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We present a space-time certified reduced basis method for Burgers’ equation over the
spatial interval (0, 1) and the temporal interval (0, T ] parametrized with respect to the

Peclet number. We first introduce a Petrov-Galerkin space-time finite element discretiza-
tion, which enjoys a favorable inf-sup constant that decreases slowly with Peclet number
and final time T . We then consider an hp interpolation-based space-time reduced ba-
sis approximation and associated Brezzi-Rappaz-Raviart a posteriori error bounds. We
detail computational procedures that permit offline-online decomposition for the three

key ingredients of the error bounds: the dual norm of the residual, a lower bound for

the inf-sup constant, and the space-time Sobolev embedding constant. Numerical results
demonstrate that our space-time formulation provides improved stability constants com-

pared to classical L2-error estimates; the error bounds remain sharp over a wide range of
Peclet numbers and long integration times T , unlike the exponentially growing estimate
of the classical formulation for high Peclet number cases.
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1. Introduction

In this paper, we develop a certified reduced basis method for the parametrized un-

steady Burgers’ equation. Classically, parametrized parabolic partially differential

equations (PDEs) are treated by collecting solution snapshots in the parameter-

time space and by constructing the reduced basis space using the proper orthogonal

decomposition of the snapshots.4,5,9,7 Such a formulation enables rapid approxima-

tion of parametrized PDEs by an offline-online computational decomposition, and

the reduced basis solution converges exponentially to the truth finite element for

sufficiently regular problems. However, the quality of the associated L2-in-time a

posteriori error bound relies on the coercivity of the spatial operator. If the spatial

operator is non-coercive, the formulation suffers from exponential temporal instabil-

ity, producing error bounds that grow exponentially in time, rendering the bounds

meaningless for long-time integration. In particular, limited applicability of the clas-

sical a posteriori error bounding technique to unsteady Burgers’ and Boussinesq

equations are documented by Nguyen et al.9 and Knezevic et al.7, respectively.

In order to overcome the instability of the classical L2-in-time error-bound

formulation, we follow the space-time approach recently devised by Urban and

Patera,13,12; we consider a space-time variational and corresponding finite element

formulation that produces a favorable inf-sup stability constant and then incorpo-

rate the space-time truth within a space-time reduced basis approach. The approach

is inspired by the recent work on the space-time Petrov-Galerkin formulation by

Schwab and Stevenson11.

The main contribution of this work is twofold. First is the application of the

space-time finite-element and reduced-basis approach to the unsteady Burgers’

equation with quadratic nonlinearity. The formulation results in Crank-Nicolson-like

time-marching procedure but benefits from full space-time variational interpretation

and favorable inf-sup stability constant. The second contribution is the application

of the Brezzi-Rappaz-Raviart theory to the space-time formulation to construct an

error bound for the quadratic nonlinearity. Particular attention is given to the de-

velopment of an efficient computation procedure that permits offline-online decom-

position for the three key ingredients of the theory: the dual norm of the residual;

an inf-sup lower bound, and the Sobolev embedding constant.

This paper is organized as follows. Section 2 reviews the spaces and forms used

throughout this paper and introduces a space-time Petrov-Galerkin variational and

finite element formulation of the Burgers’ equation. Section 3 first presents an hp

interpolation-based reduced basis approximation and then an associated a posteri-

ori error estimate based on the Brezzi-Rappaz-Raviart theory. The section details

the calculation of the dual-norm of the residual, an inf-sup lower bound, and the

space-time Sobolev embedding constant, paying particular attention to the offline-

online computational decomposition. Finally, Section 4 considers two examples of

Burgers’ problems and demonstrates that the new space-time error bound provides

a meaningful error estimate even for noncoercive cases for which the classical esti-
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mate fails. We also demonstrate that the hp interpolation method provides certified

solutions over a wide range of parameters using a reasonable number of points.

Although we consider single-parameter, one-dimensional Burgers’ equation in order

to simplify the presentation and facilitate numerical tests, the method extends to

multi-dimensional incompressible Navier-Stokes equations and several parameters

as will be considered in future work.

2. Truth Solution

2.1. Governing Equation

This work considers a parametrized, unsteady, one-dimensional Burgers’ equation

of the form

∂ũ

∂t̃
+

∂

∂x

(
1

2
ũ2

)
− 1

Pe

∂2ũ

∂x2
= g(x), x ∈ Ω, t̃ ∈ Ĩ , (2.1)

where ũ is the state variable, Pe is the Peclet number, g is the forcing term,

Ω ≡ (0, 1) is the unit one-dimensional domain, and I ≡ (0, T̃ ] is the temporal in-

terval with T̃ denoting the final time of interest. We impose homogeneous Dirichlet

boundary conditions,

ũ(0, t) = ũ(1, t) = 0, ∀t ∈ I,

and set the initial condition to

ũ(x, 0) = 0, ∀x ∈ Ω.

Setting t = t̃/Pe and u = Pe · ũ, Eq. (2.1) simplifies to

∂u

∂t
+

∂

∂x

(
1

2
u2

)
− ∂2u

∂x2
= Pe2 · g(x), x ∈ Ω, t ∈ I. (2.2)

Note that the transformation makes the left hand side of the equation independent of

the parameter Pe. The homogeneous boundary conditions and the initial condition

are unaltered by the transformation. Moreover, note that T = O(1) represents a

long time integration from t = 0 to T̃ = O(Pe) based on the convection time scale.

From hereon, we will exclusively work with this transformed form of the Burgers’

equation, Eq. (2.2).

2.2. Spaces and Forms

Let us now define a few spaces and forms that are used throughout this paper.10

The standard L2(D) Hilbert space over an arbitrary domain D is equipped with an

inner product (ψ, φ)L2(D) ≡
∫

Ω
ψφdx and a norm ‖ψ‖L2(D) ≡

√
(ψ,ψ)L2(D). The

H1(D) space is equipped with an inner product (ψ, φ)H1(D) ≡
∫

Ω
∇ψ ·∇φdx and an

inner product ‖ψ‖H1(D) ≡
√

(ψ,ψ)H1(D). We also introduce a space of trace-free

functions H1
0 (D) ≡ {v ∈ H1(D) : v|∂D = 0} equipped with the same inner product

and norm as H1(D). We define Gelfand triple (V,H, V ′) and associated duality
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paring 〈·, ·〉V ′×V where, in our context, V ≡ H1
0 (Ω) and H ≡ L2(Ω). Here the norm

of ` ∈ V ′ is defined by ‖`‖V ′ ≡
〈`,φ〉V ′×V
‖φ‖V , which is identical to ‖R`‖V where the

Riesz operator R : V ′ → V satisfies (R`, φ)V = 〈`, φ〉V ′×V , ∀` ∈ V ′, ∀φ ∈ V .

Let us now define space-time spaces, which play key roles in our space-time

formulation. The space L2(I;V ) is equipped with an inner product

(w, v)L2(I;V ) ≡
∫
I

(w(t), v(t))V dt

and a norm ‖w‖L2(I;V ) ≡
√

(w,w)L2(I;V ). The dual space L2(I;V ′) is equipped

with an inner product

(w, v)L2(I;V ′) ≡
∫
I

(Rw(t), Rv(t))V dt

and a norm ‖w‖L2(I;V ′) ≡
√

(w,w)L2(I;V ′), where R : V ′ → V is the aforemen-

tioned Riesz operator. The space H1
(0)(I;V ′) is equipped with an inner product

(w, v)H1(I;V ′) ≡ (ẇ, v̇)L2(I;V ′) and a norm ‖w‖H1(I;V ′) ≡
√

(w,w)H1(I;V ′) and con-

sists of functions {w : ‖w‖H1(I;V ′) < ∞, w(0) = 0}; here ẇ ≡ ∂w
∂t denotes the

temporal derivative of w. The trial space for our space-time Burgers’ formulation is

X ≡ L2(I;V ) ∩H1
(0)(I;V ′)

equipped with an inner product

(w, v)X ≡ (w, v)H1(I;V ′) + (w, v)L2(I;V )

and a norm ‖w‖X ≡
√

(w,w)X . Note that ‖w‖2X = ‖w‖2H1(I;V ′) + ‖w‖2L2(I;V ).
a The

test space is Y ≡ L2(I;V ).

