expected at 80 K on a completely Au 

covered surface with no Ni sites exposed. 

As our results were obtained with a Ni crystal exposed to Au for several years, a residual 

0.14–0.16 ML Au is detectable via AES even when the Ni crystal is not exposed to Au.  This Au 

arises from the resurfacing30 of a very small quantity of Au dissolved in Ni as the solubility of 

Au in Ni is not zero29 (even though the two metals do not form a bulk alloy).  Our results for the 

Ni surface without exposure to Au are identical to those gathered when the Ni surface had never 

been exposed to Au or had been exposed to Au for lesser periods of time.  Since this residual Au 

appears to minimally perturb the Ni surface, the composition of the first few layers beneath the 

surface is assumed to be purely Ni. 

2.  Oxygen coverage calibration via Auger spectroscopy.  Absolute oxygen coverage 

assignments are based on a conversion factor of 0.8168 ML-1, which is the experimentally 

determined ratio of the O (510 eV) to Ni (849 eV) Auger peak-to-peak transition intensities at 

0.25 ML O atom coverage.  This p(2×2) reference surface is prepared by exposing Ni(111) at 

300 K to 1.5 L O2 in small increments while monitoring for an abrupt change in the ratio of O to 

Ni Auger intensity per unit O2 exposure.  This change signals a large drop in dissociative 

chemisorption probability31 for Ni(111) oxidation beyond 0.25 ML.  The same conversion factor 

is used on all Au-Ni surfaces to determine absolute oxygen coverage.  These coverage 

assignments agree with a semi-empirical method (involving absolute cross sections27 in place of 

conversion factors) to within 0.02 ML when averaged over all experimentally measured Au 

coverages. 
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IV.  RESULTS 

Molecular oxygen dissociates on Ni(111) at 80 K, resulting in adsorbed O atoms.  HREELS 

reveals a single dominant loss feature centered at 600 cm-1 with a less intense shoulder near 

480 cm-1, as shown in Figure 4a.  The former arises from atomic oxygen adsorbed in 3-fold 

hollow sites32 and is the symmetric Ni-O stretch while the latter is attributed to oxygen within 

bulk-like nickel oxide environments.  Additionally, a weak overtone of the surface oxygen 

stretch is detectable at 1120 cm-1.  The longitudinal S2 surface phonon33 is also observable near 

260 cm-1.   

Deposition of 0.55 ML Au onto Ni(111) held at 80 K is presumed to result in Au clusters 

supported on Ni(111).34  Subsequent exposure to O2 results in the formation of adsorbed O 

 

Figure 4.  Annealing Au into Ni(111) is key for molecular O2 adsorption.  Shown are HREELS 
spectra measured after exposure to O2 of Ni(111) with no Au deposited [a], and 0.54–0.55 ML 
Au deposited on Ni without annealing [b] and with annealing [c]. 
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(Figure 4b) with the loss feature near 600 cm-1 significantly broadened and reduced in intensity, 

while surface phonon intensity appears noticeably enhanced.  The broadening is presumed to 

signal O atom adsorption on Ni atoms that are affected by neighboring Au atoms.  This control 

experiment shows that Au deposited in this manner is insufficient to significantly modify the 

high probability of O2 dissociative adsorption on Ni(111) even as Au atoms block those sites. 

However, if Au deposition is followed by annealing at 773 K, Au atoms incorporate into the 

topmost layer of the Ni(111) crystal and form a stable Au-Ni surface alloy.35  Subsequent 

exposure to O2 results in a profound change in vibrational loss features.  The light trace in 

Figure 4c shows distinctly enhanced loss features associated with the internal vibrational stretch 

of molecularly adsorbed O2 between 700–1100 cm-1 along with a concomitant reduction of loss 

features associated with atomically adsorbed O.  The presence of loss features associated with 

molecular O2 adsorbed on the surface alloy prepared by annealing is in stark contrast to their 

absence on the non-annealed surface.  Only the combination of Au deposition and subsequent 

annealing causes new vibrational features to appear in the vicinity of 855 cm-1 after exposure to 

O2.  Also, the very small feature near 980 cm-1 in the dark trace representing the non-annealed 

surface might be molecular O2 stabilized near Au clusters.  These observations establish the 

utility of O2 as a probe molecule for understanding the unusual chemical environments present 

on appropriately prepared Au-Ni surfaces. 

Surfaces prepared as above are part of a large family of Au-Ni surface alloys.29  

Incorporating Au atoms into the Ni(111) surface through annealing dramatically changes the 

surface electronic structure.  Rather than pure Au clusters on Ni(111), it is the incorporation and 

dispersion of Au atoms within the Ni surface that enables molecular O2 adsorption.  Our desire to 

understand the origin of this molecular O2 stabilization prompted the collection of a 
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comprehensive set of vibrational spectra of O2 on Au-Ni surface alloys as a function of Au 

coverage. 

Figure 5 presents HREEL spectra measured after exposure of Au-Ni surface alloys at 80 K to 

4–5 ML of O2.  The spectra are arranged with Au coverage increasing from bottom to top, from 

no Au deposition to just shy of complete passivation of the Ni surface at 0.8 ML Au.  Our point 

of discussion begins with the spectrum at the bottom of Figure 5. 

In the case of no Au exposure, O2 dissociatively adsorbs and 0.33 ML O atoms are deposited 

under our experimental conditions.  As the Au coverage is raised, the Ni-O stretch at 600 cm-1 

shifts lower in frequency and its intensity drops at a rate inversely proportional to the 12th power 

of the Au coverage (not shown) until it is unobservable between 0.32–0.37 ML Au.  This rate 

suggests that a single Au atom affects both its nearest Ni neighbors and slightly beyond.  The 

quenched 600 cm-1 feature also reflects the drop in O2 dissociative adsorption probability caused 

by the Ni 3d band center lowering in energy with increasing Au coverage.  The intensity change 

of the surface phonon near 270 cm-1 confirms this fact – adsorbed O atoms make the surface 

phonon dipole-active, so a drop in its intensity is correlated with a drop in O atom adsorption. 

