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Port Reduction in Parametrized Component Static Condensation:
Approximation and A Posteriori Error Estimation∗

Jens L. Eftang† Anthony T. Patera†

Abstract

We introduce a port (interface) approximation and a posteriori error bound framework for a general
component-based static condensation method in the context of parameter-dependent linear elliptic partial
differential equations. The key ingredients are i) efficient empirical port approximation spaces — the
dimensions of these spaces may be chosen small in order to reduce the computational cost associated
with formation and solution of the static condensation system, and ii) a computationally tractable a
posteriori error bound realized through a non-conforming approximation and associated conditioner —
the error in the global system approximation, or in a scalar output quantity, may be bounded relatively
sharply with respect to the underlying finite element discretization.

Our approximation and a posteriori error bound framework is of particular computational relevance
for the static condensation reduced basis element (SCRBE) method. We provide several numerical
examples within the SCRBE context which serve to demonstrate the convergence rate of our port ap-
proximation procedure as well as the efficacy of our port reduction error bounds.

Keywords: static condensation; reduced basis element method; component synthesis; domain decomposi-
tion; port reduction; interface reduction; a posteriori error estimation; non-conforming methods

1 Introduction
In many design and engineering applications the physical system under consideration admits a natural
component-based synthesis. Examples are particularly ubiquitous in the area of structural analysis: build-
ings, bridges, space satellites, and other frame-based structures are typically comprised of many and often
identical or at least very similar components. Examples of component-based systems may also be found
in other areas such as heat transfer and acoustics: heat exchanger systems [28] typically consist of a large
number of interconnected pipes and bifurcations; sound mitigation systems may be beneficially considered
as a collection of waveguide elements [14, 16].

A popular approach to component-based analysis is the classical component mode synthesis (CMS)
method [9, 13]. In this approach, a standard static condensation procedure is performed to eliminate an
eigenmodal expansion of the component-interior “bubble” degrees of freedom in terms of many fewer in-
terface, or “port,” degrees of freedom associated with a Schur complement system. Although the original
CMS methods [9, 13] do not consider reduction of the degrees of freedom associated with the ports, more
recent work considers several port economizations (or interface reduction strategies): an eigenmode expan-
sion (with subsequent truncation) for the port degrees of freedom is proposed in [6, 12]; an adaptive port
reduction procedure based on a posteriori error estimators for the port reduction is proposed in [18]; and an
alternative port reduction approach, with a different bubble function approximation space, is proposed for
time-dependent problems in [3].
∗Revised preprint submitted May 30, 2013, to International Journal for Numerical Methods in Engineering (Wiley).
†Department of Mechanical Engineering, Massachusetts Institute of Technology. 77 Massachusetts Avenue, Cambridge,
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In the context of parameter-dependent partial differential equations, the reduced basis element (RBE)
method [20, 21] provides a component-based approximation framework. In the RBE approach, a reduced
basis (RB) approximation [25] in the component interiors provides a rapidly convergent local (“bubble”)
approximation for any value of the component parameters. However, the components are coupled not by
static condensation but rather through a mortar-type procedure at the ports; port truncation may thus be
readily introduced through the mortar (continuity Lagrange multiplier) spaces.

The static condensation reduced basis element (SCRBE) method recently introduced in [15] combines
concepts from both RBE and CMS: the component bubble functions are approximated by an RB expansion
while the component coupling is effected through a static condensation procedure. A key advantage of
the SCRBE procedure — an advantage we wish to preserve here — is the interoperability of components
and hence the ability to synthesize many (very) different systems from a single library of parametrized
components. We note that the SCRBE (as well as CMS, and more generally approaches based on static
condensation) is limited to linear problems such as the elliptic partial differential equations which describe
linear elasticity, heat transfer, or frequency-domain acoustics.

For large component-based problems, in particular with three-dimensional domains and vector-valued
fields, the number of degrees of freedom associated with the ports (that is, the size of the Schur complement
system) limits the computational efficacy of the SCRBE. We can not directly apply CMS port reduction
concepts in the parameter-dependent context [10], as the chosen port modes must be able to provide a
good representation of the solution for any value of the parameters. In this paper, we introduce a port
approximation and a posteriori error bound framework for a general component-based static condensation
method in the context of parameter-dependent linear elliptic partial differential equations.

For this general method we present two key innovations. The first innovation is an algorithm for construc-
tion of efficient (small) port approximation spaces which provide good solution accuracy with relatively few
modes, and hence reduce the computational complexity associated with formation and solution of the static
condensation system — particularly important for large three-dimensional systems with vector-valued fields.
The second innovation is a computationally tractable a posteriori bound for the error in the solution to the
Schur complement system due to port reduction — the error is bounded with respect to an underlying finite
element (FE) discretization in the standard functional energy norm, or for associated outputs of interest.

The port reduction framework presented here improves our earlier work [10] in two critical ways. First,
to accommodate topological flexibility, our port modes here shall be tailored not to a particular system of
components but rather to a particular component and its possible connections to other components. Second,
for sharp a posteriori error estimation, our error bound here is based on a computationally tractable non-
conforming approximation to the exact error rather than direct residual evaluation; the former provides an
approximate solution to the error-residual equation and thus avoids the Cauchy-Schwarz inequality of the
latter — we thus expect a significantly sharper bound here compared to our earlier approach [10].

We emphasize that in our port reduction procedure we realize computational savings through reduction
of the number of interface degrees of freedom and hence the size of the Schur complement system in com-
bination with a bubble function approximation (here provided by the SCRBE) which effectively eliminates
the interior degrees of freedom. This approach is thus very different from other (iterative or parallel) domain
decomposition solution methods [27], in which many local FE solves replace one very large global FE solve.
In this latter context the goal is to obtain the exact solution of the original FE-discretized problem through
an efficient solution algorithm; however the number of degrees of freedom is not fundamentally reduced.

The remainder of this paper is organized as follows. In the next section we describe a general component-
based static condensation framework; we also briefly recall the SCRBE method [15], which provides the
bubble function approximations for our numerical examples. In Section 3 we introduce our port approxima-
tion and reduction framework, and in Section 4 we develop the a posteriori error bound for our port-reduced
static condensation approximation. In Section 5 we discuss the relevant computational procedures and costs.
In Section 6 we illustrate our procedure through a numerical example, and finally, in Section 7 we provide
some concluding remarks.
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Figure 1: A library with M = 1 archetype component (left): the archetype domain is Ω̂1 and has two local
ports γ̂1,1, γ̂1,2. A system consisting of I = 2 instantiations of the archetype (right): the component domains
Ω1 and Ω2 are instantiations of Ω̂1. The two components are connected at the shared global port Γ2; the
system has boundary global ports Γ1 and Γ3; the local ports are indicated in the domain interiors. Here,
M(i) = 1 for i = 1, 2 and π1 = {(1, 1)}, π2 = {(1, 2), (2, 1)}, π3 = {(2, 2)}.

2 Component-Based Static Condensation
In this section we formulate a general static condensation framework for FE discretizations of component-
based systems. Our point of view shall be “bottom-up:” we start with (FE-discretized) component domains,
which we interconnect at (conforming) predefined ports in order to form a global system domain; we then
apply static condensation to the global system to eliminate the component-local (bubble) degrees of freedom
in terms of the port degrees of freedom; finally, we solve the smaller Schur complement system.

The formation of the Schur complement requires a large number of component-local FE bubble solves.
To reduce the associated computational complexity a model order reduction technique may be applied; for
our numerical results in this paper we pursue the SCRBE method [15], which replaces the local FE bubble
spaces with much smaller RB [25] spaces. The notation and nomenclature in this section is borrowed from
[15] with some simplifications related to the absence here (for simplicity) of parametrized geometries. We
recall the main concepts of the SCRBE as regards RB bubble approximation in Section 2.3.

2.1 System from Components and Ports
We introduce a component library consisting of M archetype components. Each archetype component has
an associated physical domain Ω̂m and a set of parameters µ̂m ∈ D̂m ⊂ RP̂m , 1 ≤ m ≤ M . Each archetype
component domain boundary ∂Ω̂m has a set of nγm disjoint archetype component local ports, denoted as
γ̂m,j ⊆ ∂Ω̂m, 1 ≤ j ≤ nγm; we shall assume for simplicity that all ports on a component are separated by
non-port, non-Dirichlet boundary segments as the alternative would necessitate additional ingredients (we
comment whenever significant modifications to our procedures are required). To each archetype component
we shall also associate parameter-dependent bilinear and linear forms âm(·, ·; µ̂m) : H1(Ω̂m)×H1(Ω̂m)→ R
and f̂m(·; µ̂m) : H1(Ω̂m) → R which represent the weak form of a parametrized linear elliptic partial
differential equation; a discrete space Xh

m ⊂ H1(Ω̂m) which corresponds to a standard FE discretization1

over Ω̂m; and port spaces Phm,j of dimension N γ
m,j defined as the restriction of Xh

m to γ̂m,j , 1 ≤ j ≤ nγm. (See
[24] for a summary of the standard function spaces associated with second-order elliptic partial differential
equations.)

We next consider a system consisting of I instantiated archetype components from the library. We
introduce a mappingM : {1, . . . , I} → {1, . . . ,M} that maps each of the I component instantiations to one of
theM component archetypes in the library. An instantiated component may connect to at most nγM(i) other
instantiated components in the system through its local ports. For 1 ≤ i ≤ I we introduce the instantiated
component domains Ωi = Ti(Ω̂M(i)) and the instantiated component local ports γi,j = Ti(γ̂M(i),j). Here,
Ti : Ω̂M(i) → Ωi is a a rigid body transformation which ensures that the instantiated components “dock”
as desired to their respective component neighbors in the system (more general geometric mappings are
considered in [16, 15] but omitted in this paper for simplicity). We shall assume for simplicity that the

1Here, h > 0 represents an FE discretization parameter.
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archetype bilinear and linear forms do not depend on spatial orientation and hence need not reflect the Ti
as an argument. Finally, we introduce the instantiated component parameter vectors µi = µ̂M(i) ∈ D̂M(i).

We may now introduce the physical system domain Ω as Ω̄ = ∪Ii=1Ω̄i; the system parameter domain
D ⊆ ⊕Ii=1D̂M(i); and the system parameter µ = (µ1, . . . , µI) ∈ D. Further, we introduce the global ports Γp,
1 ≤ p ≤ nΓ

0 , each of which is either the coincidence of two local ports in the interior of Ω, or a single local port
on the boundary ∂Ω. The connectivity of the system shall be defined through index sets πp, 1 ≤ p ≤ nΓ

0 . In
the case of an interior global port (coincidence of two local ports γi,j and γi′,j′), we set πp = {(i, j), (i′, j′)};
and in the case of a boundary global port (a single local port γi,j), we set πp = {(i, j)}. We also introduce
for each instantiated component i, 1 ≤ i ≤ I, a local port to global port mapping Gi such that for each local
port index j, 1 ≤ j ≤ nγM(i), we have Gi(j) = p for p such that (i, j) is in πp. A simple illustration of this
component-to-system concept is provided in Figure 1.

We shall require conforming port spaces in the sense that for any global port index πp = {(i, j), (i′, j′)},
we must have

PhM(i),j = PhM(i′),j′ . (1)

We denote by NΓ
p = N γ

i,j(= N
γ
i′,j′) the dimension of the port space(s) associated with global port p; we then

introduce the total number of port unknowns as

nSC,0 =

nΓ
0∑

p=1

NΓ
p . (2)

In actual practice we may also impose Dirichlet conditions on global ports. We denote by nΓ ≤ nΓ
0 the

number of global ports on which Dirichlet conditions are not imposed. Hence the total number of port
degrees of freedom is

nSC =

nΓ∑
p=1

NΓ
p , (3)

(hence we consider without loss of generality Dirichlet conditions on global ports nΓ + 1, . . . , nΓ
0 ).