Having defined spaces, we are ready to express the governing equation, Eq. (2.2),

in a weak form. We may seek a solution to the Burgers’ equation expressed in a

semi-weak form: find ψ ∈ C0
(0)(I;L2(Ω)) ∩ L2(I;V ) such that10

(ψ̇(t), φ)H + a(ψ(t), φ) + b(ψ(t), ψ(t), φ) = f(φ; Pe), ∀φ ∈ V, ∀t ∈ I,

where Cp is the space of functions with continuous p-th derivative, and Cp(0) is the

subspace of Cp that consists of functions satisfying the zero initial condition. The

bilinear form a(·, ·), the trilinear form b(·, ·, ·), and the parametrized linear form

f(·; Pe) are given by

a(ψ, φ) ≡
∫

Ω

∂ψ

∂x

∂φ

∂x
dx, ∀ψ, φ ∈ V

b(ψ, ζ, φ) ≡ −1

2

∫
Ω

ψζ
dφ

dx
dx, ∀ψ, ζ, φ ∈ V

f(φ; Pe) ≡ Pe2 · 〈g, φ〉V ′×V ∀φ ∈ V.

aThe X -norm used in this work is slightly weaker than that used in Urban and Patera13,12 that

includes the terminal condition, ‖w(T )‖2H .
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Note that the trilinear form b(·, ·, ·) is symmetric in the first two arguments. By

choosing µ = Pe2, we can express the linear form as a linear function of the param-

eter µ, i.e.

f(φ;µ) ≡ µ · 〈g, φ〉V ′×V .

Thus, our linear form permits so-called affine decomposition with respect to the

parameter µ. (We note that the certified reduced-basis formulation presented in

this work readily treats any f that is affine in a function of parameter µ, though

the work is presented for the simple single-parameter case above.)

More generally, we can seek the solution to the Burgers’ equation in the space-

time space X . Namely, a space-time weak statement reads: Find u ∈ X such that

G(u, v;µ) = 0, ∀v ∈ Y, (2.3)

where the semilinear form G( · , · ;µ) is given by

G(w, v;µ) =M(ẇ, v) +A(w, v) + B(w,w, v)−F(v;µ), ∀w ∈ X , ∀v ∈ Y, (2.4)

with the space-time forms

M(ẇ, v) ≡
∫
I

〈ẇ(t), v(t)〉V ′×V dt, ∀w ∈ X ,∀v ∈ Y,

A(w, v) ≡
∫
I

a(w(t), v(t))dt, ∀w ∈ X ,∀v ∈ Y,

B(w, z, v) ≡
∫
I

b(w(t), z(t), v(t))dt, ∀w ∈ X ,∀v ∈ Y,

F(v;µ) ≡ µ ·
∫
I

〈g, v(t)〉V ′×V dt, ∀v ∈ Y.

Note that the trilinear form B( · , · , · ) inherits the symmetry with respect to the

first two arguments. Furthermore, we will denote the Fréchet derivative bilinear

form associated with G by ∂G, i.e.

∂G(w, z, v) =M(ẇ, v) +A(w, v) + 2B(w, z, v), ∀w, z ∈ X , ∀v ∈ Y,

where z ∈ X is the linearization point.

Let us note a few important properties of our unsteady Burgers’ problem. First,

our space-time linear form F permits trivial affine-decomposition, i.e. F(v;µ) =

µF0(v) where F0 =
∫
I
〈g, v(t)〉V ′×V dt. Second, our trilinear form is bounded by

|B(w, z, v)| ≡
∣∣∣∣∫
I

∫
Ω

−1

2
wz

∂v

∂x
dxdt

∣∣∣∣ ≤ 1

2
ρ2‖w‖X ‖z‖X ‖v‖Y , ∀w, z ∈ X , ∀v ∈ Y,

where ρ is the L4-X embedding constant

ρ ≡ sup
w∈X

‖w‖L4(I;L4(Ω))

‖w‖X
.
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Recall that the Lp norm is defined as ‖w‖Lp(I;Lp(Ω)) ≡
(∫
I

∫
Ω
wpdxdt

)1/p
. This sec-

ond property plays an important role in applying the Brezzi-Rappaz-Raviart the-

ory to construct an a posteriori error bound. Although we consider only Burgers’

equation in this paper, we can readily extend the formulation to any quadratically

nonlinear equation which satisfies suitable hypotheses on the forms, as implicitly

verified above for Burgers’. (We can also consider non-time-invariant operators sub-

ject to the usual affine restrictions.)

2.3. Petrov-Galerkin Finite Element Approximation

To find a discrete approximation to the true solution u ∈ X , let us introduce finite

dimensional subspaces Xδ ⊂ X and Yδ ⊂ Y. The notation used in this section closely

follows that of Urban and Patera.12 We denote the triangulations of the temporal

interval and spatial domain by T time
∆t and T space

h , respectively. In particular, T time
∆t

consists of non-overlapping intervals Ik = (tk−1, tk], k = 1, . . . ,K, with t0 = 0 and

tK = T ; here maxk(|Ik|)/T ≤ ∆t and the family {T∆t}∆t∈(0,1] is assumed to be

quasi-uniform. Similarly, T space
h consists of N +1 elements with maxκ∈Th diam(κ) ≤

h, belonging to a quasi-uniform family of meshes. Let us introduce a temporal trial

space S∆t, a temporal test space Q∆t, and a spatial approximation space Vh defined

by

S∆t ≡ {v ∈ H1
(0)(I) : v|Ik ∈ P1(Ik), k = 1, . . . ,K},

Q∆t ≡ {v ∈ L2(I) : v|Ik ∈ P0(Ik), k = 1, . . . ,K},
Vh ≡ {v ∈ H1

0 (Ω) : v|κ ∈ P1(κ), κ ∈ Th}.

Our space-time finite element trial and test spaces are given by

Xδ = S∆t ⊗ Vh and Yδ = Q∆t ⊗ Vh,

respectively, where δ = (∆t, h) is the characteristic scale of our space-time dis-

cretization. Furthermore, we equip the space Xδ with a mesh-dependent inner prod-

uct

(w, v)Xδ ≡ (w, v)H1(I;V ′) + (w̄, v̄)L2(I;V ).

Here w̄ ∈ Yδ is a temporally piecewise constant function whose value over Ik is the

temporal average of the function w ∈ Xδ, i.e.

w̄k ≡ 1

∆tk

∫
Ik
wdt, k = 1, . . . ,K.

We also introduce an associated induced norm‖w‖2Xδ = (w,w)Xδ . The choice of this

mesh-dependent norm is motivated by the fact that, with a slight modification to

‖w‖2Xδ + ‖w(T )‖2H , the norm provides the unity inf-sup and continuity constant

for the Petrov-Galerkin finite element discretization of the heat equation.13,12 The

space Yδ is equipped with the same inner product and the norm as the space Y.
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Our discrete approximation to Burgers’ equation, Eq. (2.3), is given by: Find

uδ ∈ Xδ such that

G(uδ, vδ;µ) = 0, ∀vδ ∈ Yδ. (2.5)

The well-posedness of the space-time finite element formulation will be verified a

posteriori using the Brezzi-Rappaz-Raviart theory. The temporal integration re-

quired for the evaluation of the source term F is performed using the trapezoidal

rule.