Above 0.21 ML Au, loss intensity appears near 750–950 cm-1.  By 0.25 ML Au, two loss 

features centered near 760 and 855 cm-1 clearly intensify with increasing Au coverage.  Beyond 

0.33 ML, a well-developed shoulder appears near 960 cm-1.  These three features originate from 

molecular O2 adsorbed on at least 3 different sites.  Their intensities are further enhanced beyond 

0.4 ML Au.  Similar frequencies have been seen for molecular O2 adsorbed on Pd, Pt, and Ag as 

stated in the introduction. 



 

18 

These adsorbates are peroxo- or superoxo-like species with bond orders less than 2 (O2
2- or 

O2
1-, respectively).  Above 0.51 ML Au, the loss features near 740, 855, and 960 cm-1 drop in 

 

Figure 5.  HREELS of O2 on Au-Ni(111) surfaces as a function of Au coverage. 
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intensity and the highest frequency mode, 960 cm-1, blueshifts, reaching about 990 cm-1 at 0.61 

ML Au.  This trend likely indicates extensive weakening of the surface-O2 interaction.  Above 

0.61 ML Au, the intensities of all loss features reduce further as the O2 adsorption probability 

approaches that of a pure Au surface.  No loss features are observable by 0.79 ML Au (not 

shown), consistent with 0.80 ML Au being equivalent to a uniform and hexagonally close packed 

layer of Au atoms adsorbed on Ni(111). 

Loss features below 550 cm-1 are also changing.  At no Au deposition, the low frequency 

shoulder at 480 cm-1, attributed to a “bulk-like” Ni-O stretch36 (but which might be the 

antisymmetric Ni-O surface vibrational stretch modes), is less intense than the primary loss 

feature at 600 cm-1.  The shoulder becomes more prominent and its maximum shifts to a lower 

frequency as the Au coverage increases.  These loss features predominate beyond 0.33 ML Au 

and occur in tandem with the appearance of loss intensities above 740 cm-1 and the 

disappearance of the Ni-O symmetric stretch mode.  Therefore, these low-frequency loss features 

are likely a combination of Ni-O2 stretch modes and Ni-O stretch modes reduced in frequency by 

the presence of Au.  The former predominates at high Au coverage, and the latter at low Au 

coverage.  Resolved above 0.61 ML Au are two low frequency features centered near 310–330 

cm-1 and 435 cm-1 that we speculate to be surface-O2 stretch modes, or frustrated rotational or 

translational modes of adsorbed O2 characterized by the 830–840 cm-1 and 990–1000 cm-1 

stretch modes.  We pursued off-specular measurements of all loss features to characterize each of 

their electron scattering mechanisms, but not enough data were collected to assign the lower-

frequency loss features. 

Finally, with no Au exposure, a weak-intensity overtone is seen centered at 1120 cm-1 whose 

fundamental is the 600 cm-1 Ni-O symmetric stretch.  Surprisingly, its intensity is inversely 
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correlated with the fundamental below 0.33 ML Au.  At 0.37 ML, Au the overtone feature is 

present even when the fundamental is not seen.  Moreover, the overtone frequency downshifts to 

1080 cm-1 just as the Au coverage rises to 0.4 ML.  These peculiarities of the 1080–1120 cm-1 

band suggests the existence of yet another adsorbed molecular O2 species near these frequencies.  

Generally speaking, HREEL spectra of oxygen adsorbates between 0.3–0.4 ML Au had low 

intensity and were tremendously difficult to reproduce, as these surfaces were acutely sensitive 

to contaminants and Au deposition inhomogeneities. 

In summary, the HREEL spectra in Figure 5 show the presence of at least 3 (if not 4) distinct 

cohorts of stable molecular O2 species on Au-Ni surface alloys.  The distinct bands of vibrational 

loss features show that all oxygen species adsorb within just a small family of adsorption sites.  

Their relative populations are a strong function of Au coverage as small changes in Au coverage 

result in marked differences in loss features (Figure 5).  The evidence is clear that the oxygen–

surface interaction is substantially different on alloy surfaces compared to Ni(111).  Apparently, 

Au atoms remove sites that accommodate O2 dissociative adsorption resulting in adsorbed O 

atoms and simultaneously introduce new sites that support molecular chemisorption unknown on 

the native Ni(111) surface.  These observations are rationalized in the discussion section. 

A.  Center Frequencies and Intensities' Au Coverage Dependence.  To understand how 

the vibrational loss features' center frequencies and intensities change with Au coverage, we fit 

three Gaussian functions to HREEL spectra in the 700–1200 cm-1 energy range that were 

measured above 0.48 ML Au.  The fit is constrained such that the FWHM of the three Gaussians 

are identical.  The same fitting strategy37 is used on spectra measured below 0.48 ML Au, but 

with an additional Gaussian function to account for the extra loss feature near 1100 cm-1.  The 

FWHM of this fourth Gaussian is allowed to vary independently of the other three.  A constant 
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background is assumed in all fits, with the exception of those below 0.22 ML Au where a linear 

background is used.  No further attempt is made to correct for the very intense loss features 

between 500–600 cm-1 that bleed into the spectral region of interest.  Typical fits are shown in 

Figure 6, with plots of the frequencies and intensities determined from the fit shown in Figures 7 
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and 8, respectively.  

In all fitted spectra, there is evidence of an additional oxygen vibrational feature near 660–

680 cm-1 outside the fitting interval whose center frequency is coincident with the Au-O stretch 

observed for O atoms on Au(111).38  However, its intensity relative to the elastic feature is 

 
Figure 6.  Gaussian fits (see text) to loss features in Figure 5 show loss features change with Au 
coverage. 
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enhanced in the limited number of spectra measured at an off-specular angle, which is behavior 

more consistent with an O2 stretch.  More data are needed to assign this weak spectroscopic 

feature. 