We now introduce our system bilinear form and linear functional: for any w, v ∈ H1(Ω),

a(w, v;µ) =

I∑
i=1

aM(i)(w|Ωi , v|Ωi ;µi), (4)

and

f(v;µ) =

I∑
i=1

fM(i)(v|Ωi ;µi). (5)

We shall suppose that, for any µ ∈ D, a(·, ·;µ) is coercive and continuous with respect to the standard
H1(Ω) inner product. We may then, for any µ ∈ D, introduce the solution to the (well-posed) continuous
system-level problem: find u(µ) ∈ X(Ω) ⊂ H1(Ω) such that

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X(Ω), (6)

where X(Ω) is equal to H1(Ω) except for restrictions related to (port and non-port) Dirichlet boundary
conditions. We also introduce an output of interest associated with our system as s(µ) = `(u(µ);µ) for an
X(Ω)-bounded linear output functional `(·;µ).

Finally, we introduce our discrete FE system-level problem (to which we shall apply static condensation).
The discrete system FE space Xh(Ω) ⊂ X(Ω) is given as Xh(Ω) = (⊕Ii=1X

h
M(i)) ∩ X(Ω); hence Xh(Ω)
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inherits the boundary conditions and global continuity enforced by X(Ω). We then define, for any µ ∈ D,
the FE approximation uh(µ) to u(µ): uh(µ) ∈ Xh(Ω) satisfies

a(uh(µ), v;µ) = f(v;µ), ∀v ∈ Xh(Ω); (7)

and the associated FE output of interest is sh(µ) = `(uh(µ);µ). We assume that Xh(Ω) is sufficiently rich
that in subsequent error analysis we can neglect the error in uh(µ) and sh(µ) relative to u(µ) and s(µ),
respectively.

2.2 Static Condensation
To formulate our static condensation procedure we first introduce the “bubble” spaces associated with each
archetype component domain as

Bhm;0 ≡ {v ∈ Xh
m : v|γ̂m,j = 0, 1 ≤ j ≤ nγm}, 1 ≤ m ≤M. (8)

We also introduce the basis functions for the port space Phm,j as {χm,j,1, . . . , χm,j,Nγm,j}, 1 ≤ j ≤ nγm,
1 ≤ m ≤M . We must require that for any global port index πp = {(i, j), (i′, j′)}, we have

χM(i),j,k = χM(i′),j′,k, 1 ≤ k ≤ NΓ
p . (9)

The particular choice for these functions is critical in the context of port reduction and will be described
in more detail in Section 3.

For instantiated component i in our system, 1 ≤ i ≤ I, and given the component parameter µi, we now
introduce the functions

φhi,j,k(µ) ≡ bhi,j,k(µ) + ψM(i),j,k, (10)

where the “bubble functions” bhi,j,k(µi) ∈ BhM(i);0, 1 ≤ k ≤ N γ
M(i),j , 1 ≤ j ≤ nγM(i), satisfy

aM(i)(b
h
i,j,k(µi), v;µi) = −aM(i)(ψM(i),j,k ◦ T −1

i , v;µi), ∀v ∈ BhM(i);0, (11)

and the ψm,j,k are extensions2 of the χm,j,k into the interior of Ω̂m which are zero on γ̂m,j′ for j′ 6= j (note
since we consider in this paper only simple geometric mappings we shall henceforth take the concatenation
with the simple map from instantiated to archetype coordinates, [·]◦T −1

i , as understood). We also introduce
a bubble function associated with the component right-hand side, bf ;h

i (µi) ∈ BhM(i);0, which satisfies

aM(i)(b
f ;h
i (µi), v;µi) = fM(i)(v;µi), ∀v ∈ BhM(i);0. (12)

On each instantiated component, we may then express the solution to (7) as

uh(µ)|Ωi = bf ;h
i (µi) +

nγM(i)∑
j=1

NγM(i),j∑
k=1

UGi(j),k(µ)φhi,j,k(µi), (13)

for coefficients Up,k(µ), 1 ≤ k ≤ NΓ
p , 1 ≤ p ≤ nΓ, to be determined below.

We shall also require “patched” versions of φi,j,k over pairs of instantiated components connected at global
ports: for an interior global port πp = {(i, j), (i′, j′)} we define Φp,k ≡ φi′,j′,k + φi,j,k, while for a boundary
global port πp = {(i, j)} we define Φp,k ≡ φi,j ; note to avoid the heavier (direct sum) notation of [15] we
assume here and below that all functions are extended by zero outside their domain of definition.

2We employ the usual (discrete) harmonic extensions since in the context of RB approximation this provides for a more
economical RB approximation [11].

5



We may now express the global solution as

uh(µ) =

I∑
i=1

bf ;h
i (µi) +

nΓ∑
p=1

NΓ
p∑

k=1

Up,k(µ)Φp,k(µ). (14)

We then insert (14) into (7) and restrict the test functions to the “skeleton” space

S ≡ span{Φp,k(µ), 1 ≤ k ≤ NΓ
p , 1 ≤ p ≤ nΓ} ⊂ Xh (15)

to obtain the Schur complement system of size nSC: for any µ ∈ D, find U(µ) ∈ RnSC such that

A(µ)U(µ) = F(µ), (16)

where

A(p,k),(p′,k′)(µ) = a
(
Φp′,k′(µ),Φp,k(µ);µ

)
, (17)

F(p,k)(µ) = f
(
Φp,k(µ);µ

)
−

I∑
i=1

a
(
bf ;h
i (µi),Φp,k(µ);µ

)
, (18)

for 1 ≤ k ≤ NΓ
p , 1 ≤ k′ ≤ NΓ

p′ , 1 ≤ p, p′ ≤ nΓ (hence (p, k) is a double-index notation for a single degree
of freedom). Note that any port (and non-port) Dirichlet boundary conditions are already reflected in (14)
and (15) and hence also in (16).

Algorithm 1 Component-based static condensation assembly loop
F0(µ) = 0, A0(µ) = 0
for i = 1, . . . , I do

for j = 1, . . . , nγM(i) do
for k = 1, . . . ,N γ

M(i),j do
F0;Gi(j),k(µ)← F0;Gi(j),k(µ) + Fij,k(µi)

for j′ = 1, . . . , nγM(i) do
for k′ = 1, . . . ,N γ

M(i),j′ do
A0;(Gi(j),k),(Gi(j′),k′)(µ)← A0;(Gi(j),k),(Gi(j′),k′)(µ) + Ai(j,k),(j′,k′)(µi)

end for
end for

end for
end for

end for
Eliminate port Dirichlet degrees of freedom: F0(µ)→ F(µ) and A0(µ)→ A(µ)

For the assembly of A(µ) and F(µ) we may employ a direct stiffness procedure. For each component
instantiation we define the local “stiffness matrix” and “load vector” as

Ai(j,k),(j′,k′)(µi) = aM(i)

(
φi,j′,k′(µi), φi,j,k(µi);µi

)
, (19)

Fi(j,k)(µi) = fM(i)

(
φi,j,k(µi);µ

)
− aM(i)(b

f ;h
i (µi), φi,j,k(µi);µi

)
,

respectively, for 1 ≤ k ≤ N γ
M(i),j , 1 ≤ k′ ≤ N γ

M(i),j′ , 1 ≤ j, j′ ≤ nγM(i), 1 ≤ i ≤ I. From these component
quantities we may then first obtain A0(µ) ∈ RnSC,0×nSC,0 and F0(µ) ∈ RnSC,0 through Algorithm 1; as a final
step in the algorithm we impose any port Dirichlet conditions by eliminination of the associated rows and
columns to obtain A(µ) ∈ RnSC×nSC and F(µ) ∈ RnSC .

Remark 1. The Schur complement matrix A(µ) is symmetric and positive definite (SPD) thanks to sym-
metry and coercivity of a(·, ·;µ), the definition of A(µ) in (17), and linear independence of the Φp,k(µ),
1 ≤ k ≤ NΓ

p , 1 ≤ p ≤ nΓ.
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2.3 Static Condensation Reduced Basis Element Method
In the static condensation reduced basis element (SCRBE) method [15], which we consider for our numerical
results in Section 6, each of the FE bubble functions bhi,j,k(µi) in (11) and bf ;h

i (µi) in (12) is respectively
replaced by an RB approximation [25]. Evaluation of these RB approximations is significantly less expensive
(subsequent to an RB “offline” preprocessing step) than evaluation of the original FE quantities, and hence
the computational cost associated with the formation of the (now approximate) Schur complement system
is significantly reduced.

For 1 ≤ k ≤ N γ
M(i),j , 1 ≤ j ≤ nγM(i), 1 ≤ i ≤ I, we introduce the RB bubble function approximations

b̃i,j,k(µi) ≈ bhi,j,k(µi), b̃fi (µi) ≈ bf ;h
i (µi), (20)

associated with (11) and (12), respectively, and we define φ̃i,j,k(µi) ≡ ψM(i),j,k + b̃i,j,k(µi) and

Φ̃p,k(µ) ≡
∑

(i,j)∈πp

φ̃i,j,k(µi). (21)

We may then define S̃ = span{Φ̃p,k(µ), 1 ≤ k ≤ NΓ
p , 1 ≤ p ≤ nΓ} ⊂ Xh (but note S̃ * S). These RB

approximations in turn lead to the approximate Schur complement system

Ã(µ)Ũ(µ) = F̃(µ), (22)

where Ã(µ) and F̃(µ) are defined as in (17) except with the Φp,k replaced by Φ̃p,k and the bf ;h
i (µi) replaced

by b̃fi (µi). We mention that under suitable (a posteriori verifiable) conditions on ‖U(µ)−Ũ(µ)‖2 the SCRBE
system matrix Ã(µ) is SPD [15, Proposition 4.1]; here, ‖ · ‖2 refers to the usual Euclidean norm.

Associated with the SCRBE is a favorable offline–online separation of the computations. In the offline
stage RB approximation spaces tailored to the parameter dependence of each bubble function within each
archetype component are constructed; associated datasets (required online) for the RB approximation and
RB error bounds are formed and stored. This stage is computationally expensive. In the online stage, the
system is first instantiated from archetype components; then, for the specified parameters, the RB bubble
approximations are computed for each instantiated component; next, the Schur complement system (22) is
assembled and solved; and finally, an a posteriori error bound for Ũ(µ) (as well as for associated output
quantities) is computed. This stage is fast since the computational cost does not depend on the dimension
of the FE spaces associated with the underlying component-local discretizations; we may thus pursue rapid
and topologically and parametrically flexible simulation of possibly rather large systems.

The port approximation and reduction procedure which we discuss in the next section, and which is the
main focus of this paper, does not rely on any particular approximation procedure for the bubble functions.
However, the computational economies realized by our port reduction procedure do rely heavily on efficient
bubble function approximation as provided, for example, by the SCRBE; indeed, we shall invoke the SCRBE
for our numerical results in Section 6. We do not go into further details about the SCRBE approach here,
but instead refer the interested reader to [15].

In the majority of the remainder of the paper we shall suppose, for any µ ∈ D, that A(µ) = Ã(µ) and
F(µ) = F̃(µ), that is, that the RB errors are zero. This assumption permits significant simplification of the
presentation of our port reduction a posteriori error bounds (in Section 4). We defer to Appendix A the
incorporation of non-zero RB contribution in the error estimates.

3 Port Approximation and Reduction
We introduce here our procedure for the reduction of the number of degrees of freedom on the instantiated
component ports and hence the size of the Schur complement system (16). A key concept in this section is
empirical port modes: port space basis functions which are tailored to the “solution manifold” associated with
a particular family of ports that may interconnect. We note that this manifold is ostensibly of very large

7



dimension3 since it is induced by all possible topological and parametric variations allowed by the archetype
components in the library.

However, in an instantiated system the solution on any given interior global port is “only” influenced by
the parameter dependence of the two components which share this port and the solution on the non-shared
ports of these two components. We shall exploit this observation to explore the solution manifold associated
with an archetype component port through a pairwise training algorithm. We note that the procedure
here improves upon our earlier approach from [10]; in [10], the empirical modes are tailored to a particular
instantiated system, which thus limits the topological variety of systems in which the modes provide good
approximation; in the current paper, the empirical modes are a property of the archetype library components,
and hence may serve in any system.