2.4. Algebraic Forms and Time-Marching Interpretation

In this subsection, we construct algebraic forms of temporal, spatial, and space-time

operators required for computing our finite element approximation, various norms,

and evaluating inf-sup constants. In addition, we demonstrate that our Petrov-

Galerkin finite element formulation can in fact be written as a time-stepping scheme

for a particular set of trial and test basis functions.

Throughout this section, we will use standard hat-functions σk with the node

at tk, k = 1, . . . ,K, as our basis functions for S∆t; note that supp(σk) = Ik ∪ Ik+1

(except for σK , which is truncated to have supp(σK) = IK). We further choose

characteristic functions τk = χIk as our basis functions for Q∆t. Finally, let φi, i =

1, . . . ,N , be standard hat-functions for Vh. With the specified basis, we can express

a space-time trial function wδ ∈ Xδ in terms of basis coefficients {wki }
k=1,...,K
i=1,...,N as

wδ =
∑K
k=1

∑N
i=1 w

k
i σ

k ⊗ φi; similarly a trial function vδ ∈ Yδ may be expressed

as vδ =
∑K
k=1

∑N
i=1 v

k
i τ

k ⊗ φi. The following sections introduce temporal, spatial,

and space-time matrices and their explicit expressions that facilitate evaluation of

the residual, norms, and inf-sup constants in the subsequent sections.

2.4.1. Temporal Operators

First, let us form temporal matrices required for the evaluation of the Petrov-

Galerkin finite element semilinear form. We will explicitly determine the entries of

the matrices (i.e. the inner products) for our particular choice of basis functions,

which are later required to construct a time-marching interpretation. The Petrov-

Galerkin temporal matrices Mtime
h ∈ RK×K and Ṁtime

h ∈ RK×K are given by

(Ṁtime
∆t )lk = (σ̇k, τ l)L2(I) = δk,l − δk+1,l

(Mtime
∆t )lk = (σk, τ l)L2(I) =

∆tl

2
(δk,l + δk+1,l),

where δk,l is the Kronecker delta, and ∆tl ≡ |I l| = tl − tl−1. Note that, with

our particular choice of basis functions for S∆t and Q∆t, the matrices are lower

bidiagonal. The triple product resulting from the trilinear form evaluates to

(σkσm, τ l)L2(I) =
∆tl

6
(2δk,lδm,l + δk,lδm+1,l + δk+1,lδm,l + 2δk+1,lδm+1,l)

(no sum implied on l).



July 27, 2012 15:7 WSPC/INSTRUCTION FILE burgers

8 M. Yano, A. T. Patera, K. Urban

In addition, evaluation of the Xδ inner product requires matrices ṀS
∆t ∈ RK×K

and M
S

∆t ∈ RK×K associated with S∆t given by

(ṀS
∆t)lk = (σ̇k, σ̇l)L2(I) = − 1

∆tl
δk+1,l +

(
1

∆tl
+

1

∆tl+1

)
δk,l −

1

∆tl+1
δk−1,l

(M
S

∆t)lk = (σ̄k, σ̄l)L2(I) =
∆tl

4
δk+1,l +

∆tl + ∆tl+1

4
δk,l +

∆tl+1

4
δk−1,l.

Because the support of the basis functions are unaltered by differentiation or the

averaging operation, both ṀS
∆t and M

S

∆t are tridiagonal. Finally, the evaluation of

the Y inner product requires a matrix MQ
∆t ∈ RK×K associated with Q∆t given by

(MQ
∆t)lk = (τk, τ l)L2(I) = ∆tlδk,l.

Because τk, k = 1, . . . ,K, have element-wise compact support, MQ
∆t is a diagonal

matrix.

2.4.2. Spatial Operators

The spatial matrices Mspace
h ∈ RN×N and Aspace

h ∈ RN×N associated with the

L2(Ω) inner product and the bilinear form a( · , · ) are given by

(Mspace
h )ji = (φi, φj)H and (Aspace

h )ji = a(φi, φj).

To simplify the notation, let us denote the spatial basis coefficients for time tk by

vector wk ∈ RN , i.e. the j-th entry of wk is (wk)j = wkj . The vector zm ∈ RN is

defined similarly. Then, we can express the action of the quadratic term in terms

of a function bspace
h : RN × RN → RN , the j-th component of the whose output is

given by

(bspace
h (wk, zm))j =

N∑
i,n=1

wki z
m
n b(φi, φn, φj).

2.4.3. Space-Time Operators: Burgers’ Equation

Combining the expressions for the temporal inner products and the spatial oper-

ators, the space-time forms evaluated against the test function τ l ⊗ φj may be



July 27, 2012 15:7 WSPC/INSTRUCTION FILE burgers

A Space-Time Certified Reduced Basis Method for Burgers’ Equation 9

expressed as

M(wδ, τ
l ⊗ φj) =

K∑
k=1

N∑
i=1

wki (σ̇k, τ l)L2(I)(φi, φj)H = (Mspace
h (wl −wl−1))j

A(wδ, τ
l ⊗ φj) =

K∑
k=1

N∑
i=1

wki (σk, τ l)L2(I)a(φi, φj) =
∆tl

2

(
Aspace
h (wl + wl−1)

)
j

B(wδ, zδ, τ
l ⊗ φj) =

K∑
k,m=1

N∑
i,n=1

wki z
m
n (σkσm, τ l)L2(I)b(φi, φn, φj)

=

N∑
i,n=1

∆tl

6

(
2wliz

l
nb(φi, φn, φj) + wliz

l−1
n b(φi, φn, φj)

+wl−1
i zlnb(φi, φn, φj) + 2wl−1

i zl−1
n b(φi, φn, φj)

)
=

∆tl

6

(
2bspace
h (wl, zl) + bspace

h (wl, zl−1)

+bspace
h (wl−1, zl) + 2bspace

h (wl−1, zl−1)
)
j
.

The trilinear form further simplifies when the first two arguments are the same, as

in the case for the semilinear form of the Burgers’ equation, Eq. (2.4); i.e.

B(wδ, wδ, τ
l ⊗ φj) =

∆tl

3

(
bspace
h (wl,wl) + bspace

h (wl,wl−1) + bspace
h (wl−1,wl−1)

)
.

In addition, the integration of the forcing function using the trapezoidal rule results

in

F(τ l ⊗ φj ;µ) ≡ µ ·
∫
I

〈g0(t), τ l ⊗ φj〉V ′×V dt ≈ ∆tlµ · 1

2
〈g0(tl) + g0(tl−1), φj〉V ′×V

= ∆tlµ
1

2
(gl0,h + gl−1

0,h )j ,

where gl ∈ RN with (glh)j = 〈g(tl), φj〉V ′×V . Combining the expressions for our

particular choice of the Petrov-Galerkin test functions, the finite element residual

statement, Eq. (2.5), may be simplified to

1

∆tl
Mspace

h (wl −wl−1) +
1

2
Aspace
h (wl + wl−1)

+
1

3

(
bspace
h (wl,wl) + bspace

h (wl,wl−1) + bspace
h (wl−1,wl−1)

)
− µ1

2
(gl0,h + gl−1

0,h ),

for l = 1, . . . ,K, with w0 = 0. Note that the treatment of the linear terms are iden-

tical to that resulting from the Crank-Nicolson time stepping, whereas the quadratic

term results in a different form. In any event, the Petrov-Galerkin space-time for-

mulation admits a time-marching interpretation; the solution can be obtained by

sequentially solving K systems of nonlinear equations, each having RN unknowns;

thus, the computational cost is equivalent to that of the Crank-Nicolson scheme.
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2.4.4. Space-Time Operators: Xδ and Yδ Inner Products

Combining the temporal matrices with the spatial matrices introduced in Sec-

tion 2.3, we can express the matrix associated with the Xδ inner product, X ∈
R(K·N )×(K·N ), as

X = ṀS
∆t ⊗

(
Mspace

h (Aspace
h )−1Mspace

h

)
+ M

S

∆t ⊗Aspace
h .