The FWHM of the features fit to each spectrum between 0.33–0.61 ML Au are on average 

1.6 times broader than the elastic feature.  Hence, each vibrational band is actually a convolution 

of several vibrational modes; additional features could not be identified via further deconvolution.  

The broadening is likely caused by a distribution of slightly different O2 adsorption sites.  Yet, it 

is clear that these slightly different adsorption sites result in vibrational losses that group into 

three or four bands over a large Au coverage range. Plotted as a function of Au coverage in 

Figure 7 are the center frequencies of the vibrational loss features near 740, 855, and 960 cm-1 

from Figure 5.  The error bars at each coverage measurement are equal to plus or minus two 

standard deviations, as calculated by the fitting routine.  The fits and inferred trends in HREEL 

spectra above 0.4 ML Au are more reliable because intense molecular oxygen loss features 

superimpose on an unambiguous constant background at these coverages, leading to lower fitting 

uncertainties and smaller vertical error bars.  Larger fitting errors occur below 0.4 ML Au as 

there are unresolvable loss features centered near 960 cm-1 and 1050 cm-1.  The data collected in 

this range are too sparse to determine if the center frequencies are sensitive to Au coverage.  The 

prediction intervals for all center frequencies are quoted at the 95% confidence level. 
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The lowest frequency shoulder fitted in Figure 6 is prominent around 760 cm-1 at 0.33 ML 

Au and has a center frequency that decreases to 743 ± 3 cm-1 at 0.46 ML Au in Figure 7a.  At the 

same time, the Ni-O stretch at 600 cm-1 with no Au exposure shifts to 560 cm-1 around 0.33 ML 

Au (Figure 5).  The frequency shifts likely indicate that binding sites are very sensitive to the 

local environment below 0.33 ML Au. 

Similarly, the most prominent loss feature is centered at 856 ± 3 cm-1 at 0.46 ML Au.  This 

band is the quintessential peroxo-like loss feature seen on nearly all Au-Ni surfaces studied.  In 

Figure 7b, its center frequency appears to drop gradually with increasing Au coverage, although 

more data are needed to confirm this trend.  In contrast to the band near 743 cm-1, the derivative 

of the plot of frequency versus Au coverage does not change abruptly, indicating that the binding 

sites for molecular O2 have different sensitivities to Au coverage. 

 
Figure 7.  The center frequency of the most prominent O2 loss features are dependent on Au 
coverage.  All error bars are two standard deviations. 
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Finally, based on a weighted linear fitting of data points above 0.4 ML Au, the highest-

frequency loss feature has a center frequency of 957 ± 5 cm-1 at 0.46 ML Au in Figure 7c.  Its 

frequency rises from 945 to 990 cm-1 as the Au coverage rises from 0.41 to 0.61 ML (Figure 5), 

indicating that the higher frequency losses correlate with higher densities of Au atoms.  The 

feature is not detectable by HREELS above 0.66 ML Au (not shown).  This observation reflects 

the weakening O2-surface interaction.  

Plotted in Figure 8 are the integrated absolute intensities obtained by integrating the fits to 

each loss feature (analogous to those in Figure 6) at a given Au coverage.  The data points 

 

Figure 8.  Integrated absolute intensities of the three major molecular O2 loss features as a 
function of Au coverage.  All error bars are two standard deviations. 
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represent integrated absolute intensities of each O2 cohort and are assumed to be proportional to 

coverage.  The solid lines are guides to the eye based on a fitting ansatz and all error bars are two 

standard deviations.  These values are used to calculate the population fraction of each O2 

species, defined as the integrated intensity of each loss feature divided by the sum of the 

integrated intensities of each loss feature at a given Au coverage.  These population fractions are 

shown in Figure 9 and vary with Au coverage differently compared to the trends shown in 

Figure 8.  In particular, the integrated absolute intensity maxima and the population fraction 

maxima do not occur at the same Au coverage.  For example, the population fraction of O2 

whose band is centered at 743 cm-1 at 0.46 ML Au is highest at its detection threshold near 0.2 

 

Figure 9. Population fractions of the three major molecular O2 species calculated with absolute 
intensities that are assumed to be proportional to coverage.  All error bars are one standard 
deviation. 
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ML Au (Figure 9a), even though its loss feature intensity is not clearly seen until 0.33 ML Au 

(Figure 5).  A similar (but much weaker) effect is seen for the 856 cm-1 feature whose population 

fraction peaks slightly above 0.5 ML Au (Figure 9b) although its total integrated intensity 

saturates slightly below at 0.46 ML Au.  By extrapolation, the population fraction of the 957 cm-

1 feature becomes the majority species around 0.62 ML Au (Figure 9c).  In summary, the 

population fractions for the 743, 856 and 957 cm-1 loss features are maximized near 0.2, 0.5, and 

above 0.6 ML Au respectively. 

There are additional trends present in Figure 9 that warrant further analysis.  With only one 

exception, the population fraction of each O2 species never dips below 0.15.  This lower limit is 

an artifact of assuming that all loss features have constant background contributions.  It also 

appears that O2 adsorption is differently sensitive to changes in Au coverage below and above 

0.5 ML.  Below this coverage, the population fraction of the 856 cm-1 loss feature increases at 

the expense of the 743 cm-1 loss feature, while the 957 cm-1 loss feature stays constant.  Only 

above 0.5 ML Au do all three population fractions change simultaneously with Au coverage. 

In the high Au coverage regime, the population fraction of molecular O2 centered at 957 cm-1 

increases appreciably.  The center frequency of this feature shifts to nearly 1000 cm-1 above 0.6 

ML Au.  Occurring in tandem is a possible rise in the relative fraction of the lower frequency 

743 cm-1 feature that is accentuated in a barycentric plot (not shown).  Nevertheless, the 

dominant trend is that lower or higher Au coverage favors molecular O2 adsorption with 

respectively lower or higher O2 stretch frequency. 