3.1 Port-Reduced Static Condensation System
We recall that on port j on instantiated component i the full port space is given as

PhM(i),j = span{χM(i),j,1, . . . , χM(i),j,NγM(i),j
}. (23)

For each port, we shall choose a desired port space dimension nγA,i,j such that 1 ≤ nγA,i,j ≤ N
γ
M(i),j . We

shall then consider the basis functions χM(i),j,k, 1 ≤ k ≤ nA,i,j , as the active port modes (hence subscript
A); we consider the nγI,i,j = N γ

M(i),j −n
γ
A,i,j remaining basis functions χM(i),j,k, n

γ
A,i,j + 1 ≤ k ≤ N γ

M(i),j , as
inactive (hence subscript I). Note that span{χM(i),j,1, . . . , χM(i),j,nγA,i,j

} ⊆ PhM(i),j . For numerical stability
[7] of our approximation we require that the χm,j,k are mutually L2(γ̂m,j)-orthonormal, and for solution
continuity we again must require nγA,i,j = nγA,i′,j′ for global port p such that (i, j) ∈ πp and (i′, j′) ∈ πp.

We denote by nΓ
A,p and nΓ

I,p the number of active and inactive port modes, respectively, associated with
global port p. For our instantiated system we then introduce

nA ≡
nΓ∑
p=1

nΓ
A,p, nI ≡

nΓ∑
p=1

nΓ
I,p, (24)

as the number of total active and total inactive port modes, respectively. Note that nA + nI = nSC. Next,
we assume a particular ordering of the degrees of freedom in (16): we first order the degrees of freedom
corresponding to the nA active system port modes and then the degrees of freedom corresponding to the nI

inactive system port modes; we may then interpret (16) as[
AAA(µ) AAI(µ)
AIA(µ) AII(µ)

]
U(µ) =

[
FA(µ)
FI(µ)

]
, (25)

where the four blocks in the system matrix correspond to the different couplings between active and inactive
modes; note that AAA(µ) ∈ RnA×nA and that AII(µ) ∈ RnI×nI . Our port-reduced approximation shall be
given as the solution to the nA × nA system

AAA(µ)UA(µ) = FA(µ), (26)

in which we may discard the (presumably large) AII(µ) block. (Note, however, that the AIA(µ)-block is
required later for residual evaluation in the context of a posteriori error estimation.)

The field variable associated with the solution vector UA(µ) is

uA(µ) =

I∑
i=1

bf ;h
i (µi) +

nΓ∑
p=1

nΓ
A,p∑
k=1

UA,p,k(µ)Φp,k(µ), (27)

3Note that in our FE static condensation context, the dimension is limited by N γm,j for port γ̂m,j .
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where uA(µ) ∈ Xh(Ω) satisfies

a(uA(µ), v;µ) = f(v;µ), ∀v ∈ SA, (28)

where

SA = span{Φp,k, 1 ≤ p ≤ nΓ, 1 ≤ k ≤ nΓ
A,p} ⊆ S (29)

is the port-reduced (or “active”) skeleton space.
Finally, we note that when we employ the SCRBE for RB bubble function approximation we must replace

uA(µ) by

ũA(µ) =

I∑
i=1

b̃f ;h
i (µi) +

nΓ∑
p=1

nΓ
A,p∑
k=1

ŨA,p,k(µ)Φ̃p,k(µ), (30)

where ũA(µ) ∈ Xh(Ω) satisfies

a(ũA(µ), v;µ) = f(v;µ), ∀v ∈ S̃A. (31)

Here, S̃A ⊆ S̃ is defined as in (29) with Φp,k(µ) replaced by Φ̃p,k(µ), and ŨA is hence the solution of an
RB-approximated active system ÃAA(µ)ŨA(µ) = F̃A(µ). Note that both S̃A and SA are subspaces of Xh(Ω),
and hence both uA(µ) and ũA(µ) are Galerkin-optimal approximations [24] to uh(µ) .

3.2 Port Approximation
We discuss here the port approximation framework as well as our particular choice for the port modes
χm,j,k. We shall assume for simplicity that all ports are separated by a non-empty non-port and non-
Dirichlet boundary segment; if this is not the case, modifications must be made to the procedures below
[12].

To begin, we introduce an expansion of the solution to the global system (7) restricted to any local port
γi,j as

uh(µ)|γi,j =

NγM(i),j∑
k=1

UGi(j),k(µ)χM(i),j,k. (32)

Port reduction of the system (25) to obtain the smaller system (26) corresponds to an approximation
uA(µ)|γi,j ≈ uh(µ)|γi,j as a truncated expansion

uA(µ)|γi,j =

nγA,i,j∑
k=1

UA,Gi(j),k(µ)χM(i),j,k. (33)

To accomodate this truncation without significant loss in accuracy we must develop a set of port modes
which provide rapid decrease in the solution coefficients UGi(j),k(µ) for any anticipated solution uh(µ)|γi,j .
To this end we introduce for port j on archetype component m a space Ym,j of dimension ym,j as

Ym,j = span{ρm,j,1, . . . , ρm,j,ym,j}; (34)

here the basis functions ρm,j,1, . . . , ρm,j,ym,j are L2(γ̂m,j)-orthonormal empirical modes associated with the
archetype component port γ̂m,j ; note we shall always choose ρm,j,1 constant over γ̂m,j for purposes of our
a posteriori error bound in Section 4. For now we simply assume that these modes exist; we discuss their
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construction through a pairwise training algorithm in the next subsection. We also introduce the associated
L2(γ̂m,j)-orthogonal discrete complement space Y ⊥m,j of dimension N γ

m,j−ym,j such that Phm,j = Ym,j⊕Y ⊥m,j .4

Next, let Phm,j;0 = {v ∈ Phm,j : v|∂γ̂m,j = 0}, and let sm,j ∈ Phm,j;0 satisfy5∫
γ̂m,j

∇sm,j · ∇v =

∫
γ̂m,j

v, ∀v ∈ Phm,j;0. (35)

Then, we consider a singular Sturm–Liouville eigenvalue problem restricted to the orthogonal complement
space Y ⊥m,j : find pairs (κkm,j , τ

k
m,j) ∈ R× Y ⊥m,j such that∫

γ̂m,j

sm,j∇τkm,j · ∇v = κkm,j

∫
γ̂m,j

τkm,jv, ∀v ∈ Y ⊥m,j , 1 ≤ k ≤ N γ
m,j − ym,j , (36)

with normalization ‖τkm,j‖L2(γ̂m,j) = 1; we order the eigenfunctions according to increasing associated eigen-
value.

We may now identify our port modes and hence our port approximation spaces: we set

χm,j,k =

{
ρm,j,k 1 ≤ k ≤ yγm,j ,
τ
k−ym,j
m,j yγm,j + 1 ≤ k ≤ N γ

m,j .
(37)

Note that the basis functions χm,j,k are L2(γ̂m,j)-orthonormal by construction. On each local port j on
archetype component m, the ym,j empirical modes shall be tailored to the family of solutions that we
expect on that port for different values of system parameters and topology; we introduce an algorithm for
the construction of these modes below. The N γ

m,j − ym,j orthogonal complement eigenmodes complete the
discrete space in a well-conditioned fashion.

Note that in the particular case of ym,j = 0 and one-dimensional ports our port approximation is of pure
Legendre-polynomial type, and we expect (based on classical results for the continuous case N γ

m,j → ∞)
that the eigenmode expansion will exhibit good approximation properties; the port approximation error will
decay with an exponential rate with exponent linear in the number of active degrees of freedom — as long as
the solution on the port is a (spatially) smooth function [4]. We would not in general expect a similar result
for the “classical” non-singular Sturm–Liouville choice sm,j = 1, and we note that port reduction approaches
within the CMS framework [6, 18] typically consider regular rather than singular eigenproblems. Also note
that in the case ym,j = 0 a solution to (36) is always (κ1

m,j = 0, τ1
m,j = constant), and hence χm,j,1 is constant

for any ym,j (recall in the case ym,j > 0 we set χm,j,1 = ρm,j,1, which is chosen constant).
For three-dimensional problems and thus two-dimensional ports, the ym,j = 0 case corresponds to approx-

imation by geometrically generalized Legendre eigenmodes. In this case our approach is conceptually similar
to the generalized eigenfunction expansion employed for the approximation of the Navier-Stokes equations
in [2]. However for two-dimensional (square, say) ports, the ym,j = 0 approximation would for our purposes
here not provide sufficiently rapid error decay. We conjecture in this case that the port approximation error
will decay at an exponential rate but with exponent linear in the square root of the number of active degrees
of freedom. Hence we consider in general ym,j > 0.

We now consider an approach for generation of the empirical modes in (34) through pairwise training.
To formalize the procedure we first introduce the (discrete) generalized Legendre polynomials Lkm,j ∈ Phm,j
which satisfy the singular Sturm–Liouville eigenproblem∫

γ̂m,j

sm,j∇Lkm,j · ∇v = Λkm,j

∫
γ̂m,j

Lkm,jv, ∀v ∈ Phm,j , 1 ≤ k ≤ N γ
m,j , (38)

4For a basis function coefficient matrix Y = [ρm,j,1, . . . , ρm,j,ym,j ] ∈ RN
γ
m,j×ym,j and an L2(γ̂m,j) inner-product matrix

X ∈ RN
γ
m,j×N

γ
m,j , a basis for the orthogonal complement space Y ⊥m,j is obtained as the N γm,j − ym,j right singular vectors of

the matrix (XY)T which correspond to zero singular values.
5Note in (35), and in (36) and (38) below, ∇ denotes the surface gradient operator.
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for sm,j defined in (35). The Lkm,j , which shall play a role in our empirical mode construction algorithm
below, are different from the approximation modes in (36) since (36) is restricted to a subspace of Phm,j . For
our algorithm we shall also require a random variable r with univariate uniform density over (−1, 1), and an
algorithm tuning parameter related to anticipated regularity, η.

Algorithm 2 Pairwise training (two components connected at global port Γp∗)
Spair = ∅.
for n = 1, . . . , Nsamples do

Assign random parameters µi ∈ Di to component i = 1, 2.
On all non-shared ports Γp, p 6= p∗, assign random boundary conditions:

u|Γp =

Nγi,j∑
k=1

r
1

kη
Lki,j

Extract solution u|Γp∗ on shared port.
Add mean-corrected port solution to snapshot set:

Spair ← S ∪

(
u|Γp∗ −

1

|Γp∗ |

∫
Γp∗

u|Γp∗

)
.

end for

To construct the empirical modes we first identify groups of local ports on the archetype components
which may interconnect — “port groups;” hence, due to our conformity requirement (9) a, the port space
basis functions for all ports in each such port group must be identical. For each pair of local ports within
each port group (connected to form a shared global port Γp∗), we execute Algorithm 2: we sample this
I = 2 component system many (Nsamples) times for random (typically unformly or log-uniformly distributed)
parameters over the parameter domain and for random boundary conditions on non-shared ports; note that
the enforced coefficient decay in the boundary condition expansion (η > 1) ensures in particular that the
boundary conditions are L2(Γp) functions. For each sample we extract the solution on the shared port Γp∗ ;
we then subtract its average and add the resulting zero-mean function to a snapshot set Spair. Note that by
construction all functions in Spair are thus orthogonal to the constant function.

Upon completion of Algorithm 2 for all possible component connectivities within a port group, we next
form a larger snapshot set Sgroup which is the union of all the snapshot sets Spair generated for each pair.6
We then perform a data compression step: we invoke the proper orthogonal decomposition (POD) [19] (with
respect to the L2(Γp∗) inner product). The output from the POD procedure is a set of ym,j − 1 mutually
L2(Γp∗)-orthonormal empirical modes which have the additional property that they are orthogonal to the
constant function over Γp∗ . For each archetype component and local port pair (m, j) in each port group we
assign the port space basis functions in (37) as follows: we first assign the (normalized) constant to ρm,j,1;
we then assign the ym,j − 1 first POD modes to ρm,j,k, 2 ≤ k ≤ ym,j ; the remaining port modes τkm,j ,
1 ≤ k ≤ N γ

m,j − ym,j , are then defined from (34) and (36). Finally, we repeat the procedure for all port
groups in the library of archetype components.

In the case that ports are not separated by a non-Dirichlet, non-port boundary segment, we must make
some adjustments to the procedures above. In the case in which ports are not separated by a non-port
segment (ports “touch” at a point) we enforce zero Dirichlet conditions in (36) and we require an additional
special port mode which couples the two ports; furthermore we do not explicitly include the constant function
as ρm,j,1 in our port space basis. We note that such component connectivity is considered in [12] in the
CMS context. In the case that ports are separated by a zero Dirichlet non-port boundary segment we simply

6We must technically map the snapshots to a common domain associated with the port group; however we omit this step
here to avoid cumbersome notation.
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enforce the Dirichlet conditions on the port modes directly in the eigenproblem (36); we must also make
adjustments to our empirical training algorithm to make sure that the resulting POD modes are also zero
on the boundary of the port.