Note that X is block-tridiagonal. Similarly, the matrix associated with the Yδ inner

product, Y ∈ R(K·N )×(K·N ), is given by

Y = MQ
∆t ⊗Aspace

h .

The matrix Y is block diagonal because MQ
∆t is diagonal. Note that the norm

induced by the M
S

∆t ⊗Aspace
h part of the X matrix is identical to the usual norm

for the Crank-Nicolson scheme, i.e.

{wki }T (M
S

∆t ⊗Aspace
h ){wki } = ‖wδ‖2CN

≡
K∑
k=1

(
1

2
(wk + wk−1)

)T
Aspace
h

(
1

2
(wk + wk−1)

)
,

where {wki } ∈ RK·N is a vector of space-time basis coefficients for wδ. The identity

— together with the equivalence of our space-time Petrov-Galerkin formulation with

the Crank-Nicolson scheme for linear problems — suggests that the inclusion of the

averaging operator in our Xδ norm is rather natural for the particular scheme we

consider.

3. Certified Space-Time Reduced-Basis Approximation

3.1. Nµ-p Interpolation-Based Approximation

Here, we introduce a simple reduced-basis approximation procedure based on solu-

tion interpolation (rather than projection). We choose interpolation as it is less ex-

pensive than projection, sufficiently accurate in one parameter dimension, and also

facilitates construction of an inf-sup lower bound as we will show in Section 3.2.2.

We consider an hp-decomposition (or, more specifically, Nµ-p decomposition) of

the parameter domain D as considered in Eftang et al.3 In particular, we partition

D ⊂ R1 into Nµ subdomains, Dj = [µLj , µ
U
j ], j = 1, . . . , Nµ, and approximate the

solution variation over each subdomain using a degree-p polynomial. On each Dj ,
we use p+ 1 Chebyshev-Lobatto nodes

µj,k =
µ− µL

µU − µL

[
1

2
cos

(
2k − 1

2(p+ 1)
π

)
+

1

2

]
, k = 1, . . . , p+ 1,

as the interpolation points. At each interpolation point, we obtain the truth solu-

tion uj,k ≡ uδ(µj,k) by solving the finite element approximation, Eq. (2.5). (For

notational simplicity, we will suppress the subscript δ for the finite element truth
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solutions from hereon.) Then, we construct our reduced basis approximation to

u = u(µ) by a direct sum of Nµ polynomials

ũp =

Nµ⊕
j=1

ũpj ,

where ũpj is a degree-p polynomial over µ ∈ Dj given by

ũpj (µ) =

p+1∑
k=1

uj,kψ
p
k(µ)

for j = 1, . . . , Nµ. Here ψpk is the degree-p Chebyshev polynomial correspond-

ing to the k-th interpolation point, i.e. ψpk ∈ Pp(Dj) such that ψpk(xl) = δk,l,

k, l = 1, . . . , p+ 1. Note that, unlike in the classical time-marching formulation,5,9,7

the computational cost of constructing the reduced-basis approximation using our

space-time formulation is independent of the number of time steps, K. In this work,

we do not assess the relative approximation properties of classical time-marching

formulation (e.g. POD-Greedy) and our Nµ-p interpolation method.

3.2. Brezzi-Rappaz-Raviart Theory

Our a posteriori error estimate for the Burgers’ equation is a straightforward ap-

plication of the Brezzi-Rappaz-Raviart (BRR) theory1. The following proposition

states the main results of the theory; detailed proof for a general case is provided

in the original paper1 and for quadratic nonlinearity is presented by Veroy and

Patera.14

Proposition 3.1. Let the dual norm of the residual, the inf-sup constant, and the

L4-Xδ Sobolev embedding constant be given by

εp(µ) ≡ sup
v∈Y

G(ũp(µ), v;µ)

‖v‖Y
,

βp(µ) ≡ inf
w∈Xδ

sup
v∈Y

∂G(w, ũp(µ), v)

‖w‖Xδ‖v‖Y
,

ρ ≡ sup
w∈Xδ

‖w‖L4(I;L4(Ω))

‖w‖Xδ
.

In addition, let βpLB(µ) be a lower bound of βp(µ), i.e. βpLB(µ) ≤ βp(µ), ∀µ ∈ D.

Let the proximately indicator be τp(µ) ≡ 2ρ2εp(µ)/(βpLB)2(µ). Then, for τp(µ) < 1,

there exists a unique solution u(µ) ∈ B(ũp(µ), βp(µ)/ρ2), where B(z, r) ≡ {x ∈
Xδ : ‖x− z‖Xδ < r}. Furthermore, ‖u(µ)− ũp(µ)‖Xδ ≤ ∆p(µ) where

∆p(µ) ≡ βpLB(µ)

ρ2

(
1−

√
1− τp(µ)

)
.

Proof. Proof is provided in, for example, in Veroy and Patera.14
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The following subsections detail the computation of the three key ingredients of

the BRR theory: the dual norm of residual εp(µ); the inf-sup constant, βLB,p(µ);

and the L4-Xδ Sobolev embedding constant ρ. In particular, we will present efficient

means of computing these variables that permits offline-online decomposition.

3.2.1. Residual Evaluation

Here, we briefly review a technique for efficiently computing the dual norm of the

residual in the online stage, the technique originally presented by Veroy et al.14 We

first note that εp(µ) ≡ ‖G(ũp(µ), · ;µ)‖Y′ = ‖êp‖Y , where the Riesz representor of

the residual is given by êp ≡ RG(ũp(µ), · ;µ) ∈ Y and satisfies

(êp, v)Y = G(ũp(µ), v;µ)

=

p+1∑
k=1

ψpk(µ) [M(u̇k, v) +A(uk, v)]

+

p+1∑
k,l=1

ψpk(µ)ψpl (µ)B(uk, ul, v)− µ · F0(v), ∀v ∈ Y.

Let us introduce (pieces of) Riesz representators χ0, {χ1
k}
p+1
k=1, and {χ2

kl}
p+1
k,l=1 of the

residual contribution from the linear, bilinear, and trilinear form, respectively, for

the snapshots according to

(χ0, v)Y = F0(v), ∀v ∈ Y, (3.1)

(χ1
k, v)Y =M(ûk, v) +A(uk, v), ∀v ∈ Y, k = 1, . . . , p+ 1, (3.2)

(χ2
kl, v)Y = B(uk, ul, v), ∀v ∈ Y, k, l = 1, . . . , p+ 1. (3.3)

Then, we can express êp as

êp = µ · χ0 +

p+1∑
k=1

ψpk(µ)χ1
k +

p+1∑
k,l=1

ψpk(µ)ψpl (µ)χ2
kl.