For completeness, Figure 10 shows the total integrated loss intensities of molecular O2 as a 

function of Au coverage.  These values were obtained by summing the integrated intensities of 

the 743, 856, and 957 cm-1 loss features in Figure 6 at each Au coverage.  The solid line is a sum 
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of the three model fits shown in Figure 8.  According to the fit, adsorption of molecular O2 is 

highest near 0.46 ML Au and tapers off as the Au coverage deviates from this optimum value.    

At 0.46 ML Au, where the total molecular O2 intensity is a maximum, the relative population of 

957, 743, and 856 cm-1 loss features is nearly in the ratio of 1:2:5 whose physical origin is 

discussed later.  

B.  Absolute Oxygen Atom Coverage Estimates.  Information on the absolute O atom 

coverage on Au-Ni surfaces is determined via Auger spectroscopy by measuring the ratio of O 

(510 eV) to the sum of Au (74 eV) and surface Ni (849 eV) Auger intensities, with sensitivity 

factor corrections for all Auger transitions.  Very importantly, this O atom coverage assignment 

method is consistent with absolute O atom coverage assignments obtained using an 

independently obtained calibration factor of 0.8168 ML-1.  Above 0.59 ML Au the amount of 

oxygen adsorption (still detectable by HREELS) drops below the detection limit of the Auger 

spectrometer. 

 

Figure 10.  Sum of integrated intensities of the 743, 856, and 957 cm-1 loss features.  See text for 
explanation of solid line.  All error bars are two standard deviations. 
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Auger measurements show that the total surface O atom coverage drops monotonically with 

increasing Au coverage (Figure 11).  Just under 0.40 ML O atoms adsorb at 0.17 ML Au 

coverage, therefore putting an upper bound of 0.20 ML O2 molecules that can be accommodated 

on all alloy surfaces.  Near 0.46 ML Au, molecular O2 vibrational loss features attain their 

highest intensity and no atomically bound O atoms are detected near 580 cm-1.  Consequently the 

surface is covered predominantly with molecularly bound O2.  These observations indicate that 

surface Au atoms convert sites for dissociative chemisorption to molecular adsorption in tandem 

with removing adsorption sites.  At 0.46 ML Au, nearly 0.11 ML O atoms are adsorbed (Figure 

11) so about 0.055 ML O2 molecules are present molecules are present or about 0.055÷3 ≈ 0.018 

ML per cohort.  At this concentration, the average distance between each O2 molecule is 4–5 

nearest neighbor surface atoms and their spatial separation is large enough that their pairwise 

interactions are weak, if not negligible.  Hence, these O2 coverage estimates seem rather low as 

 

Figure 11. Oxygen coverage in ML of O atom per Ni atom measured by Auger electron 
spectroscopy as a function of Au coverage.  Error bars are two standard deviations. 
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even a single unit cell appears large enough to accommodate much more oxygen (Figure 3).  On 

the other hand, much of the surface is already passivated by Au above 0.46 ML Au, making it 

likely that the O2 species are corralled into Ni dominated surface areas by Au atoms.  

Experiments probing the spatial distribution of the adsorbed O2 would answer this question.   

Across the entire range of Auger measurements, the oxygen coverage when measured as 

monolayers of O atoms per surface atom (Figure 11) decreases almost linearly with increasing 

Au coverage, despite the very complex surface alloy phase transition occurring between 0.3–0.4 

ML Au.  A close look reveals a small sigmoidal trend present between 0.25–0.40 ML Au that 

coincidentally brackets this interval.  Absent of a direct counting method for O and Au coverage 

determination, it is an open question whether this sigmoidal feature truly reflects complex 

surface restructuring or is an artifact of our particular O and Au coverage assignments.  The 

slope of a best fit line through data points between 0.2–0.6 ML Au show that each Au atom 

incorporated into the Ni(111) lattice prevents 0.92 O atoms from adsorption.  The proximity of 

this slope to unity shows the effectiveness of Au atoms in quenching the surface oxidation of 

Ni(111).  It suggests that each Au atom incorporated into Ni(111) removes one binding site for 

an oxygen atom.  This interpretation is consistent with our observations that no oxygen adsorbs 

on the 0.8 ML Au saturated Ni(111) surface.  As a precautionary note to future studies, we have 

found that the O atom coverage is greatly perturbed by slight C contamination, an effect that is 

corroborated with spurious effects in both Auger and HREELS data. 

V.  DISCUSSION 

We begin with an empirical observation involving the oxygen adsorbate binding energy39 and the 

activation barrier for O2 dissociation on metal surfaces.  Through extensive DFT calculations40, it 
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has been shown that a direct, linear relationship exists between these two quantities,41 where an 

increased activation energy for dissociative chemisorption coincides with a decreased interaction 

strength between the surface and the adsorbed oxygen moiety.  This activation barrier is largely 

determined by the energy difference between the Fermi level and the valence d-band center, with 

larger differences corresponding to higher barriers.  If the Fermi level is used as a fixed energy 

reference across all surface alloys, the addition of Au to Ni(111) will decrease the energy of the 

d-band center.  The physical origins of this decrease are explained later. 

Since the experimental barrier to O2 dissociative chemisorption is nearly absent on Ni(111)9 

and between 1.0–1.3 eV on Au(111)42, these two metal surfaces have d-bands whose centers are 

respectively close and far from the Fermi level.  Therefore, an alloy of the two metals might have 

an intermediate d-band center depth whose surface-O2 interaction results in an intermediate value 

for the O2 dissociative chemisorption barrier.  In this situation, the probability of dissociative 

adsorption of O2 is suppressed while the probability of molecular O2 adsorption is enhanced.  

The identification of peroxo- and superoxo-like vibrational bands measured by HREELS in 

Figures 4 and 5 supports this perspective and highlights the utility of a surface vibrational 

spectroscopy technique for categorizing new chemisorbed states.  In contrast, assuming chemical 

inertness of Au can lead to the incorrect hypothesis that its incorporation into the Ni(111) lattice 

just passivates the Ni surface without any resulting chemical novelty.  The unusual molecular O2 

chemisorption states observed in this work are not due to single Au atoms, nor dispersed Au 

clusters, nor Au nanoparticles resting on Ni(111).  Rather, they result from emergent properties 

or ensemble effects of a bimetallic random surface alloy whose distinguishing properties can be 

explained with a combination of electronic structure and geometrical arguments. 