4 A Posteriori Error Bound
We shall develop here an a posteriori bound for the error eh(µ) ≡ uh(µ)− uA(µ) associated with our port-
reduced static condensation approximation. In the first subsection we introduce relevant notation and discuss
the norms and outputs for which we develop our bounds. In actual practice, when we employ the SCRBE for
bubble function approximation, our error bounds must of course reflect RB errors in the bubble functions;
we consider these additional RB contributions to the error bounds in Appendix A.

4.1 Preliminaries: Norms and Outputs
We shall develop a bound for the error measured in the usual (global) energy norm

‖ω‖µ ≡
√
a(ω, ω;µ), ∀ω ∈ H1(Ω), (39)

which thanks to coercivity and continuity of a(·, ·;µ) is equivalent to the standard H1(Ω)-norm. We also
introduce the “Schur energy norm” given by

‖v‖A(µ) ≡
√
vTA(µ)v, ∀v ∈ RnSC , (40)

which shall serve as an ingredient in our error bound derivation. We note that for any function ω(µ) =∑nΓ

p=1

∑NΓ
p

k=1 vp,kΦp,k(µ), ω(µ) ∈ S, and it thus follows directly from the definition of A(µ) in (17) that

‖v‖2A(µ) = a(ω, ω;µ). (41)

This relation connects an algebraic Schur complement to our partial differential equation.
The solution to our port-reduced problem (in the absence of RB errors) is the vector UA(µ) in (26). We

extend this vector as

ÛA(µ) ≡
[
UA(µ)

0

]
∈ RnSC , (42)

such that ÛA(µ) is zero for all entries that correspond to inactive port modes. We then define the error
vector associated with the port-reduced approximation as

E(µ) ≡ U(µ)− ÛA(µ) ∈ RnSC ; (43)

the associated error in the field is, from (14) and (27),

eh(µ) = uh(µ)− uA(µ) =

nΓ∑
p=1

NΓ
p∑

k=1

Ep,k(µ)Φp,k(µ); (44)

note that eh(µ) ∈ S because of cancellation of the bubbles
∑I
i=1 b

f ;h
i (µi) associated with the right-hand side.

Note if the SCRBE is employed, the solution to our port-reduced problem is ŨA(µ), and hence in actual
practice E(µ) = U(µ) − ˆ̃UA(µ), where ˆ̃UA(µ) is a zero-extended version of ŨA(µ); note that the associated
error in the field eh(µ) = uh(µ)− ũA(µ) is no longer in S due to the RB approximations (20).

It follows from (44) and (41) that, in the absence of RB errors, ‖E(µ)‖A(µ) = ‖eh(µ)‖µ and hence a bound
on the error in the Schur energy norm is also a bound on the energy of the error in the field. Furthermore,
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even in the presence of (small) RB errors, eh(µ) is “almost” in S and thus the Schur energy norm remains
relevant. For this reason we shall pursue a bound for the error in the Schur energy norm first — here, in the
body of the paper — in the absence of RB errors which we shall subsequently modify — in Appendix A —
to obtain a bound on the energy ‖eh(µ)‖µ valid even in the presence of RB errors.

We shall also develop bounds for derived quantities defined over the ports. For any particular global
port Γp∗ we introduce a (parameter independent) bounded output functional `Γp∗ (·) : L2(Γp∗)→ R; we then
define our FE output of interest as

sh(µ) = `Γp∗ (uh(µ)|Γp∗ ), (45)

which from (14) can be written as

sh(µ) =

NΓ
p∑

k=1

Up∗,k(µ)`Γp∗ (Ψp∗,k) (46)

since uh(µ)|Γp∗ = Up∗,k(µ)Ψp∗,k|Γp∗ (note we henceforth take the restriction to Γp∗ of arguments to `Γp∗ as
understood). We may also write this output as

sh(µ) = L(µ)TU(µ), (47)

where L(µ) ∈ RnSC is defined as Lp,k(µ) = `Γp(Ψp,k) for p = p∗ and as Lp,k(µ) = 0 for p 6= p∗. We define
the port-reduced output approximation as

sA(µ) ≡ `Γp∗ (uA(µ)) = L(µ)TÛA(µ). (48)

We again recall that eh(µ) ∈ S in the absence of RB error, and thus for the output error we may obtain a
bound as

|sh(µ)− sA(µ)| =
∣∣`Γp∗ (uh(µ)|Γp∗ − uA(µ)|Γp∗

)∣∣ ≤ ‖eh(µ)‖µ sup
v∈S

`Γp∗ (v)

‖v‖µ
, (49)

The term supv∈S
`
Γp∗ (v)
‖v‖µ is efficiently boundable — we provide a comment in Remark 3 of Section 4.5 once

the necessary tools are introduced. If the SCRBE is employed eh(µ) is no longer a member of S, and hence a
modification to (49) is necessary; however we do not consider this modification to (49) in the current paper.

Although the theory (and associated computational procedures) in the next sections extends also to the
case of non-compliance [23, 25] outputs (as indicated by (49)), and for outputs which are not defined over
ports [15], we shall for our numerical results in this paper restrict attention to the case of compliance port
outputs. For example, if f(v;µ) = f(v) corresponds to a (parameter-independent) uniform external load on
Γp∗ , the compliance output `Γp∗ (v) = f(v) is the integrated (or average) field variable over Γp∗ . Note that
the port restriction on f(v) implies bf ;h

i (µi) = 0, 1 ≤ i ≤ I, in (12), and thus uA(µ) ∈ SA. For compliance
port outputs we readily obtain in this case the standard result

sh(µ)− sA(µ) = ‖eh(µ)‖2µ, (50)

thanks to Galerkin orthogonality of eh(µ) with respect to SA ⊂ Xh(Ω) and symmetry and coercivity of
a(·, ·;µ).

In the remainder of this section we focus on the Schur energy norm error bound in the absence of RB
errors; RB errors are accounted for in Appendix A for the energy error in the field and for error in compliance
outputs. We begin our error bound development with an exact variational error statement and then introduce
two relaxation steps — a non-conforming approximation and an error bound conditioner — that in tandem
significantly reduce the cost of the error bound computation while maintaining sufficient sharpness. We first
consider the theoretical approximation aspects and then the computational aspects.
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4.2 Exact Variational Error Statement
The residual associated with the port-reduced static condensation approximation is

R(µ) ≡ F(µ)− A(µ)ÛA(µ). (51)

We note that since F(µ) = A(µ)U(µ) we directly obtain the usual error-residual relationship

A(µ)E(µ) = R(µ); (52)

since A(µ) is an SPD matrix we also have [26]

E(µ) = arg min
v∈RnSC

J (v;µ), (53)

where J (·;µ) is the quadratic functional given by

J (v;µ) ≡ 1

2
vTA(µ)v − vTR(µ), ∀v ∈ RnSC . (54)

For the error in the system solution in the Schur energy norm we then obtain

‖E(µ)‖2A(µ) = E(µ)TA(µ)E(µ) = R(µ)TE(µ) = −2J (E(µ);µ) (55)

(note that J (E(µ);µ) is negative).

4.3 Step 1: Non-Conforming Error Approximation
The first ingredient in our a posteriori error bound is a non-conforming approximation to E(µ). We start
with the Schur complement matrix A(µ) ∈ RnSC×nSC and residual vector R(µ) ∈ RnSC . We consider the full
system, but with nA degrees of freedom marked as active, and nI degrees of freedom marked as inactive.
We then introduce an expanded non-conforming system with n′SC = nSC + n′I degrees of freedom, where n′I
is the number of inactive degrees of freedom associated with shared global ports.

We first define a constraint matrix C ∈ Rn′I×n′SC and a matrix D ∈ Rn′SC×nSC such that ker(C) is spanned
by the columns of D. The expanded dimension n′SC corresponds to duplication of the n′I inactive degrees of
freedom associated with shared ports; the constraint matrix C corresponds to equality constraints imposed
on these degrees of freedom. We note that nSC = rank(D) and hence

∀w′ ∈ ker(C), there exists a unique w ∈ RnSC such that w′ = Dw. (56)

We then introduce an expanded stiffness matrix and residual vector A′(µ) ∈ Rn′SC×n
′
SC and R′(µ) ∈ Rn′SC

such that the relations

A(µ) = DTA′(µ)D ∈ RnSC×nSC , R(µ) = DTR′(µ) ∈ RnSC , (57)

hold. For our expanded matrix A′(µ) we then state

Conjecture 1. Assume that nΓ
A,p ≥ 1 for 1 ≤ p ≤ nΓ. Then the symmetric matrix A′(µ) is positive definite.

Sketch of proof. We consider the Laplace equation in a two-component system with component domains Ω1

and Ω2 such that a(w, v) =
∑2
i=1

∫
Ωi
∇w · ∇v for w, v ∈ H1(Ωi), i = 1, 2. The components are connected

at a single global port Γ1 and we associate to this port (and thus system) nΓ
A,1 = nA ≥ 1 active degrees of

freedom. To ensure well-posedness of (6) in this case, we assume homogeneous Dirichlet boundary conditions
on a non-empty subset of the non-port boundary of Ω1; on all other boundaries of the system we consider
homogeneous Neumann conditions.
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To any v ∈ Rn′SC we associate a function w ≡ wA + wI,1 + wI,2 such that

wA ≡
nA∑
k=1

vkΦ1,k, (58)

and

wI,1 ≡
nA+nI∑
k=nA+1

vkΦ1,k|Ω1
, wI,2 ≡

nA+nI∑
k=nA+1

vnI+kΦ1,k|Ω2
; (59)

note that w is discontinuous over Γ1 and that wI,1 and wI,2 are defined over Ω1 and Ω2, respectively. With
A′ expanded from A (for a(·, ·;µ) defined in (4)) we obtain

vTA′v = a1(wA|Ω1
+ wI,1, wA|Ω1

+ wI,1)

+ a2(wA|Ω2
+ wI,2, wA|Ω2

+ wI,2)

=
∣∣wA|Ω1 + wI,1

∣∣2
H1(Ω1)

+
∣∣wA|Ω2 + wI,2

∣∣2
H1(Ω2)

≥ 0; (60)

here, | · |H1(Ωi) denotes the H
1(Ωi) semi-norm. Thus if vTA′v = 0, we must have wA +wI,i = ci, i = 1, 2, for

constants c1, c2. Since nΓ
A,p ≥ 1, the set of active port modes on Γ1 contains at least the constant mode. As

all modes except this first mode have zero mean on Γ1 (per Algorithm 2), and as these modes are linearly
independent, we must have vk = 0 for all k > 1. Thus, in particular, wI,1 = wI,2 = 0, and as a result
w = wA = v1Φ1,1 = c1 = c2. But as we consider homogeneous Dirichlet conditions on parts of the boundary
of Ω1, we must have v1Φ1,1 = c1 = c2 = 0 and thus also vk = 0 for all k since Φ1,1 is non-zero.

We believe that in the more general case a Poincaré-Friedrichs inequality will serve to demonstrate invert-
ibility of A′(µ).

We then define an associated “expanded” functional J ′(·;µ) : Rn′SC → R as

J ′(v;µ) =
1

2
vTA′(µ)v − vTR′(µ). (61)

We now consider the minimum of J ′(·;µ) over ker(C) ⊂ Rn′SC , denoted

E′C(µ) ≡ arg min
v∈ker(C)

J ′(v;µ). (62)

We observe that (62) is merely a restatement of (53) over a constrained space of dimension nSC embedded
in Rn′SC : from (56) and (57) we may conclude that J (E(µ);µ) = J ′(E′C(µ);µ) with E′C(µ) = DE(µ).