The dual norm of the residual can be expressed as

‖êp‖Y = µ2(χ0, χ0)Y + 2µ

p+1∑
m=1

(χ0, χ1
m)Y + 2µ

p+1∑
m,n=1

(χ0, χ2
mn)Y

+

p+1∑
k,m=1

ψpk(µ)ψpm(µ)(χ1
k, χ

1
m)Y + 2

p+1∑
k,m,n=1

ψpk(µ)ψpm(µ)ψpn(µ)(χ1
k, χ

2
mn)Y

+

p+1∑
k,l,m,n=1

ψpk(µ)ψpl (µ)ψpm(µ)ψpn(µ)(χ2
kl, χ

2
mn)Y . (3.4)

The offline-online decomposition is clear from the expression. In the offline stage,

we first solve Eq. (3.1)-(3.3) to obtain the Riesz representors χ0, {χ1
k}
p+1
k=1, and

{χ2
kl}

p+1
k,l=1. Note that there are 1 + (p + 1) + (p + 1)2 representors, each requiring
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a Y-solve. Recalling that the matrix associated with the Y inner product is given

by Y = MQ
∆t ⊗Aspace

h , each Y-solve requires K inversions of the Aspace
h operator,

where K is the number of time steps. It is important to note that the computation

of the representators does not require a solution of a coupled space-time system,

as the matrix Y is block diagonal. In other words, the computational cost is not

higher than that for the classical time-marching reduced basis formulation. After

computing the representators, we compute the Y inner product of all permutation

of representators, i.e. (χ0, χ0)Y , (χ0, χ1
k)Y , etc.

In the online stage, we obtain the dual norm of the residual by evaluating

Eq. (3.4) using the inner products computed in the offline stage. The computational

cost scales as (p + 1)4 and is independent of the cost of truth discretization. Note

that, unlike in the classical reduced-basis formulation based on time-marching, the

online residual evaluation cost of our space-time formulation is independent of the

number of time steps, K.

3.2.2. Inf-Sup Constant and its Lower Bound

Here, we present a procedure for computing an inf-sup lower bound, βpLB(µ), that

permits offline-online decomposition. The particular procedure presented is specifi-

cally designed for the Nµ-p interpolation-based reduced basis approximation intro-

duced in Section 3.1. Let us first define the supremizing operator Scj : Xδ → Yδ
associated with the solution ucj = u(µcj) at the centroid of Dj , µcj , by

(Scjw, v)Y = ∂G(w, ucj , v), ∀w ∈ Xδ, ∀v ∈ Yδ,

for j = 1, . . . , Nµ. The inf-sup constant about ucj is given by

βcj = inf
w∈Xδ

‖Scjw‖Y
‖w‖Xδ

.

Let us also introduce the following correction factors at interpolation points,

β−j,k ≡ inf
w∈X

∂G(w, uj,k, S
c
jw)

‖Scjw‖2Y
and β+

j,k ≡ sup
w∈X

∂G(w, uj,k, S
c
jw)

‖Scjw‖2Y
, (3.5)

for k = 1, . . . , p+ 1 and j = 1, . . . , Nµ. Then, we construct an inf-sup lower bound

according to

βpLB,j(µ) = βcj ·

 ∑
k=1,...,p+1
ψpk(µ)>0

β−j,kψ
p
k(µ) +

∑
k=1,...,p+1
ψpk(µ)<0

β+
j,kψ

p
k(µ)

 , ∀µ ∈ Dj . (3.6)

Let us denote the lower bound over the entire D by βpLB, which is simply the direct

sum of the piecewise lower bounds, i.e. βpLB = ⊕Nµj=1β
p
LB,j . We have the following

proposition:

Proposition 3.2. The inf-sup lower bound constructed using the above procedure

satisfies βpLB(µ) ≤ βp(µ), ∀µ ∈ D.



July 27, 2012 15:7 WSPC/INSTRUCTION FILE burgers

14 M. Yano, A. T. Patera, K. Urban

Proof. Let us show that the βpLB,j(µ) ≤ βp(µ) for µ ∈ Dj for each j = 1, . . . , Nµ.

Since Scjw ∈ Y, ∀w ∈ Xδ, we can bound the inf-sup constant from below as

βp(µ) ≡ inf
w∈Xδ

sup
v∈Y

∂G(w, ũp(µ), v)

‖w‖Xδ‖v‖Y
= inf
w∈Xδ

sup
v∈Y

p+1∑
k=1

ψpk(µ)
∂G(w, uj,k, v)

‖w‖Xδ‖v‖Y

≥ inf
w∈Xδ

p+1∑
k=1

ψpk(µ)
∂G(w, uj,k, S

c
jw)

‖w‖Xδ‖Scjw‖Y
= inf
w∈Xδ

p+1∑
k=1

ψpk(µ)
‖Scjw‖Y
‖w‖Xδ

∂G(w, uj,k, S
c
jw)

‖Scjw‖2Y

= inf
w∈Xδ

‖Scjw‖Y
‖w‖Xδ

p+1∑
k=1

ψpk(µ)
∂G(w, uj,k, S

c
jw)

‖Scjw‖2Y
, ∀µ ∈ Dj , j = 1, . . . , Nµ.

(3.7)

Note that we have

‖Scjw‖Y
‖w‖Xδ

≥ inf
z∈Xδ

‖Scjz‖Y
‖z‖Xδ

= β(µcj) ≡ βcj > 0, ∀w ∈ Xδ,

and the first term of Eq. (3.7) is bounded below by βcj > 0. The second term

involving summation over p + 1 terms may be may be bounded below by the cor-

rection factors defined in Eq. (3.5). Namely, if ψpk(µ) > 0, then we may bound the

contribution from the k-th term from below by using β−j,k; if ψpk(µ) < 0, then the

contribution may be bounded from below by using β+
j,k. In other words, the final

expression of Eq. (3.7) is bounded from below by

βp(µ) ≥
(

inf
w∈Xδ

‖Scjw‖Y
‖w‖Xδ

) ∑
k=1,...,p+1
ψpk(µ)>0

ψpk(µ) inf
w∈Xδ

∂G(w, uj,k, S
c
jw)

‖Scjw‖2Y

+
∑

k=1,...,p+1
ψpk(µ)<0

ψpk(µ) sup
w∈Xδ

∂G(w, uj,k, S
c
jw)

‖Scjw‖2Y



= βcj

 ∑
k=1,...,p+1
ψpk(µ)>0

β−j,kψ
p
k(µ) +

∑
k=1,...,p+1
ψpk(µ)<0

β+
j,kψ

p
k(µ)

 , ∀µ ∈ Dj , j = 1, . . . , Nµ,

which concludes the proof.

Remark 3.1. For small intervals, the correction factors are close to unity. To see
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this, we note that

|∂G(w, uj,k, S
c
jw)|

‖Scjw‖Y
=
|∂G(w, ucj + (uj,k − ucj), Scjw)|

‖Scjw‖Y

≤
|∂G(w, ucj , S

c
jw)|

‖Scjw‖Y
+
|B(w, uj,k − ucj , Scjw)|

‖Scjw‖Y

≤ 1 +
1

2

ρ2‖w‖Xδ‖uj,k − ucj‖Xδ‖Scjw‖Y
β2(µcj)‖w‖2Xδ

≤ 1 +
ρ2

2β2(µcj)

(
γheat +

1

2
ρ2‖ucj‖Xδ

)
‖uj,k − ucj‖Xδ ,

where γheat is the continuity constant for the heat equation, i.e.

γheat ≡ sup
w∈Xδ

sup
v∈Y

|M(ẇ, v) +A(w, v)|
‖w‖Xδ‖v‖Y

.

Thus, as |Dj | → 0 and ‖uj,k − ucj‖Xδ → 0, the correction factors converge to 1.

Remark 3.2. The inf-sup lower bound construction procedure presented here pro-

duces a tighter lower bound than the natural norm Successive Constraint Method

(SCM)6 that uses the p+ 1 interpolations as the SCM sampling points, i.e.

β(µ) ≥ βpLB,j(µ) ≥ βpLB,SCM,j(µ), ∀µ ∈ Dj ,

where βpLB,SCM,j(µ) is the SCM inf-sup lower bound. A detailed derivation is pro-

vided in Appendix B.

Again, the offline-online decomposition is clear from the structure of Eq. (3.6).