A.  Electronic Structure of the Surface Alloy.  The salient features of the alloy d-band 
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include its average energy (or “center”), bandwidth, and filling extent.  Systematic changes in 

these quantities describe chemisorptive trends across all transition metals and their alloys.  Since 

these quantities change in a strongly correlated manner43, it suffices to use just one as a 

representative descriptor of surface reactivity.  The d-band center is a convenient choice because 

the presence of a Fermi level constrains the d-band center to shift in response to changes in 

filling and orbital interactions in the alloy.  Here, the Fermi level is a fixed energy reference for 

all alloy surfaces because the d-band characterization is done at thermodynamic equilibrium. 

The chemisorption strength decreases as one traverses the transition metals in the periodic 

table in both top-to-bottom and left-to-right fashion.43  The former is attributed to the presence of 

increasingly diffuse 3d, 4d, and 5d orbitals that increases the surface-adsorbate repulsion for 

fixed surface-adsorbate geometry.  The latter is dominated by increased d-band filling which 

increases the occupation of antibonding states.  Since Au is to the right and below Ni on the 

periodic table, both prevailing trends align so that the chemisorptive tendencies of the Au-Ni 

alloy surface would be weaker than a pure Ni surface.  Overall, substituting Au atoms into the 

Ni(111) lattice causes the d-band to decrease in average energy, increase in width, and negligibly 

increase in filling.  The significance of these terms will be discussed presently. 

The d-band center is lowered because the Au 5d electrons in Au metal form14 two deeply 

bound bands about 4 and 6 eV below the Fermi level, which places them respectively nearly 3 

and 5 eV below the Ni 3d band.  The surface electronic structure of Ni(111) is drastically 

modified by the addition of Au because the lower energy Au 5d electrons substitute for Ni 3d 

electrons present in the original Ni valence 3d band, thereby lowering the d-band center energy 

substantially and diluting the Ni 3d electron density at the surface.  For instance, it has been 

calculated that isolated Au atom impurities in Ni(111) and a complete Au overlayer on Ni(111) 
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decrease the 1.29 eV Ni 3d band center by a further 1.13 eV and 2.10 eV respectively43.  These 

calculations show that surface alloy electronic structure is substantially different from its parent 

metals in isolation. 

The physical origin of the increased d-band width is understood by considering a fictitious 

collection of Ni atoms infinitely far apart.  In this scenario, the d-band has zero width as the 3d 

orbital energies are completely degenerate.  Once the Ni atoms are brought together to form a Ni 

crystal, mixing of the 3d orbitals spreads the 3d orbital energy levels and leads to a d-band of 

finite width.  Qualitatively, the bandwidth is proportional to the degree of d-orbital hybridization.  

Both can be simultaneously increased by compressively straining the Ni surface, which in fact, is 

exactly the effect of alloying the larger Au atoms into the Ni(111) lattice below 0.3 ML Au.  

Above this coverage, some compressive surface strain is released by the surface reconstruction 

and increased effective lattice constant, but not enough to reverse the trend that increasing Au 

coverage causes the d-band to widen.  It is also true that the Au 5d band widens in the alloy at all 

Au coverages because the surface Au atoms rest closer to its neighboring atoms (either Au or Ni) 

than they do in Au(111).  It should be stressed that since the effective atomic size of Au exceeds 

Ni, the compressive strain of Ni atoms resting beside Au atoms leads to d-band broadening even 

in the absence of hybridization between Au and Ni atom d-states.  This broadening is also 

favored because Ni is a 3d transition metal with one of the highest atomic numbers, and therefore, 

a metal with one of the most compact set of d-orbitals.  Any other transition metal possesses 

more diffuse d-orbitals (with the Cu and Zn being exceptions) so the d-band will tend to widen 

when incorporated into the Ni lattice. 

To isolate the impact of increased d-band filling on the d-band center, consider a fictitious 

valence d-band with a fixed density of states distribution and width, negligibly populated with 
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electrons.  The energy level of these electrons is nearly degenerate and coincides with the Fermi 

level.  However, the d-band center and the empty d-states lie above the Fermi level.  As the d-

band filling fraction increases, the empty states fill and shift below the Fermi level.  The location 

of the d-band center with respect to the Fermi level decreases and changes sign around the point 

when the d-band is half full.  Afterwards, the d-band center will lie below the Fermi level and 

within the populated density of states.  These general trends are seen when moving from left to 

right across the transition metals as the d-orbitals are progressively populated. 

In the case of Ni, its d-band is already 90% (and nearly completely) filled.  Hence, the 

existing population of surface-O2 antibonding states is quite high, meaning that the extent of 

surface adsorbate stability attributable to d-band filling is relatively low44.  When Au is 

incorporated into Ni(111), Au d10 orbitals replace Ni d9 orbitals, which is predicted to raise the d-

band filling.  Changes in the d-band filling would indicate charge transfer from one metal to 

another involving the d-states.  However, strong coulombic repulsions arising from converting 

Ni 3d9 to Ni 3d10 states counter this effect and so the filling remains practically unchanged.  

Empirical DFT calculations45 of various bilayer surfaces made of 3d and 5d metals suggest this 

approximation is reasonable, and is supported by photoelectron experiments on Au-Ni surfaces.14  

The DFT result is not surprising given that the electronegativity of the transition metals is well 

matched.  However, as Au is the most electronegative of metals, it is clear that the full 

description of the Au-Ni alloy requires much more sophistication.  For example, charge transfer 

may still take place amongst other combinations of orbitals14 and affect the surface chemistry of 

the alloy.  Nevertheless, since the d-band filling remains approximately constant even after 

alloying, the correlation of the lowering of the d-band center with d-band widening in a nearly 

one-to-one manner45 is ensured.  This effect reduces the density of electrons at the Fermi level 
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available for overlap with the O2 π* orbitals and lowers the dissociative chemisorption probability. 