We next remove the constraints and consider minimization of J ′(·;µ) over Rn′SC . In particular, we then
define

E′(µ) ≡ arg min
v∈Rn

′
SC

J ′(v;µ). (63)

It follows from the associated Euler equation that E′(µ) = A′(µ)−1R′(µ) (recall that A′(µ) is invertible by
Conjecture 1). We may then state

Lemma 1. The error in the Schur energy norm is bounded as

‖E(µ)‖2A(µ) ≤ −2J ′(E′(µ);µ). (64)

Proof. Since the minimization in (63) is taken over a larger space than the minimization in (62), we obtain

J ′(E′(µ);µ) ≤ J ′(E′C(µ);µ). (65)

The result (64) then follows from J ′(E′C(µ);µ) = J (E(µ);µ) and (55).
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Remark 2. We note that the field variable (eh)′(µ) associated with E′(µ) is indeed a non-conforming approx-
imation to the field variable eh(µ); note that (eh)′(µ) ∈ X ′(Ω) for X ′(Ω) ⊃ Xh(Ω) due to the discontinuities
across shared global ports, and note that the associated “jumps” may be represented exactly by the nΓ

I,p “highest
order” modes at each port Γp.

A full analysis of this non-conforming approximation necessitates a functional formulation which we do
not consider here. However, we note that the approximation and consistency contribution to the error (in
the error approximation) may be analyzed and bounded through Strang’s Second Lemma [8]. In particular,
in [5, Eq. 18], the consistency error is written as a boundary integral of the normal derivative of the exact
error multiplied by jump terms,

sup
w∈X′(Ω)

∫
∪nΓ
p=1Γp

∂ne
h[w]

‖w‖
, (66)

where [w] denotes the jump associated with w at a particular port and ‖·‖ here is a broken H1(Ω)-norm . We
thus expect the consistency error term to be very small if ∂neh can be well represented by the basis functions
associated with the low-order (active) modes, which are perforce L2-orthogonal to [w]; and we furthermore
expect ∂neh to be relatively low order if our port approximation procedure provides an effective port expansion
(for uh(µ)).

4.4 Step 2: Error Bound Conditioner
The second ingredient in our error upper bound is a parameter-independent bound conditioner. As our
conditioner we consider a reference system Schur complement matrix, that is

B = A(µref), (67)

where µref ∈ D is a reference parameter value. We introduce an associated expanded reference matrix
B′ ∈ Rn′SC×n

′
SC such that B = DTB′D. Recall that B′(µ) = A′(µref) is invertible by Conjecture 1.

We then introduce the generalized eigenproblem associated with B′ and A′(µ),

A′(µ)vi(µ) = λi(µ)B′vi, 1 ≤ i ≤ n′SC. (68)

We denote by λmin(µ) ≡ λ1(µ) the smallest eigenvalue associated with (68); hence

λmin(µ)vTB′v ≤ vTA′(µ)v, ∀v ∈ Rn
′
SC . (69)

We may then introduce a modified functional J ′B(·;µ) : Rn′SC → R as

J ′B(v;µ) =
λmin(µ)

2
vTB′v − vTR′(µ), (70)

for which, for any v ∈ Rn′SC ,

J ′B(v;µ) ≤ J ′(v;µ). (71)

We now define

E′B(µ) ≡ arg min
v∈Rn

′
SC

J ′B(v;µ), (72)

and note that

E′B(µ) ≡ 1

λmin(µ)
(B′)−1R′(µ) (73)

from the Euler-Lagrange equation associated with (72).
We are now ready to formulate
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Lemma 2. The error in the Schur energy norm is bounded as

‖E(µ)‖2A(µ) ≤ −2J ′B(E′B(µ);µ) =
R′(µ)T(µ)(B′)−1R′(µ)

λmin(µ)
(74)

Proof. From (72) and (69), we first obtain

J ′B(E′B(µ);µ) ≤ J ′B(E′(µ);µ) ≤ J ′(E′(µ);µ). (75)

The inequality in (74) then follows from Lemma 1. The equality in (74) follows from (73) and (70).

In the context of port reduction it is not desirable to calculate the eigenvalue λmin(µ) as this would require
formation of the entire matrix A′(µ) and solution of the expanded generalized eigenproblem (68). We instead
pursue an eigenvalue lower bound through an eigenproblem residual (a similar procedure is demonstrated in
[17] for the standard eigenproblem). To this end, we first introduce the eigenproblem associated with the
nA active degrees of freedom as

AAA(µ)vA,i(µ) = λA,i(µ)BAAvA,i(µ), vT
A,iBAAvA,i = 1, (76)

for 1 ≤ i ≤ nA. We denote by λA,min(µ) ≡ λA,1(µ) the smallest eigenvalue associated with (76). We
introduce an extended associated eigenvector

v̂A,1(µ) =

[
vA,1(µ)

0

]
∈ Rn

′
SC . (77)

With the two eigenproblems (76) and (68) we may then define the eigenproblem residual

R′eig(µ) ≡ A′(µ)v̂A,1(µ)− λA,min(µ)B′v̂A,1(µ). (78)

(Note that as only the inactive degrees of freedom are duplicated in the expanded system, we interpret
AAA(µ) and BAA as the upper left submatrices of A′ and B′, respectively.)

We now state

Proposition 1. For any µ ∈ D let

λmin,LB(µ) ≡ λA,min(µ)−
√
R′eig(µ)T(B′)−1R′eig(µ). (79)

Further, assume that

|λA,min(µ)− λmin(µ)| ≤ |λA,min(µ)− λi(µ)|, 1 ≤ i ≤ n′SC. (80)

Then

λmin,LB(µ) ≤ λmin(µ). (81)

Proof. We first expand v̂A,1 in terms of the eigenfunctions vi of the full eigenproblem (68) as

v̂A,1 =

n′SC∑
i=1

αivi. (82)

We note that thanks to the normalization in (76) we also obtain v̂T
A,1B′v̂A,1 = 1. We consider the “dual Schur

reference norm” of the eigenproblem residual as

‖R′eig‖2(B′)−1 = R′eig(µ)T(B′)−1R′eig(µ), (83)
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for which we obtain from (78) (we omit here all µ-dependence for simplicity)

‖A′v̂A,1 − λA,minB′v̂A,1‖2(B′)−1 =

∥∥∥∥n
′
SC∑
i=1

αiA′vi − λA,min

n′SC∑
i=1

αiB′vi
∥∥∥∥2

(B′)−1

(84)

=

∥∥∥∥n
′
SC∑
i=1

(λi − λA,min)αiB′vi
∥∥∥∥2

(B′)−1

(85)

=

n′SC∑
i=1

|λi − λA,min|2‖αiB′vi‖2(B′)−1 (86)

≥ |λmin − λA,min|2
n′SC∑
i=1

‖αiB′vi‖2(B′)−1 (87)

= |λmin − λA,min|2
∥∥∥∥n
′
SC∑
i=1

αiB′vi
∥∥∥∥2

(B′)−1

(88)

= |λmin − λA,min|2. (89)

In this derivation, (86) follows from the B′-orthogonality of the vi, (87) follows from (80), (88) follows
from B′-orthogonality of the vi, and finally (89) follows from the normalization condition on v̂A,1. We thus
conclude that

λmin,LB(µ) = λA,min(µ)−
√
R′eig(µ)T(B′)−1R′eig(µ) (90)

satisfies λmin,LB(µ) ≤ λmin(µ).

The eigenvalue proximity assumption (80) is the one caveat in our a posteriori error bound procedure. We
provide computational results in Section 6 that confirm plausibility of this assumption. However, in actual
computational practice it remains an unverified assumption. A mitigating consideration is the proximity
(typically) of λmin(µ) (and λmin,LB(µ)) to unity such that in any event the effect on the total error bound
(of the next section) is small.

Finally, we note that in [29] a similar bound conditioner idea is employed for reduced basis approximations.
In [29] a multi-reference-parameter approach is also introduced: for a given µ an interpolation between a
few inverse reference operators is performed to optimize the conditioner. We expect that a multi-reference-
parameter approach is applicable also to our port-reduction error bound conditioner here, but we do not
consider this possibility further in the current paper.

4.5 A Posteriori Error Bound
Armed with the non-conforming error approximation, the bound conditioner, and the eigenvalue lower bound,
we are now ready to state our a posteriori error bound result for the port-reduced static condensation
approximation in

Proposition 2. Let

∆u(µ) ≡

√
R′(µ)T(B′)−1R′(µ)

λmin,LB(µ)
, (91)

and assume that the eigenvalue proximity assumption (80) holds. Then for any µ ∈ D

‖uh(µ)− uA(µ)‖2 ≤ ∆u(µ). (92)
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Proof. We obtain the desired result directly from the definition of eh(µ) in (44) together with (41) and
eh(µ) ∈ S (per (44)), Lemma 2, and Proposition 1.

We also give bounds on the error in the port-reduced port-restricted compliance output quantity sA(µ) =
f(uA(µ)) in

Corollary 1. For the compliance output sA(µ) defined in (48), the output error s(µ)− sA(µ) satisfies

0 ≤ s(µ)− sA(µ) ≤
(
∆u(µ)

)2
; (93)

equivalently, the true output sh(µ) satisfies

sA(µ) ≤ sh(µ) ≤
(
∆u(µ)

)2
+ sA(µ). (94)

Proof. The result follows from (50) and Proposition 2.

We consider non-compliance outputs in

Remark 3. To efficiently bound the right-hand side of (49) we now note that

sup
ω∈S

`Γp∗ (ω)

‖ω‖µ
= sup
v∈RnSC

LTv

vTA(µ)v
≤ sup
v∈Rn

′
SC

(L′)Tv

vTA′(µ)v
≤ 1

λmin,LB(µ)
sup

v∈Rn
′
SC

(L′)Tv

vTB′(µ)v
. (95)

This bound is efficiently computable: we need only invoke our eigenvalue lower bound λmin,LB(µ), and per-
form one additional non-conforming B′-solve to compute the supremizer (note we consider here parameter-
independent L = L(µ)). A bound for the error in port-restricted non-compliance outputs is thus

|sh(µ)− sA(µ)| ≤ ∆u(µ)

λmin,LB(µ)
sup

v∈Rn
′
SC

(L′)Tv

vTB′(µ)v
. (96)

Note in the remainder of this paper we restrict attention to compliance outputs.
An alternative and more straightforward a posteriori error bound can be obtained from (52) and the

Cauchy–Schwarz inequality as ‖E(µ)‖2 ≤ ‖A(µ)−1‖2‖R(µ)‖2. We emphasize that Lemma 2 and Proposi-
tion 2 differ from this bound based on direct residual evaluation not only because of the different (Schur
energy) norm, but also since E′B(µ) constitutes an approximate solution to (52) and hence we do not loose
sharpness due to application of the Cauchy–Schwarz inequality. Our approximate solution can be com-
puted efficiently thanks to the two relaxations presented: Step 1 (non-conforming approximation) and Step
2 (bound conditioner). We expect that the loss of sharpness due to the non-conforming approximation is
relatively small as long as our port reduction procedure provides an effective port expansion (as indicated
in Remark 2); and we know that the loss of sharpness due to the bound conditioner is small as long as the
smallest eigenvalue λmin(µ) associated with (68) is of order unity and the eigenvalue lower bound λmin,LB(µ)
is relatively sharp.

5 Computational Considerations

5.1 Procedures
We first discuss the computation of the port-reduced solution UA(µ) of the system (26). To this end we
write for instantiated component i the (non-port-reduced) component stiffness matrix and component load
vector as

Ai(µi) =

[
AiAA(µi) AiAI(µi)
AiIA(µi) AiII(µi)

]
, Fi(µi) =

[
FiA(µi)
FiI(µi)

]
, (97)
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respectively, where again the matrix and vector blocks refer to couplings between degrees of freedom marked
as active and degrees of freedom marked as inactive, but now on a component-matrix level. To form (26) we
only need to form for each instantiated component i the active component matrix AiAA(µi) and component
vector FiA(µi); assembly of (26) then follows a direct stiffness procedure analogous to Algorithm 1. For

instantiated component i, let niA =
∑nγM(i)

j=1 nγA,i,j and niI =
∑nγM(i)

j=1 nγI,i,j be the total number of active and
inactive degrees of freedom, respectively; thus AiAA(µi) ∈ RniA×niA , AiIA(µi) ∈ RniI×niA , and AiII(µi) ∈ RniI×niI .

We next discuss the computation of the error bound in Proposition 2. There are two key ingredients: the
non-conforming “(B′)-solves” in (79) and (91), and the calculation of the residuals R′(µ) and R′eig(µ). We
first consider the former, and then the latter.