In the offline stage, for each Dj , we evaluate the inf-sup constant at the centroid,

βcj , and correction factors β±j,k at each of the p+ 1 interpolation points. The online

stage consists of identifying the parameter subdomain Dj to which µ belongs and

evaluating βpLB,j(µ) using Eq. (3.6).

Let us demonstrate that none of the offline computations require solutions to a

fully-coupled space-time problem, and the computational cost scales linearly with

K. The inf-sup constant at the centroid, βcj , can be obtained by finding the largest

eigenvalue of a generalized eigenproblem Pv = λQv with

P = X = ṀS
∆t ⊗

(
Mspace

h (Aspace
h )−1Mspace

h

)
+ M

S

∆t ⊗Aspace
h

Q = (Gc)TY−1Gc

and setting βcj = λ
−1/2
max . Here, Gc ∈ R(K·N )×(K·N ) is the Jacobian matrix of the

residual operator linearized about uc = u(µcj); the (li)(kj) entry of the matrix is

given by

(Gc)(li)(kj) = ∂G(σk ⊗ φj , uc, τ l ⊗ φi).

Note that Gc is block lower bidiagonal due to our choice of the basis functions for

the spaces S∆t and Q∆t in the Petrov-Galerkin formulation. If the eigenproblem is
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solved using an Arnoldi-based method, each Arnoldi step requires action of P, Q

and Q−1 on a vector in RK·N . The application of P requires O(K) operations due

to the tensor-product structure of the matrices that constitutes X; for instance, to

compute M
S

∆t⊗Aspace
h v, we first compute Aspace

h vk, k = 1, . . . ,K, and then take a

linear combination of (at most) three Aspace
h vk’s according to the weights specified

in M
S

∆t. The application of Q requires application of Gc, (Gc)T , and Y−1, each

of which requires O(K) operations due to the block bidiagonal or block diagonal

structure of the matrices. Finally, the application of Q−1 = (Gc)−1Y(Gc)−T re-

quires: 1) (Gc)−T , which corresponds to a backward solve of a linearized K-step

time marching problem; 2) Y, which requires application of Aspace
h onto K spatial

vectors; and 3) (Gc)−1, which corresponds to a forward solve of a linearized K-

step time marching problem. Thus, each Arnoldi step of the inf-sup eigenproblem

requires O(K) operations.

The calculation of the correction factors require the extreme eigenvalues of a

generalized eigenproblem Pv = λQv with

P =
1

2

(
(Gc)TY−1Gk + (Gk)TY−1Gc

)
Q = (Gc)TY−1Gc.

Here, Gk ∈ R(K·N )×(K·N ) is the Jacobian matrix corresponding to the residual

operator linearized about the solution at the interpolation point uj,k. Application

of P again requires O(K) operations due to the block bidiagonal and block diagonal

structure of Gc and Y, respectively. The Q matrix is identical to that used for the

inf-sup constant calculation; thus, application of Q and Q−1 can be carried out in

O(K) operations.

3.2.3. Sobolev Embedding Constant

The final piece required for the BRR theory is the L4-Xδ Sobolev embedding con-

stant. Details of approximating the embedding constant is provided in Appendix A;

here we state the main results. Due to the nonlinearity, we have not been able to

analyze the L4-Xδ embedding problem analytically. However, we can analyze closely

related linear problems: L2-X embedding and L2-Xδ embedding. Using the Fourier

decomposition in space and time, we can show that the L2-X embedding constant

is bounded by

θ ≡ sup
w∈X

‖w‖L2(I;L2(Ω))

‖w‖X
≤
(

1

4T 2
+ π2

)−1/2

for Ω = (0, 1) and I = (0, T ] with T > 1/(4π). An upper bound for the L2-Xδ
embedding constant can also be analytically found for constant time-stepping cases

using the Fourier decomposition in space and von Neumann analysis in time; the
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Fig. 1. The solution to the Burgers problem Case 1 and Case 2 for Pe = 20.

constant is bounded by

θδ ≡ sup
w∈Xδ

‖w‖L2(I;L2(Ω))

‖w‖Xδ
≤
√

T

3π
≈ 0.3257

√
T

as K → ∞. Note that the embedding constant scales weakly with the final time

T . For an arbitrary temporal discretization, we were unable to analytically analyze

the L2-Xδ embedding constant; however, numerical experiments suggest that the

constant is bounded by θδ ≤ 0.5773 on any quasi-uniform temporal discretization.

The L4-Xδ embedding constant can be approximated using a homotopy procedure

starting from the solution to the L2-Xδ embedding problem; for related methods,

see Deparis2 and Manzoni8. Numerical experiments suggest that the constant is

bounded by ρ ≤ 0.81 for any quasi-uniform space-time mesh over Ω = (0, 1) and

I = (0, 1].

4. Numerical Results

4.1. Model Problems

We consider two different forcing functions in this section. First is a constant func-

tion, g1 = 1, which results in F1(v;µ) = µ ·
∫
I

∫
Ω
vdxdt with µ = Pe2. The solution

over the space-time domain for the Pe = 20 case is shown in Figure 1(a). As the

Peclet number increases, the boundary layer at x = 1 gets thinner and the initial

transition time decreases. The second case uses a spatially linear source function,

g2 = 1
2 − x, which results in F2(v;µ) = µ ·

∫
I

∫
Ω

( 1
2 − x)vdxdt. The solution for this

second case with Pe = 20 is shown in Figure 1(b). This case develops an internal

layer at x = 1/2, which becomes thinner as the Peclet number increases. These two

cases exhibit different stability properties, as we will show shortly.

For purposes of comparison we provide here a short summary of the standard L2

time-marching error bound developed by Nguyen et al.9 A parameter that dictates
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the effectivity of the time-marching L2 formulation is the stability parameter ωk,

defined asb

ωk ≡ inf
v∈Vh

4b(v, u(µ), v) + a(v, v)

‖v‖L2(Ω)
, k = 1, . . . ,K.

In particular, a negative value of ωk implies that the L2 error estimate grows ex-

ponentially over that period of time. All results shown in this section use the exact

value of ωk instead of a lower bound obtained using the successive constraint method

(SCM) as done in Nguyen et al.9; i.e. we use the most favorable stability constant

for the L2 time-marching formulation.

4.2. Stability: Small Parameter Intervals

We will first demonstrate the improved stability of the space-time a posteriori er-

ror estimate compared to the L2 time-marching error estimate. For the space-time

formulation, we monitor the variation in the inf-sup constant, β, and the effectivity,

∆/‖e‖Xδ , with the Peclet number. For the L2 time-marching formulation, we mon-

itor several quantities: the minimum (normalized) stability constant, mink ω
k/Pe;

the final stability constant, ωK/Pe; the maximum effectivity, maxk ∆k/‖ek‖L2(Ω);

and the final effectivity, ∆K/‖eK‖L2(Ω).

For each case, the reduced basis approximation is obtained using the p = 2

interpolation over a short interval of D = [Pe− 0.1,Pe + 0.1]. Note that, the use of

the short interval implies that τ � 1, which reduces the BRR-based error bound to

∆p(µ) ≈ 1

βpLB(µ)
εp.

In addition, as the supremizer evaluated at the centroid of the interval is close to

the true supremizer over a short interval, βpLB(µ) ≈ β(µ), ∀µ ∈ D. In other words,

we consider the short intervals to ensure a good inf-sup lower bound such that we

can focus on stability independent of the quality of the inf-sup lower bound ; we

will later assess the effectiveness of the lower bound. The effectivity reported is the

worst case value observed on 40 sampling points over the interval.c

Table 1 shows the variation in the stability constant and the effectivity for

Case 1 for Pe = 1, 10, 50, 100, and 200. The stability constant for the space-

time formulation gradually decreases with Pe; accordingly, the effectivity worsens

from 1.04 for Pe = 1 to 11.9 for Pe = 200. Note that the effectivity of O(10) is

more than adequate for the purpose of reduced-order approximation as the error

typically rapidly converges (i.e. exponentially) with the number of reduced basis.