B.  O2 Interactions with the Surface Alloy.  Consider the interaction of molecular O2 with 

the Ni(111) surface, most conveniently modeled as two interaction steps.46  The first step 

involves the Ni 4s band and the highest partially occupied molecular orbital (HOMO) of O2, 

which is the antibonding π* orbital.  The second involves the result of this first interaction and 

the Ni 3d band.  Hybridization between the π* state and the Ni 4s band results in a broadened and 

more stable, lower energy π* band.  The center of this new π* band is at a lower energy than the 

original π* state because the π* state is formed from two atomic oxygen 2p states that are lower 

energy than the Ni 4s band.  The π* and Ni 3d bands then interact and form new bonding and 

antibonding π*–3d bands that reside below and above the Fermi level, respectively. 

The states above the Fermi level are essentially unoccupied, so the stability of molecular O2 

on Ni(111) is largely governed by the strength of the bonding π*–3d interaction35.  Other bands 

that arise from the bonding molecular orbitals of O2 are ignored in this approximation because 

they are situated 6 eV below the Fermi level10.  A stronger π*–3d interaction enables filling the π* 

band with 3d electrons, weakening the O2 double bond and causing it to lengthen, and leads to 

dissociative chemisorption of O2 on Ni(111) and eventually, adsorption of atomic O in fcc 3-fold 

hollows.  A weaker π*–3d interaction suppresses this dissociative channel. 

The strength of this π*–3d interaction is inversely proportional44 to the energy difference 

between the centers of the π* and 3d bands.  Ignoring spin-splitting effects, the π* band is at the 

Fermi level10 and the Ni 3d band is 1.21–1.29 eV below it10, 47.  The position of the Ni 3d band is 

sufficiently close to the Fermi level that the π*–3d interaction is very favorable, hence 

dissociative chemisorption of O2 on Ni(111) is observed.  If the 3d band center were to decrease, 

the strength of the π*–3d interaction would also decrease and eventually lead to molecular O2 
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chemisorption.  If the 3d band center were to decrease even further, it would lead to non-

adsorption. 

Unlike the smaller 3d orbitals of Ni, the larger 5d orbitals of Au overlap unfavorably with the 

antibonding orbitals of O2.  This overlap reflects the higher energetic cost of overcoming the 

Pauli repulsion between the adsorbate electrons and the surface made of metal atoms that have 

more diffuse valence orbitals.47  This repulsion is a quantum mechanical effect that involves 

orthogonalization of the diffuse Au 5d orbitals with respect to the adsorbate.  As the Au coverage 

is raised, the unfavorable Au 5d interaction gradually replaces the favorable Ni 3d interaction, 

leading to the surface–O2 interaction weakening and its d-band center lowering.   

Molecules of O2 with bond orders less than 2 are stabilized in these new chemical 

environments as indicated by their internal vibrational frequencies.  While band structure 

arguments do support these species' existence, they cannot account for the distinct vibrational 

group frequencies in Figure 5 above 0.33 ML Au because the d-band model ignores the phase 

transition that occurs above 0.3 ML Au.  It is one reason why we introduced a model unit cell 

that reproduces the known surface morphology at all Au coverages. 

C.  Geometric Effects of the Surface Alloy.  Our first attempts at correlating the number 

and intensity of the vibrational features with molecular O2 adsorption sites on Au-Ni(111) 

involved tallying all unique adsorption sites found in computer generated Au-Ni unit cells of a 

single layer of the alloy.  We did not find a subset of distinct adsorption sites whose prevalence 

was proportional to the intensities of the molecular O2 vibrational features for all Au coverages.  

Hence, the observed distribution of molecular O2 adsorption (Figure 10) could not be reproduced 

by mimicking the random placement of Au atoms at lattice sites found in the top layer of a real 

surface alloy.  We deduced that O2 adsorption is inadequately described by considering only 
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surface atoms.  Subsurface atoms associated with the second layer reconstruction appear to 

contribute to the stability of adsorbed O2 based on a careful analysis of molecular O2 HREELS 

loss intensities combined with recent DFT calculations48. 

Why do only a few distinct environments for oxygen adsorption result from randomly 

embedded Au atoms in Ni(111)?  We think this has to do with the structure of the surface as 

summarized in our model unit cell (Figure 3).  Recall that the total integrated molecular O2 loss 

intensity is maximized at 0.46 ML Au.  At this coverage, the ratio of the intensities of the 

HREELS loss features centered near 856, 743, and 957 cm-1 is about 5:2:1.  This ratio matches 

the relative sizes of three differently shaded regions of the unit cell in Figure 3: non-

reconstructed pseudo-2-fold, non-reconstructed pseudo-3-fold, and reconstructed pseudo-3-fold.  

To a first approximation, this coincidence suggests that distinct molecular O2 features are 

associated with distinct regions. 

On a model 0.25 ML Au surface whose p(2×2) unit cell consists of a AuNi3 cluster, 

molecular O2 is predicted to adsorb nearly flat and in the vicinity of bridge, hcp 3-fold, and fcc 

3-fold sites formed entirely of Ni atoms with adsorption frequencies 932, 768, and 767 cm-1, 

respectively.48  Adsorption in the bridge position occurs with the O2 center of mass over a bridge 

site with both O atoms close to atop sites.  In the hcp and fcc position, one O atom is close to the 

3-fold hollow while the other atom is close to a Ni atom.  Since the model consists of four layers 

with the bulk fixed to match the native Ni(111) crystal, these calculations assume no 

reconstruction and can only qualitatively reproduce the pseudo-3-fold coordinating regions that 

comprise 3/8 of our proposed unit cell whose constituent supporting atoms are shaded in 

Figure 3.  Despite these shortcomings, the agreement between theoretical and experimental 

results suggests a tentative assignment of the observed vibrational bands centered at 957 and 
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743 cm-1 to O2 adsorption within pseudo-3-fold coordinating regions with binding geometries 

corresponding to the predicted bridge and hcp/fcc site adsorption, respectively. 