Both our eigenvalue bound in Proposition 1 and our error bound in Proposition 2 necessitate a global
solve of the form z(µ) = (B′)−1R′(µ). However thanks to the n′I duplicated degrees of freedom we shall in
actual practice never require explicit formation or inversion of B′. This significant computational saving is
effected through elimination of the uncoupled degrees of freedom on a component-matrix level: the global
system for z(µ) is only of size nA. We illustrate this point by consideration of a system consisting of only
two components with instantiated component stiffness matrices A1(µ) and A2(µ) (for which we invoke the
particular interpretation in (97)). The Schur complement system matrix A(µ) for this system (obtained
through Algorithm 1) is then

A(µ) =

[
A1

AA(µ1) + A2
AA(µ2) A1

AI(µ1) + A2
AI(µ2)

A1
IA(µ1) + A2

IA(µ2) A1
II(µ1) + A2

II(µ2)

]
; (98)

the corresponding expanded system matrix A′(µ) is7

A′(µ) =

A1
AA(µ1) + A2

AA(µ2) A1
AI(µ1) A2

AI(µ2)
A1

IA(µ1) A1
II(µ1) 0

A2
IA(µ2) 0 A2

II(µ2)

 . (99)

Recall that the difference between (98) and (99) is that the latter does not reflect couplings between degrees
of freedom that are marked as inactive (on the shared global port).

We thus write B′z = R′(µ) asB1
AA + B2

AA B1
AI B2

AI

B1
IA B1

II 0
B2

IA 0 B2
II

zA(µ)
z1

I (µ)
z2

I (µ)

 =

RA(µ)
R1

I (µ)
R2

I (µ)

 . (100)

Next, from (100) we note that[
B1

AA + B2
AA − B1

AI(B1
II)
−1B1

IA − B2
AI(B2

II)
−1B2

IA

]
zA(µ) = RA(µ)− B1

AI(B1
II)
−1R1

I (µ)− B2
AI(B2

II)
−1R2

I (µ).
(101)

We may thus obtain z(µ) by consideration of a second Schur complement: we first solve local problems of
size n1

I and n2
I on component 1 and 2, respectively, and then a global problem of size nA for zA(µ); we finally

recover z(µ) by standard back-substitution as ziI = (BiII)−1(RiI −BiIAzA). The extension of this procedure to
a system with an arbitrary number of components and ports is straightforward.

We now state

Conjecture 2. Assume that nγA,i,j ≥ 1 (recall that nγA,i,j is the number of active modes on port γi,j of
component i). Then for 1 ≤ i ≤ I the symmetric matrix BiII is positive definite.

7Thus here, D =

IA 0
0 II
0 II

 for identity matrix blocks I∗ of appropriate dimension nA or nI.
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Sketch of proof. We consider the Laplace equation in a component with domain Ω1 and a single local port
γ1,1; we associate to this port nγA,1,1 ≥ 1 active degrees of freedom (thus here n1

A = nγA,1,1 and n1
I = nγI,1,1).

We consider homogeneous Neumann boundary conditions on all non-port boundaries of Ω1. To v ∈ Rn1
I we

associate a function w =
∑n1

I

k=1 vkφ1,1,k+nγA,1,1
. In this case we obtain

vTB1
IIv = a1(w,w) = |w|2H1(Ω1) ≥ 0. (102)

Thus if vTB1
IIv = 0 we must have w = c for a constant c. But as the inactive port modes each has zero mean,

we must have w = c = 0, and thus due to linear independence of the port modes we conclude that vk = 0,
1 ≤ k ≤ n1

I , since the φ1,1,k+nγA,1,1
are non-zero.

Next we consider the calculation of the residual R′(µ) = F′(µ)− A′(µ)Û′A(µ). By inspection we note for
our two-component system that

R′(µ) =

RA(µ)
R1

I (µ)
R2

I (µ)

 =

FA(µ)
F1

I (µ1)
F2

I (µ2)

−
AAA(µ) A1

AI(µ1) A2
AI(µ2)

A1
IA(µ1) A1

II(µ1) 0
A2

IA(µ2) 0 A2
II(µ2)

UA(µ)
0
0


=

 FA(µ)− AAA(µ)UA(µ)
F1

I (µ1)− A1
IA(µ1)UA(µ)

F2
I (µ2)− A2

IA(µ2)UA(µ)

 =

 0
F1

I (µ1)− A1
IA(µ1)U1

A(µ)
F2

I (µ2)− A2
IA(µ2)U2

A(µ)

 . (103)

Note that the first nA entries in the residual vector are zero, and that in general we may obtain the local
residuals RiI(µ) by component-local evaluation

RiI(µ) = FiI(µi)− AiIA(µi)ÛiA(µ), (104)

where ÛiA(µ) is extracted from ÛA(µ) for the degrees of freedom associated with component i. An analogous
procedure holds for the computation of the eigenproblem residual Reig(µ).

5.2 Computational Costs and Savings
We first comment briefly on the computational cost associated with the port-reduced solution UA(µ): as the
active system (26) is only of size nA the online cost associated with formation of AAA(µ) scales as nA, and
the online cost associated with solution of (26) scales as (nA)`, where ` > 1 depends on the sparsity pattern
of AAA(µ) and the sparse solver invoked. Our goal is nA � nSC, which, if realized, will dramatically reduce
the online data footprint and online computational cost relative to the non-port-reduced alternative.

We next comment on the computational cost associated with the a posteriori error bound of Proposition 2.
There are three sources to the computational efficacy of the error bound procedure: the non-conforming na-
ture of the error bound approximation; the parameter-independent bound conditioner; and efficient residual
calculation.

First, the non-conforming approach requires only relatively small (size nA) and sparse system-level solves
(101); most of the computational work is performed on the component-matrix level in the local BiII-solves.

Second, as the Bi are independent of µi we may pre-compute and store these matrices in the component
library. To wit, we associate with each archetype component m a reference component matrix B̂m. For
each instantiated component i, 1 ≤ i ≤ I, we may then for given nΓ

A,p (on all global ports Γp associated
with component i) and RiI(µ) select the reference matrix Bi = B̂M(i) from the library and form the Schur
complement system (101). We emphasize that the non-conforming system preconditioner matrix B′ is never
explicitly formed.

Third, as demonstrated in (103), the residual R′(µ) can be assembled locally on the component-matrix
level, and does not require formation of the parameter-dependent matrices AiII(µ). This latter fact is crucial
in the context of the SCRBE — our computational vehicle for these port reduction procedures — for which
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Figure 2: An archetype component with four local ports and one parameter.

it is the storage and cost associated with formation of the AiII(µ) matrices that pose an online computational
challenge (in particular when nA � nI). The matrices BiII do not represent a computational issue as the
formation of these matrices can be performed offline.

Recall that on component i, niA and niI denote the number of total active and inactive degrees of freedom,
respectively. We may then summarize the computational cost associated with a posteriori error bound calcu-
lation for our system instantiated from a library of M archetypes as follows. First, the cost associated with
formation of (101) scales asM max1≤i≤I

(
(niI)

3 +niA(niI)
2
)

+I max1≤i≤I(n
i
A)2 (we use Cholesky factorization

for the component-local BiII-solves, and perform these solves only once for each archetype component); sec-
ond, the cost associated with the solve (101) scales as (nA)` + Imax1≤i≤I(n

i
I)

2 including back-substitution;
and third, the cost associated with residual calculation scales as I max1≤i≤I(n

i
An

i
I). We emphasize that in

contrast to earlier approaches [20] our a posteriori error bound computation does not invoke the underlying
(component-interior) FE discretization.

Additional computational economies may be realized if we consider the number of active modes nγA,i,j on
port γi,j as fixed for all instantiations of ports within the same port group. In this case we may pre-extract
the B̂mII , B̂mIA, and B̂mAI from B̂m, and perform an offline Cholesky factorization of the B̂mII ; we thus reduce the
online cost of formation of (101) toMmax1≤i≤In

i
A(niI)

2+I max1≤i≤I(n
i
A)2. In fact, we may even precompute

and associate to an archetype component the terms B̂mAI(B̂m)−1
II B̂mIA that make up the Schur complement in

(101), in which case formation of (101) is reduced to Imax1≤i≤I(n
i
A)2. Even further computational savings

may be realized for a fixed system topology subject to repeated solution for different parameter values, in
which case we may pre-compute and pre-factorize the left hand side of (101).

6 Numerical Results
In this section we present numerical results which illustrate the port approximation and reduction procedure
and which furthermore demonstrate the a posteriori error bounds with respect to rigor and sharpness. Our
goal here is to present the port approximation and error bound framework, and hence we consider a simple
two-dimensional Laplace model problem. Substantial computational savings are realized only for larger (e.g.
3D thermal or linear elasticity) problems which we shall consider in a future publication.

We consider the single archetype component illustrated in Figure 2. For this component we shall always
consider the same port space for all ports; however we shall consider both empirical modes and pure Legendre
modes as basis functions for the port space, and hence in fact we consider two different (one-component)
libraries.

The archetype component parameter µ̂1 is the “thermal conductivity” in the shaded region of the com-
ponent, Ω̂b

1 , relative to the conductivity in the unshaded region, Ω̂a
1; we consider µ̂1 ∈ D̂1 = [0.1, 10]. The

archetype component has four local ports; on the top port we have the option of enforcing a unity inward flux
through a Boolean “parameter” B ∈ {0, 1}; on any of the ports we can elect to impose Dirichlet conditions
(on the assembled system). On the non-port parts of the boundary we consider homogeneous Neumann
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Figure 3: The three first solutions for the two-component pairwise training procedure of Algorithm 2. The
system geometry is shown in gray and the shared port is indicated with a dashed line; note random boundary
conditions are assigned on the six non-shared ports.

boundary conditions. The archetype bilinear and linear forms are then given as

â1(w, v; µ̂1) =

∫
Ω̂a

1

∇w · ∇v + µ̂1

∫
Ω̂b

1

∇w · ∇v, (105)

and

f̂1(v; µ̂1) = B

∫
γ̂1,2

v, (106)

respectively, for w, v ∈ H1(Ω̂1).
For the underlying FE discretization we employ here standard spectral elements [22]; the component

domain Ω̂1 admits a natural decomposition into five rectangular elements, each of which is discretized with
an approximation space of polynomial order 15 in each spatial direction. This discretization yields a discrete
space Xh

1 (Ω̂1) of dimension 1216 and port spaces Ph1,j of dimension N γ
1,j = 16, 1 ≤ j ≤ 4.

For the bubble functions associated with the static condensation we shall consider the SCRBE method
as discussed in Section 2.3. As the focus in this paper is not the error (and bound) due to RB approximation
but rather the error (and bound) due to port reduction, each of the RB approximation spaces are constructed
such that the error associated with each RB bubble function is relatively small — smaller than 10−5 over
D̂1.8 However, for our compliance output error bound results below, we do nevertheless incorporate in our
port reduction output error bounds (Corollary 1) the additional contribution of the RB error bounds as
developed in Appendix A.

Empirical Port Modes. First, we consider pairwise training — Algorithm 2 — for the construction of
the empirical port modes used in our numerical results. In the case of our particular archetype component
we note that we may consider a single port group (of interconnectable local ports), and moreover, due to
the spatial symmetry of the component, we may consider only one pair of instantiated archetypes for the
generation of empirical modes.

We thus execute Algorithm 2 once for a single pair of components for Nsamples = 200 and η = 2 to obtain
the set Sgroup of cardinality 200 (note here Spair = Sgroup). In Figure 3 we show solution fields for this
component pair for the first three iterations of the algorithm; note that random but still somewhat smooth
(thanks to η = 2) boundary conditions are imposed on the six non-connected ports.

In Figure 4 (left) we show the solution at the interior global port associated with each of the three
(two-component) system solutions of Figure 3; we note the very smooth behavior compared to the assigned

8This number is calculated (in the offline stage) over a parameter training set Ξ ⊂ D̂1 of finite cardinality; hence for
parameters outside the training set, efficiently (online) computable a posteriori RB error bounds [25] are crucial to determine
the accuracy of the RB approximations.
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Figure 4: Left: the first three extracted port snapshots from Algorithm 2 (prior to subtraction of constant).
Right: the POD errors associated with the first eight PODmodes of the snapshot set obtained with Algorithm
2; recall that we subtract the mean from each snapshot prior to POD.

boundary conditions. This is not surprising as we expect that for our elliptic problem the solution associated
with a high wavenumber port boundary condition will decay exponentially fast away from the port and
into the component.9 This observation is promising for port reduction: we expect that for any instantiated
system the solution at any interior port is very smooth and admits a good approximate modal representation
(33) with only a few terms.