The L2 time-marching formulation also performs well for this case. This is because,

bIn the original paper by Nguyen et al., the variable ρk is used for the stability constant. Here,
we use ωk to avoid confusion with the L4-X embedding constant for the space-time formulation.
cThe 40 sampling points are equally-spaced between [Pe− 0.099,Pe + 0.099]. We have found that
the variation in the effectivity across the sampling point is small (less than 10%) over the small

intervals considered.
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space-time L2 time-marching

Pe β ∆
‖e‖Xδ

mink
ωk

Pe
ωK

Pe maxk
∆k

‖ek‖
∆K

‖eK‖

1 0.993 1.04 9.87 9.87 3.87 1.30

10 0.665 2.23 0.982 1.32 3.18 2.11

50 0.303 7.01 0.114 0.924 7.73 5.10

100 0.213 9.75 0.0203 0.862 11.7 6.95

200 0.149 11.9 -0.0072 0.820 18.0 9.59

Table 1. Summary the inf-sup constant and effectivity for the space-time formulation and the
stability constant and effectivity for the L2 time-marching formulation for Case 1 with g = 1.

space-time L2 time-marching

Pe β ∆
‖e‖Xδ

mink
ωk

Pe
ωK

Pe maxk
∆k

‖ek‖
∆K

‖eK‖

1 0.999 1.01 9.84 9.84 2.80 2.80

10 0.877 1.15 0.727 0.727 3.12 3.12

20 0.547 1.84 -0.0675 -0.0675 12.4 12.4

30 0.217 4.92 -0.606 -0.606 3.7× 104 3.7× 104

50 0.038 40.8 -1.67 -1.67 6.5× 1028 6.5× 1028

100 0.0077 259 -4.43 -4.43 − −

Table 2. Summary the inf-sup constant and effectivity for the space-time formulation and the

stability constant and effectivity for the L2 time-marching formulation for Case 2 with g = 1
2
− x.

even for the Pe = 200 case, the stability constant ωk/Pe takes on a negative value

over a very short time interval and is asymptotically stable. (See Nguyen et al.9 for

the detailed behavior of the stability constant over time.)

Table 2 shows the variation in the stability constant and the effectivity for Case 2

for Pe = 1, 10, 20, 50, and 100. Note that the asymptotic stability constant for the L2

time-marching formulation is negative for Pe & 18.9; consequently, the error bound

grows exponentially with time even for a moderate value of the Peclet number,

rendering the error bound meaningless. The stability constant for the space-time

formulation is much better behaved. The effectivity of 40.8 at Pe = 50 is a significant

improvement over the 1028 for the L2 time-marching formulation, and the error

estimate remains meaningful even for the Pe = 100 case.

4.3. Nµ-p Interpolation over a Wide Range of Parameters

Now we demonstrate that our certified reduced basis method provides accurate and

certified solutions over a wide range of parameters using a reasonable number of

snapshots. Here, we employ a simple (and rather crude) Nµ-p adaptive procedure

to construct certified reduced basis approximations over the entire D with an error

bound of ∆tol = 0.01. Our Nµ-p approximation space is described in terms of a
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set Peset consisting of Nµ + 1 points that delineate the endpoints of the parameter

intervals and an Nµ-tuple P set = (p1, . . . , pNµ) specifying the polynomial degree

over each interval. Starting from a single p = 1 interval over the entire D, we

recursively apply one of the following two operations to each interval [PeL,PeU] =

[Peset
j ,Peset

j+1] with polynomial degree pj :

(a) if minµ β
p
LB(µ) ≤ 0, subdivide [PeL,PeU] into [PeL,PeM]∪ [PeM,PeU] where

PeM = (PeL + PeU)/2, assign pj to both intervals, and update Peset and

P set.

(b) if minµ β
p
LB(µ) > 0 but maxµ τ(µ) ≥ 1 or maxµ ∆(µ) ≥ ∆tol, then increase

pj to pj + 1.

The operation (a) decreases the width of the parameter interval, which increases

the effectiveness of the supremizer Scj and improves the inf-sup lower bound. The

operation (b) aims to decrease the residual (and hence the error) by using a higher-

order interpolation, i.e. p-refinement. Thus, in our adaptive procedure, the Nµ and

p refinement serves two distinct purposes: improving the stability estimate and im-

proving the approximability of the space. In particular, we assume that the solution

dependence on the parameter is smooth and use (only) p-refinement to improve the

approximability; this is in contrast to typical hp adaptation where both h- and

p-refinement strategies are used to improve the approximability for potentially ir-

regular functions.

The result of applying the Nµ-p adaptive procedure to Case 1 is summarized

in Figure 2. Here, we show variations over the parameter domain D = [1, 200] of

key quantities: a) the error and error bound; b) the error effectivity; c) the inf-sup

constant and its lower bound; and d) the approximation polynomial degree. First,

note that the entire parameter domain is covered using just 10 intervals consisting

of 89 total interpolation points; this is despite the use of the crude adaptation

process whose inefficiency is reflected in excessively accurate estimates in some of the

intervals. Smaller intervals are required in the low Peclet number regimes to ensure

that the normalized residual measure, τ , is less than unity. The maximum error

bound of 10−2 is clearly satisfied over the entire parameter range. The effectivity is

of order 5.

Table 3 shows the p-convergence behavior of our certified basis formulation over

the final interval, D10 = [175.13, 200.00].d Each variable is sampled at 40 equispaced

sampling points over D10 and the worst case values are reported. The table confirms

that the error (and the normalized residual) converges rapidly with p. The rapid

convergence suggests that the error effectivity of O(10) is more than adequate,

as improving the error by a factor of 10 only requires 1 or 2 additional points.

dUsing the Nµ-p adaptive procedure, this p = 8, D10 = [175, 13, 200.00] interval is created by

subdividing a p = 8, D9 = [150.25, 200.00] interval in the final step. This results in the use of the
p = 8 interpolant over the interval D10 in the final Nµ-p adapted configuration despite the error

meeting the specified tolerance for p = 5.
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Fig. 2. The error, effectivity, and inf-sup constant behaviors on the final Nµ-p adapted interpolation

for Case 1.

The higher p not only provides higher accuracy but also concomitantly enables

construction of the BRR-based error bounds by decreasing τ . Note also that the

inf-sup effectivity decreases with p in general as a larger number of “inf” operations

are required to construct βpLB using the procedure introduced in Section 3.2.2.

Figure 3 shows the behavior of the error and stability constant for Case 2 over

D = [1, 50]. As shown in Section 4.2, this problem is less stable than Case 1, and

the classical formulation produces exponentially growing error bounds. The Nµ-p

adaptive procedure utilizes 7 intervals consisting of 31 total interpolation points.