Notably absent from these DFT calculations is evidence for adsorbed O2 with internal stretch 

frequencies that match the most intense loss intensity seen at 856 cm-1.  A possible explanation 

for the absence of this loss feature is the failure of the slab geometry in the calculation to model 

the complementary pseudo-2-fold coordinating region that comprises the remaining 5/8 of the 

unit cell (as indicated by unshaded atoms in Figure 3).  If this hypothesis is correct, it allows us 

to complete the vibrational assignment of the loss feature near 856 cm-1 to molecular O2 

adsorbed within the pseudo-2-fold coordinating regions of the unit cell.  The observation of a 

single vibrational band suggests that O2 adsorbed at bridge and hcp/fcc sites within pseudo-2-

fold coordinating regions of the unit cell have nearly identical internal vibrational stretch 

frequencies. 
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We can rationalize this surprising accidental degeneracy by noting that a key distinguishing 

feature between pseudo-2- and pseudo-3-fold coordinating regions is the presence of subsurface 

coordinating atoms located immediately underneath a large fraction of bridge and hcp/fcc O2 

binding sites, respectively.  The atoms in Figure 3 that make contact with the points of perfect 2- 

and 3-fold rotational symmetry in the pseudo-2- and pseudo-3-fold coordinating regions are 

canonical examples of this important spatial relationship and are shown in Figure 12a and 12b, 

respectively.  The Wigner-Seitz cells in Figure 12 are hexagonally shaped, and respectively, all 
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bridge and hcp/fcc O2 binding sites are coincident with its edge centers and corners.  In going 

from Figure 12a to 12b, it is clear that the subsurface coordination number increases for bridge 

sites, and decreases for hcp/fcc sites.  The higher subsurface coordination number increases the 

availability of Ni 3d electrons that can overlap with the antibonding orbitals of O2 at those sites.  

Consequently, when molecular O2 is bound to bridge sites, this overlap is more favorable in 

pseudo-2-fold rather than pseudo-3-fold coordinating regions.  This favorable overlap is clearly 

 
Figure 12: Idealized 2-fold [a] and 3-fold [b] coordination between overlayer and subsurface 
atoms present in the Au-Ni alloy unit cell. 
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illustrated by the much lower vibrational frequency of bridge-bound O2 within coordinating 

regions of type pseudo-2-fold (856 cm-1) compared to pseudo-3-fold (957 cm-1).  Similarly, O2 

adsorption at hcp/fcc sites results in more favorable overlap within coordinating regions of type 

pseudo-3-fold (743 cm-1) rather than pseudo-2-fold (856 cm-1).  We propose that the extent of 

this overlap as one goes from a pseudo-3-fold to a pseudo-2-fold region is coincidentally the 

right magnitude that leads to the observed degeneracy of the bridge and hcp/fcc threefold binding 

sites in the pseudo-2-fold coordinating regions of the unit cell. 

No abrupt boundaries separate different adsorption regions (except at the reconstruction) as 

coordination number varies smoothly when crossing from one domain to another.  However, this 

fact appears incommensurate with the nearly 100 cm-1 difference in vibrational frequency of 

adsorbed O2 in pseudo-2-fold and pseudo-3-fold regions.  We resolve this discrepancy by 

assuming that the fraction of adsorption sites bordering different domains is small so that O2 with 

interpolating vibrational frequencies are in the minority and do not blur the observation of three 

distinct vibrational bands.  In order to determine the relative binding strength of O2 from these 

cohorts, one could expose the surface at fixed Au coverage to increasing amounts of O2 and 

watch the lowest energy states fill first.  However, we have preliminary evidence based on dilute 

molecular beam exposures that the binding energies are too similar or the diffusion barriers 

between binding sites are too small to determine the relative binding energies.  For completeness, 

vibrational bands seen near 660 and 1000 cm-1 that do not interpolate between the values of 743, 

856, and 957 cm-1 are thought to be O2 associated with the reconstruction loop. 

The relative populations of differently-adsorbed O2 are non-trivially dependent on the size of 

the misfit dislocation loop.  To illustrate this point, note that the reconstructed and non-

reconstructed pseudo-3-fold coordinated regions cover about 1/8th and 2/8th of the unit cell 
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respectively.  By coincidence, the 957 and 743 cm-1 molecular O2 species also adsorb in a nearly 

1:2 ratio around the molecular O2 adsorption maximum of 0.46 ML Au.  Two limiting cases of 

adsorption behavior are consistent with these observations.  Either the 957 and 743 cm-1 species 

adsorb exclusively on the reconstructed and non-reconstructed sections of the pseudo-3-fold 

coordinated regions respectively, or in a fixed 1:2 ratio in both.  However, neither of these 

adsorption models are correct because they cannot explain the variance in adsorption trends in 

Figure 8 as a function of Au coverage.  More importantly, these models ignore the likely fact that 

the ratio of 957 to 743 cm-1 species should be higher within the reconstruction because the 

triangular misfit dislocation loop surrounds the molecules adsorbed inside it.  This drastic 

removal of 3d-electron density at the reconstruction boundary induces weaker surface–O2 

interactions that preferentially favor the weaker bound, higher frequency 957 cm-1 species with 

increasing Au coverage. 