We perform the POD of the function set Sgroup and retain the 8 first POD modes to obtain the spaces
Y1,j of dimension y1,j = 9, 1 ≤ j ≤ 4; recall that in addition to the POD modes we include in the basis for
Y1,j the constant mode as the first basis function χ1,j,1. In Figure 4 (right) we show the POD error (over the
Nsamples = 200 snapshots) associated with the 8 POD modes (with constant subtracted from snapshots prior
to POD).10 For our numerical results below we shall invoke this empirical port space with y1,j = 9, 1 ≤ j ≤ 4,
empirical modes (including the constant); note that we may still consider any nΓ

A,p ≥ 1, 1 ≤ p ≤ nΓ. The
empirical modes are complemented with 7 orthogonal-complement “Legendre” modes (36) to complete the
discrete space. As an alternative discrete space, we shall also consider a pure Legendre port space consisting
of 16 Legendre modes, corresponding to y1,j = 0, 1 ≤ j ≤ 4. For all computations below the reference bound
conditioner component matrix is B̂1 = A1(µ̂1 = 1) (and hence the reference system parameter µref for an
I-component system is the I-tuple of ones).

When, on each global port p, we consider all NΓ
p = 16 port modes, either empirical, plus “Legendre”

complement or pure Legendre, we of course reduce the error due to port reduction to zero; hence for this
particular problem, we only realize computational savings if we can retain nΓ

A,p � 16 port modes for the
approximation. (In general, we also wish and indeed observe that the number of empirical modes required
(for fixed accuracy) is independent of N γ

m,j as N γ
m,j →∞.) For 2D problems (1D ports), there is relatively

little opportunity for computational savings, and hence we do not provide timings in the current paper.
However, for 3D problems (2D ports) and in particular for vector-valued fields (such as linear elasticity) we
often have N γ

m,j ∼ O(103) even for rather modest FE discretizations, in which case there is much opportunity
for meaningful port reduction.

9Indeed, this may readily be seen for a simple case: consider of a rectangular component domain Ω = [0, 1] × [0, 1] with
a single port on the entire side y = 0. Apply to this side a “Fourier” port boundary condition u(x, 0) = cos(kπx), apply
zero Dirichlet conditions on the side y = 1, and apply homogeneous Neumann boundary conditions on the sides x = 0 and
x = 1. In this case the analytical solution to the Laplace equation over the domain Ω is found via separation of variables as
u(x, y) =

(
cos(kπx)

)
sinh(kπ(1− y))/ sinh(kπ).

10The POD error for n POD modes is equal to the average L2(Γp∗ ) projection error (onto the n-dimensional POD space)
over the Nsamples snapshots and may be computed as the (normalized) square root of the sum of the remaining Nsamples − n
eigenvalues associated with the POD eigenproblem.

24



q = 1

u = 0

Ω1 Ω3Ω2

Ω5 Ω6Ω4
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Figure 5: Example 1. System with I = 9 component instantiations and nΓ = 23 global ports. Unity
heat flux (Neumann) on top left port; u = 0 Dirichlet condition on bottom right port; homogeneous
Neumann conditions on other ports and boundaries. Solution plotted for particular system parameter
µ = (0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 0.1, 0.2).

Example 1. As a first system, we consider the 3 × 3 layout of component instantiations illustrated in
Figure 5; the system thus has I = 9 components and nine independent parameters. As indicated, we impose
a homogeneous Dirichlet condition on the bottom right port, a unity inward “heat” flux q = 1 on the top left
port, and homogeneous Neumann boundary conditions on all other boundary ports. The system thus has
nΓ = 23 global ports in total, of which 12 are in the interior and serve to connect two neighboring components.
The size of the associated non-port-reduced static condensation system (22) is nSC = NΓ

p n
Γ = 368. The

compliance output for this system is the integrated “temperature” s(µ) =
∫
γ7,2

u(µ) on the heated (top left)
port. Below we shall consider the relative compliance output error and relative a posteriori output error
bound due to port reduction as well as SCRBE bubble function approximation.

We first consider a particular value µ = (0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 0.1, 0.2) for the system parameter,
and we consider the y1,j = 9 empirical port space as constructed in the previous subsection for the port
approximation. In Figure 6 (left) we show the relative output error (blue), (sh(µ) − s̃A(µ))/s̃A(µ), and
relative output error bound (red) (∆u(µ))2/s̃A(µ) (modified to account for non-zero RB errors as discussed
in Appendix A), as functions of the number of active modes on each global port (the same number on all
ports), nΓ

A,p: we observe very rapid convergence, and equally importantly the error bound also converges
exponentially fast — the output error bound effectivity11 is O(100). After eight modes there is not much
room for further error decay due to RB bubble function approximation. The size of the port-reduced static
condensation system (26) is nA = nΓnΓ

A,p = 23nΓ
A,p (recall we choose the same number of active port modes

for all ports).
Next, in Figure 6 (right) we show the error in the eigenvalue approximation, λmin(µ)− λmin,LB(µ). Note

that for this example, we confirm a posteriori that the eigenvalue proximity assumption (80) is satisfied for
nΓ

A,p ≥ 2. We provide further comment on this result below.
We also consider the alternative Legendre eigenmode (y1,j = 0) port space. The output errors (green)

and output error bounds (light blue) as functions of the number of active port modes on each port are
shown in Figure 7 (superposed on the results of Figure 6). We note that the Legendre modes also exhibit
rapid convergence thanks to the relatively smooth solutions at the ports, although the convergence is not
as rapid as for the empirical modes. Indeed, in this case it is likely that the empirical modes will be quite

11We define the effectivity to be the error bound divided by the true error.

25



1 2 3 4 5 6 7

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

n
Γ

A,p

 

 

relative error bound
relative error

1 2 3 4 5 6 7
10

−5

10
−4

10
−3

10
−2

10
−1

n
Γ

A,p

 

 

λmin(µ) − λmin,LB(µ)

Figure 6: Example 1. Left: Relative output error and relative output error bound based on the empir-
ical (y1,j = 9) port space as functions of nΓ

A,p, the number of empirical port modes. Right: Eigenvalue
approximation error.
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Figure 7: Example 1. Relative output error and relative output error bound for empirical (yi,j = 9) and
Legendre (yi,j = 0) port modes.
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Figure 8: Example 1. Left: Relative output errors and relative output error bounds over a parameter test
set Ξtest for the case nΓ

A,p = 3. Right: Output error bound effectivities.
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Figure 9: Example 1. Eigenvalues λmin(µ) (red) and bounds λmin,LB(µ) (blue) over a parameter test set
Ξtest for the case nΓ

A,p = 3.

similar to the Legendre modes. This is in some sense confirmation that the empirical modes are “good,” but
also an indication that empirical modes are not overly needed in this two-dimensional case. However, for
three-dimensional problems (with two-dimensional ports) we expect that the pure (even singular) eigenmode
convergence will deteriorate and that empirical modes will be crucial.

Finally, we again consider the empirical modes and fix nΓ
A,p = 3, 1 ≤ p ≤ 23. We consider a test set

Ξtest ⊂ D of 30 system parameter values: the first parameter value is µ = µref = (1, 1, 1, 1, 1, 1, 1, 1, 1); the
remaining 29 parameter values are random. For each parameter value we compute the relative output error
and relative output error bound as shown in Figure 8 (left); in Figure 8 (right) we show the associated bound
effectivities. We note that the bounds are very sharp — we typically obtain O(10) effectivities.

Note that for all cases considered here we obtain a rather small output error bound with a modest number
of active port modes, and furthermore the output error bounds are rather sharp. The former is a reflection
of the good approximation properties of the empirical port modes. The latter is a reflection of the good
non-conforming error approximation, but also of an effective bound conditioner, which is implicated by the
relatively large (order unity) smallest eigenvalues and sharp eigenvalue lower bounds: in Figure 9 we show
the eigenvalues λmin(µ) (red) and the eigenvalue lower bounds λmin,LB(µ) (blue) over the test parameter set
Ξtest. In this case the eigenvalue proximity assumption (80) holds for each of the test parameters. We can
also flush out the role of the non-conforming approximation. In particular, the first test parameter is special
as in this case E′(µ) = E′B(µ) since B′ = A′(µref = µ) (the bound conditioner is perfect); we further note
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Figure 10: Example 2. System with I = 7 component instantiations and nΓ = 21 global ports. Unity
heat flux (Neumann) on top left port; u = 0 Dirichlet condition on bottom left port; homogeneous
Neumann conditions on other ports and boundaries. Solution plotted for particular system parameter
µ = (0.1, 0.2, 0.4, 3.2, 6.4, 0.1, 0.2).

from (76) and (78) that λmin(µref) = λmin,LB(µref) = 1. Hence for this first test parameter our output error
bound is in fact the bound of Lemma 1. We observe that the associated bound effectivity is rather close to
unity (more precisely 3.218) and hence the non-conforming approximation is clearly very accurate.

Example 2. As our second system, we consider the “horseshoe” layout of component instantiations illus-
trated in Figure 10; the system has I = 7 components and seven independent parameters. As indicated, we
impose a homogeneous Dirichlet condition on the bottom left port, a unity inward “heat” flux q = 1 on the
top left port, and homogeneous Neumann boundary conditions on all other boundary ports. The system
thus has nΓ = 21 global ports in total, of which 6 are in the interior and hence connect two neighboring
components. The size of the associated non-port-reduced static condensation system (22) is nSC = 336. The
compliance output for this system is the integrated “temperature” s(µ) =

∫
γ5,2

u on the heated (top left)
port.

We again first consider a particular value µ = (0.1, 0.2, 0.4, 3.2, 6.4, 0.1, 0.2) for the system parameter.
In Figure 11 (left) we show for this parameter value the relative output error and relative output error
bounds as a function of the number of port modes for both the empirical port space (y1,j = 9) and the pure
Legendre port space (y1,j = 0). The results are comparable to the results for Example 1 in terms of both
error decay and error bound sharpness. Next, in Figure 11 (right) we show the eigenvalue approximation
error λmin(µ)−λmin,LB(µ) for the empirical port space; we confirm that the eigenvalue proximity assumtion
(80) holds for nΓ

A,p ≥ 2.
Example 1 and Example 2 collectively also highlight another key aspect of both the SCRBE framework

in [15] and of the port approximation framework introduced here: the SCRBE and associated port approxi-
mation data is constructed “offline” and is associated with the archetype library components. “Online,” we
may then rapidly compute port-reduced SCRBE approximations and associated a posteriori error bounds
for any topological configuration of the library components and for any assigned system parameter values.
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Figure 11: Example 2. Left: Relative output error and relative error bounds as functions of nΓ
A,p for the

empirical (y1,j = 9) and for the Legendre (y1,j = 0) port modes. Right: Eigenvalue approximation error for
the empirical port modes.

7 Concluding Remarks
We have introduced a general port-reduction approximation and a posteriori error estimation framework for
component-based static condensation. Empirical modes tailored to component connectivity and parameter
dependence through pairwise training provide rapidly convergent expansions for the solution associated
with the ports; truncation of these expansions lead in turn to a Schur complement system of reduced size.
Our numerical results for a Laplace model problem demonstrate good approximation properties for these
truncated empirical port expansions.

The error in the port-reduced static condensation is rigorously bounded a posteriori under a plausible
but in practice not verified eigenvalue proximity assumption. As we obtain an a posteriori error bound
through (approximate) solution of the error-residual equation — rather than direct residual evaluation —
our error bound is rather sharp. The computational tractability of our a posteriori error bound is achieved
through two relaxations of the error-residual equation: a non-conforming error approximation, and a bound
conditioner.

The port approximation and a posteriori error bound framework introduced here is particularly relevant
within the SCRBE [15] method for parameter-dependent component-based systems, in which reduced basis
[25] approximations are considered for the component-local bubble functions. In this context there is a natural
offline-online separation of the computational effort, to which the port reduction procedures presented here
are well-suited.