The explanation for why the 957 to 743 cm-1 species ratio does not remain 1:2 across all Au 

coverages appears related to finite-size effects near the reconstruction boundary.  If p denotes the 

periodicity of the unit cell, the number of surface atoms that rest near the boundary is 

proportional to p.  Since p2 is the number of surface atoms in a unit cell, the fraction of atoms 

affected by the loop per unit cell is proportional to 1/p.  Since this loop atom fraction is small at 

low Au coverage, the number of adsorption sites perturbed enough by the loop to stabilize the 

weaker bound 957 cm-1 species is low.  Consequently, at low Au coverages, the features centered 

near 743 cm-1 predominate and the relative fraction of 957 to 743 cm-1 species is less than the 

predicted 1/2.  Once the Au coverage is sufficiently high, the perturbations are strong enough 

that the 957 cm-1 feature is prominent and the relative fraction of 957 to 743 cm-1 species is 

greater than the predicted 1/2.  In other words, the ratio of 957 to 743 cm-1 species changes with 
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Au coverage because both species are affected by the relative fraction of loop atoms present in 

the unit cell at that Au coverage.  As no reconstruction occurs below 0.3 ML Au, this argument 

no longer holds as no loop atoms are present.  Instead, the absence of 957 cm-1 adsorption in this 

regime is due to the relatively high energy of the alloy d-band center. 

The O2 loss features are broad primarily due to variations in the chemical environment 

caused by randomly distributed Au atoms at the surface.  There is a smaller effect caused by 

differently coordinated subsurface atoms that is easiest to describe for the pseudo-3-fold 

coordinating regions of the unit cell.  First, denote the letters A, B, and C to represent the three 

unique [111] stacking layers that make up a fcc crystal.  The canonical stacking pattern starting 

from the top is ABCAB and describes the pseudo-3-fold coordinated region of the unit cell 

furthest from the reconstruction (Figure 3).  However, due to lattice mismatching, CBCAB 

stacking is found at the unit cell corners with surface atoms residing in hcp instead of fcc sites.  

Finally, a palindromic BACAB stacking is found within the reconstruction.  Here, subsurface 

atoms reside in hcp instead of fcc sites.  The reconstruction is crucial to this stacking as it cannot 

arise by lattice mismatching alone.  Smaller contributions to O2 loss feature broadening occur 

because different stacking patterns exist within the unit cell.  Overall, a qualitative description of 

molecular O2 adsorption trends that elegantly accommodates both electronic and geometric 

effects can be achieved with our model unit cell (Figure 3).  The spatial arrangement of atoms 

near the surface helps explain the peculiar distribution O2 loss intensities as a function of Au 

coverage seen by HREELS. 

This description of the effective unit cell that highlights the first two surface layers is a 

significant improvement over previous single-layer mean field models of the Au-Ni(111) 

surface.29  Our model is a realistic representation of the average electronic and geometric 
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structure of the areas of Ni atoms that are surrounded by Au atoms.  Future refinements based on 

knowing the exact spatial arrangement of individual Au and Ni atoms can be easily 

accommodated. 

VI.  CONCLUSIONS 

Despite the importance of molecular O2 in many heterogeneous catalytic reactions, vibrational 

studies of molecular O2 on metal surfaces are uncommon, as discussed in the introduction.  The 

rarity of model metal-containing systems that stabilize molecular O2 observable under ultra-high 

vacuum limit our understanding of these chemical intermediates.  Our analysis of molecular O2 

adsorption on bimetallic Au-Ni surface alloys resulted in the identification of unique chemical 

environments that stabilize molecular O2 and extended the number of model systems available 

for their study.  Most importantly – and in tandem with a separate study – our work affirmed a 

possible connection between the geometry of the very complex reconstructed surface, and the 

adsorption sites of O2 that oxidize CO at some of the lowest recorded temperatures.  It is 

significant because a complete description of the elementary step reactions for CO oxidation in 

the same system requires detailed knowledge of the molecular O2 intermediate. 

The adsorbed O2 molecule is distinctly sensitive to the surface environment due to strong 

interactions between its antibonding molecular orbitals and the metal d-band.  These electronic 

effects (inseparable from geometric considerations) account for the distinct vibrational bands 

identified as molecular O2.  No evidence for physisorbed oxygen was found.  At 0.46 ML Au, 

where the intensities of these loss features are maximized, three intense bands with center 

frequencies at 743, 957 and 856 cm-1 are seen (often accompanied by other unidentified minority 

species at 660–680 cm-1 and 1080–1120 cm-1).  They correspond to the stretch vibrational mode 

of O2 at pseudo-3-fold fcc/hcp, pseudo-3-fold bridge, and degenerate pseudo-2-fold fcc/hcp and 
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bridge adsorption sites respectively.  These unusual sites are brought about by surface alloying 

and further stabilized by a dramatic reconstruction of the top two surface layers.  This 

observation is a key result because it is not obvious that the spatial arrangement of substrate 

atoms relative to the top layer should contribute greatly towards modifying the electronic states 

of the surface!  By measuring vibrational loss features as a function of Au coverage, we show 

that the relative population of different oxygen cohorts can be tuned.  This ability to adjust the 

reactivity and concentration of surface-bound O2 raises the utility of surface alloy motifs for 

engineering applications. 

The novelty of this work rests on the very counterintuitive observation that the addition of a 

passivating material such as Au to a chemically active surface like Ni can result in a new surface 

with reactivity greater than either of its native constituents.  Our observed vibrational features 

unequivocally demonstrate the formation of new chemical environments.  Moreover, these 

environments are distinct from motifs that result from the deposition of Au nanoparticles on 

metal oxides.  In our study, it is not the interface of the gold and nickel oxide that brings about 

new chemistry.  Rather, it is changes in the surface electronic structure brought about by the 

mutual interaction of Au and Ni atoms that enhance the stability of O2 on the surface. 

As our experimental methods do not probe electronic structure directly, further work is 

necessary to clarify the true nature of oxygen binding sites in Au-Ni surface alloys.  We hope our 

proposed unit cells will be helpful to both theorists and experimentalists alike.  The most intense 

molecular O2 loss feature centered at 856 cm-1 seems to be characteristic of the reconstructed 

surface.  A direct confirmation that it is indeed associated with pseudo-2-fold coordinated 

surface atoms should be a challenging but worthwhile pursuit.  We welcome others to continue 

exploring this enigmatic adsorption system.  
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