We note that the static condensation framework is in general not applicable to non-linear partial differ-
ential equations, and thus the SCRBE method does not directly extend to this class of problems (although
isolated non-linearities might be treated through a FE-SCRBE hybrid approach [1]). There are, however,
many relevant applications of linear partial differential equations that we may consider; future work includes
application to acoustics [14, 16] as well as three-dimensional linear elasticity for strength assessment.
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A Contributions from Non-Zero RB Errors
In practice, we employ the SCRBE for bubble function approximation and hence the assumption in Section 4
of exact bubble functions does not hold. We here make the necessary modifications to our energy-norm error
bound in Proposition 2 such that we also bound the contribution to the error induced by RB approximation.
In particular, we must make two modifications: a modified functional (70) and a modified eigenvalue lower
bound λmin,LB(µ). Both of these modifications are required because in the presence of RB approximation
we do not have access to the exact quantities A′(µ) and F′(µ).

Recall that with the SCRBE our active Schur complement system is an RB approximation of (26) such
that the solution Ũ′A(µ) satisfies

ÃAA(µ)Ũ′A(µ) = F̃A(µ), (107)

and we thus redefine the error vector in this appendix as

E(µ) ≡ U(µ)− ˆ̃UA(µ) ∈ RnSC , (108)

where as in (42) the ˆ indicates extension by zeros to obtain the correct vector dimension. We must also
redefine the (non-conforming) residual as

R′(µ) ≡ F′(µ)− A′(µ) ˆ̃U′A(µ); (109)

note the error-residual relation A′(µ)E′(µ) = R′(µ) still holds.
As we do not have access to F′(µ) and A′(µ) we introduce a residual approximation based on Ã′(µ) and

F̃′(µ) as

R̃′(µ) ≡ F̃′(µ)− Ã′(µ) ˆ̃U′A(µ) = R′(µ) + δR′(µ), (110)

where

δR′(µ) ≡ F̃′(µ)− F′(µ) +
(
A′(µ)− Ã′(µ)

) ˆ̃U′A(µ); (111)

we also introduce a vector σ1(µ) of RB error bounds for the individual entries in δR′(µ) such that

σ1,i(µ) ≥ |δRi(µ)|; (112)

the details of this RB bubble error bound may be found in [25].
With the residual approximation (110) we now modify the functional (70) as

J̃ ′B(v;µ) =
λmin(µ)

2
vTB′v − vTR̃′(µ); (113)

from the corresponding Euler equation, the minimizer is given as

Ẽ′B(µ) =
1

λmin(µ)
(B′)−1R̃′(µ). (114)

For the minimum value we obtain

J̃ ′B(Ẽ′(µ);µ) = − R̃′(µ)T(B′)−1R̃′(µ)

2λmin(µ)

= −R′(µ)T(B′)−1R′(µ)

2λmin(µ)
− R̃′(µ)T(B′)−1δR′(µ)

λmin(µ)
+
δR′(µ)T(B′)−1δR′(µ)

2λmin(µ)
, (115)
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which yields

−2J ′B(E′B(µ);µ) =
R̃′(µ)T(B′)−1R̃′(µ)

λmin(µ)
− 2

R̃′(µ)T(B′)−1δR′(µ)

λmin(µ)
+
δR′(µ)T(B′)−1δR′(µ)

λmin(µ)
. (116)

Recall from Lemma 2 that ‖E(µ)‖2A(µ) ≤ −2J ′B(E′B(µ);µ) and thus

‖E(µ)‖2A(µ) ≤
R̃′(µ)T(B′)−1R̃′(µ)

λmin(µ)
− 2

R̃′(µ)T(B′)−1δR′(µ)

λmin(µ)
+
δR′(µ)T(B′)−1δR′(µ)

λmin(µ)
. (117)

We now introduce a constant C > 0 such that

δR′(µ)T(B′)−1δR′(µ) ≤ C‖δR′(µ)‖22, (118)

where ‖ · ‖2 refers to the Euclidean norm. Upon application of the RB bounds (112) we obtain

‖E(µ)‖2A(µ) ≤
R̃′(µ)T(B′)−1R̃′(µ)

λmin(µ)
+ 2

σ1(µ)T|(B′)−1R̃′(µ)|
λmin(µ)

+ C
‖σ1(µ)‖22
λmin(µ)

. (119)

We next consider the modification to the eigenvalue lower bound λmin,LB(µ) ≤ λmin(µ).
In the presence of RB approximation our active eigenproblem (76) (for the smallest eigenvalue and

associated eigenvector) becomes

ÃAA(µ)ṽA,1(µ) = λ̃A,min(µ)BAAṽA,1(µ), ṽT
A,1BAAṽA,1 = 1. (120)

We redefine the eigenproblem residual (78) accordingly to read

R′eig(µ) = Ã′(µ)ˆ̃vA,1(µ)− λ̃A,min(µ)B′ ˆ̃vA,1(µ)︸ ︷︷ ︸
≡R̃′eig(µ)

+ δA′(µ)ˆ̃vA,1(µ)︸ ︷︷ ︸
≡δReig(µ)

(121)

(where as in (77) theˆ indicates extension by zeros to obtain the correct vector dimension). To account for
RB errors in the eigenproblem residual perturbation term δReig(µ) we introduce a vector σ2(µ) such that

σ2,i(µ) ≥ |δReig,i(µ)|. (122)

We note that Proposition 1 holds for “any” candidate eigenpair and associated eigenproblem residual so long
as the candidate eigenvector is B′-normalized and the eigenvalue proximity assumption (80) holds. We may
thus (under the proximity assumption) write

λmin ≥ λ̃A,min −
√

(R′eig)T(B′)−1R′eig (123)

= λ̃A,min −
√

(R̃′eig)T(B′)−1R̃′eig + 2(δR′eig)T(B′)−1R̃′eig + (δR′eig)T(B′)−1δR′eig, (124)

(for simplicity we have omitted all µ dependence). We now suppose that the constant C introduced in (118)
is chosen large enough that

δR′eig(µ)T(B′)−1δR′eig(µ) ≤ C‖δR′eig(µ)‖22. (125)

From (124) and (122) we then obtain

λmin,LB(µ) = λ̃A,min(µ)−
√

(R̃′eig)T(B′)−1R̃′eig + 2σ2(µ)T|(B′)−1R̃′eig|+ C‖σ2(µ)‖22 (126)

which serves as our modified eigenvalue lower bound λmin,LB(µ) ≤ λmin(µ).
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Now, from (119) and (126), we obtain the Schur energy bound

‖E(µ)‖A(µ) ≤ ∆U
A(µ)(µ;C) ≡

√
R̃′(µ)T(B′)−1R̃′(µ) + 2σ1(µ)T(B′)−1R̃′(µ) + C‖σ1(µ)‖22

λmin,LB(µ)
. (127)

It thus remains to bound the energy ‖eh(µ)‖µ = ‖uh(µ)− ũA(µ)‖µ in terms of ‖E(µ)‖A(µ). To this end, we
note that we may separate the S and non-S parts of eh(µ) as

eh(µ) =

I∑
i=1

(
bf ;h
i (µ)− b̃fi (µ)

)
+

nΓ∑
p=1

NΓ
p∑

k=1

(
Up,k(µ)Φp,k(µ)− ŨA,p,k(µ)Φ̃p,k(µ)

)
(128)

=

I∑
i=1

(
bf ;h
i (µ)− b̃fi (µ)

)
+

nΓ∑
p=1

NΓ
p∑

k=1

(
Ep,k(µ)Φp,k(µ) + ŨA,p,k(µ)

(
Φp,k(µ)− Φ̃p,k(µ)

))
(129)

= ∆bf (µ) + ∆ΦA(µ) +

nΓ∑
p=1

NΓ
p∑

k=1

Ep,k(µ)Φp,k(µ)︸ ︷︷ ︸
∈S

, (130)

where ∆bf (µ) and ∆ΦA(µ) are given as

∆bf (µ) ≡
I∑
i=1

(
bf ;h
i (µ)− b̃fi (µ)

)
, ∆ΦA(µ) ≡

nΓ∑
p=1

nΓ
A,p∑
k=1

ŨA,p,k(µ)
(
Φp,k(µ)− Φ̃p,k(µ)

)
. (131)

Thanks to the relation (41) we thus obtain

a
(
eh(µ), eh(µ);µ

)
= ‖E(µ)‖2A(µ) + ‖∆bf (µ) + ∆ΦA(µ)‖2

+ 2

nΓ∑
p=1

NΓ
p∑

k=1

Ep,k(µ)a
(
Φp,k(µ),∆bf (µ) + ∆ΦA(µ);µ

)
; (132)

and furthermore, thanks to (10) and (11), and the fact that (∆bf (µ) + ∆ΦA(µ))|Ωi ∈ BhM(i);0, we obtain

a(Φp,k(µ),∆bf (µ) + ∆ΦA(µ);µ) = 0, 1 ≤ k ≤ NΓ
p , 1 ≤ p ≤ nΓ. (133)

As a result

a
(
eh(µ), eh(µ);µ

)
≤ ‖E(µ)‖2A(µ) + σ3(µ)2, (134)

where

σ3(µ) ≥ ‖∆bf (µ) + ∆ΦA(µ)‖µ (135)

is readily obtained from standard RB bubble function error bounds.
With ∆U

A(µ)(µ;C) in (127) we may now redefine our error bound in Proposition 2 as

∆u(µ) ≡
√(

∆U
A(µ)(µ;C)

)2
+ σ3(µ)2 (136)

for which

‖uh(µ)− ũA(µ)‖µ ≤ ∆u(µ). (137)
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It remains to bound the constant C.
We note that as σ1,i,σ2,i → 0, we may neglect second-order terms in (127) to obtain an asymptotic

Schur energy bound ∆U
A(µ),asy(µ) ∼ ∆U

A(µ)(µ;C) as

∆U
A(µ),asy(µ) ≡

√√√√ R̃′(µ)T(B′)−1R̃′(µ) + 2σ1(µ)T(B′)−1R̃′(µ)

λ̃A,min(µ)−
√

(R̃′eig)T(B′)−1R̃′eig + 2σ2(µ)T(B′)−1R̃′eig

; (138)

furthermore, as σ3 → 0, we may neglect the σ3(µ)2-term in (134) to obtain an asymptotic field energy bound
∆u

asy(µ) ∼ ∆u(µ) as

∆u
asy(µ) ≡ ∆U

A(µ),asy(µ). (139)

We now note that C no longer appears. Alternatively, we may compute the smallest eigenvalue λB
′

min of
B′ — efficiently realized through an inverse power iteration or inverse Lanczos procedure, in which case we
only require a few additional non-conforming B′-solves — and choose C = 1/λB

′

min;
12 or we may compute a

lower bound λB
′

min,LB ≤ λB
′

min — per the procedures in Section 4.4 through consideration of the generalized
eigenproblem with B′ as the left-hand-side matrix and the identity as the right-hand-side matrix — and
choose C = 1/λB

′

min,LB. In actual (computational) practice we thus have two options: we may either realize
the rigorous (under the eigenvalue proximity assumption (80)) bound ∆u(µ) by computing λB

′

min (or λB
′

min,LB)
or we may assume that our RB error bounds are sufficiently small that the asymptotically rigorous bound
∆u

asy(µ) is acceptable. Note that in either case we must ensure that λmin,LB(µ) is positive or of course no
bound may be calculated: the RB errors must be sufficiently small to preserve stability.

Finally, we note that armed with this new bound (in the case of ∆u(µ)) or estimator (in the case of
∆u

asy(µ)), Corollary 1 for compliance outputs extends directly to the case of non-zero RB errors thanks to
Galerkin orthogonality of eh(µ) with respect to S̃A ⊂ Xh(Ω). Analogous to (50) we thus obtain

|sh(µ)− s̃A(µ)| = a(eh(µ), eh(µ);µ) ≤
(
∆u(µ)

)2
; (140)

and

|sh(µ)− s̃A(µ)| .
(
∆u

asy(µ)
)2

+O(σ2
1,i(µ) + σ2

2,i + σ2
3), (141)

respectively. In the results of Section 6 we apply (140) for C = 1/λB
′

min,LB.
We do not in the current paper consider error contribution from RB bubble approximation to the non-

compliance output bounds given in (96).
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