The maximum error bound incurred over D is less than 0.01. Due to the unstable

nature of the problem, the effectivity worsens as the Peclet number increases. Nev-

ertheless, unlike in the classical time-marching based formulation, our error bounds

remain meaningful over the entire parameter range. For this problem, the size of the

interval in the high Peclet number regime is dictated by the necessity to main a pos-

itive inf-sup lower bound. For instance, for the p = 4 interpolation, we were unable

to maintain a positive value of βpLB over a single interval of [46, 50], necessitating
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p maxµ τ(µ) maxµ ∆(µ) maxµ ‖e(µ)‖Xδ maxµ
∆(µ)
‖e(µ)‖Xδ

minµ
βLB(µ)
β(µ)

1 1.22e+04 - 1.14e+01 - 0.61

2 2.39e+02 - 6.67e-01 - 0.62

3 2.03e+01 - 9.36e-02 - 0.61

4 1.38e+00 - 1.11e-02 - 0.61

5 1.69e-01 6.47e-03 1.48e-03 5.01 0.56

6 2.17e-02 7.69e-04 1.86e-04 5.05 0.52

7 2.94e-03 1.02e-04 2.38e-05 5.38 0.49

8 4.13e-04 1.30e-05 3.00e-06 5.77 0.47

Table 3. The p-convergence behavior over the final interval of Case 1, Pe ∈ [175.13, 200.00].
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Fig. 3. The error, effectivity, and inf-sup constant behaviors on the final Nµ-p adapted interpolation

for Case 2.

the split into two smaller intervals.
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p maxµ τ(µ) maxµ ∆(µ) maxµ ‖e(µ)‖Xδ maxµ
∆(µ)
‖e(µ)‖Xδ

minµ
βLB(µ)
β(µ)

1 3.58e+03 - 7.38e-02 - 0.21

2 1.39e+01 - 1.03e-03 - 0.22

3 1.23e+00 - 2.78e-05 - 0.21

4 2.63e-02 8.22e-05 6.03e-07 176.78 0.20

5 2.15e-02 1.11e-05 1.54e-08 978.07 0.03

Table 4. The p-convergence behavior over the last interval of Case 2, Pe ∈ [46.94, 50.00].

Table 4 shows the p-convergence behavior of the reduced basis formulation over

D8 = [46.94, 50]. Similar to the previous case, the normalized residual, the error

bound, and the error converge exponentially with p. We note that even though

the worst case error effectivity is of O(103), the geometric mean of the effecitivies

collected at the 40 sampling points is only 136.

Appendix A. Sobolev Embedding Constants

In this appendix, we study the behavior of the L4-Xδ embedding constant required

for the Brezzi-Rappaz-Raviart theory. Unfortunately, due to the nonlinearity, we

have not been able to analyze the L4-Xδ problem analytically. To gain some insight

into the behavior of the embedding constant using analytical techniques, let us con-

sider two closely related linear problems, L2-X embedding and L2-Xδ embedding,

in Appendix A.1 and A.2. Then, we will numerical investigate the behavior of the

L4-Xδ embedding constant in Appendix A.3.e

A.1. L2-X Embedding

Let us first consider L2-X embedding. The embedding constant is defined by

θ ≡ sup
w∈X

‖w‖L2(I;L2(Ω))

‖w‖X

which is obtained by solving a (linear) eigenproblem

(w, v)X − λ(w, v) = 0, ∀v ∈ X
1− ‖w‖2L2(I;L2(Ω)) = 0

and setting θ = λ
−1/2
min . Applying the Fourier decomposition in the spatial domain,f

we can express the eigenproblem as: find eigenpairs (wkx , λkx) ∈ H1
0 (I) × R such

eAnalysis in this appendix is “formal”; for brevity, some of the assumptions or arguments required

related to completeness or compactness may be omitted.
fWe could directly analyze the spatial discretization with appropriate modification of the kx
Fourier symbol per the usual von Neumann analysis. Here we consider a continuous-in-space case

for simplicity.
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that

1

k2
xπ

2

∫
I

v̇kx(t)ẇkx(t)dt+ k2
xπ

2

∫
I

vkx(t)wkx(t) = λkx
∫
I

vkx(t)wkx(t)dt,

∀vkx ∈ H1
0 (I),

where vkx ∈ H1
0 (I) is the temporally-varying Fourier coefficient associated with the

kx-mode and H1
0 (I) ≡ {v ∈ C0(I) : v(t = 0) = 0}. It is straightforward to show

that the eigenmodes of the continuous problem are given by

vkx,kt(t) = sin

(
π

(
kt −

1

2

)
t

T

)
, kt = 1, 2, . . .

and the corresponding eigenvalues are

λkx,kt = k2
xπ

2 +
1

k2
xT

2

(
kt −

1

2

)2

.

The expression clearly shows that the minimum eigenvalue is achieved for kt = 1

for all T . In particular, for T > 1/(4π), the minimum eigenvalue corresponds to

kx = kt = 1, and its value is

λmin =
1

4T 2
+ π2.

Because Xδ ⊂ X for any temporal discretization of I, we have

λ̂min ≡ inf
w∈Xδ

‖w‖X
‖w‖L2(I;L2(Ω))

≥ inf
w∈X

‖w‖X
‖w‖L2(I;L2(Ω))

= λmin =
1

4T 2
+ π2,

for all T > 1/(4π). (Appropriate bounding constant may be deduced from the

expression for the eigenvalues of the continuous problem even for T < 1/(4π).) In

other words, for any Xδ ⊂ X , the L2-X embedding constant is bounded by

θ ≤
(

1

4T 2
+ π2

)−1/2

for T > 1/(4π). Note that this bounding constant is not significantly different from

that for the standard L2-H1
(0) embedding problem, θL2-H1

(0)
=
(
π2/(4T 2) + π2

)−1/2
.

A.2. L2-Xδ Embedding

Now let us consider L2-Xδ embedding. The embedding constant is defined by

θδ ≡ sup
w∈Xδ

‖w‖L2(I;L2(Ω))

‖w‖Xδ
,

where we recall that ‖w‖2Xδ = ‖ẇ‖2L2(I;V ′) + ‖w̄‖2L2(I;V ). Similar to the L2-X em-

bedding problem, the solution is given by finding the minimum eigenvalue of

(w, v)Xδ − λ(w, v) = 0, ∀v ∈ Xδ
1− ‖w‖2L2(I;L2(Ω) = 0,
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and setting θδ = λ
−1/2
min . However, as the Xδ norm is dependent on the temporal

mesh by construction, we must consider temporally discrete spaces for our analysis.

Let V∆t ⊂ H1
0 (I) be the piecewise linear temporal approximation space. Then,

the Fourier decomposition in the spatial domain results in an eigenproblem: find

eigenpairs (wkxδ , λkx) ∈ V∆t × R such that

1

k2
xπ

2

∫
I

v̇kx(t)ẇkx(t)dt+ k2
xπ

2

∫
I

v̄kx(t)w̄kx(t) = λkx
∫
I

vkx(t)wkx(t)dt,

∀vkx ∈ V∆t,

where v̄kx over the Ik is given by (∆tk)−1
∫
Ik
vkxdx.

For V∆t with a constant time step (i.e. ∆t = ∆t1 = · · · = ∆tK), the k-th entry

of the kt-th eigenmode vkx,kt ∈ RK is given by

(vkx,kt)k = sin

(
π

(
kt −

1

2

)
k

K

)
.

Accordingly, the eigenvalues may be expressed as

λkx,kt(K;T ) =

K
k2xπ

2T

(
1− cos

(
π
(
kt − 1

2

)
1
K

))
+

k2xπ
2T

4K

(
1 + cos

(
π
(
kt − 1

2

)
1
K

))
T

6K

(
2 + cos

(
π
(
kt − 1

2

)
1
K

)) .

To estimate the minimum eigenvalue, we first relax the restriction that kx be an

integer; with the relaxation, the minimizing value of kx, k∗x, is given by

k∗x(kt) =
41/2

π

√
K

T

(
tan

(
π

2

(
kt
K
− 1

2K

)))1/2

.

Furthermore, for kx = k∗x, it can be shown that the eigenvalue is minimized for

kt = K. Thus, for any given final time T and the number of time steps K, a lower

bound (due to the continuous relaxation on kx) of eigenvalues can be expressed as

λLB(K;T ) = min
kt∈1,...,K

min
kx∈R+

λkx,kt(K;T ) =
6K

T

sin
(
π
(
1− 1

2K

))
2 + cos

(
π
(
1− 1

2K

)) .
In the limit of K →∞, the eigenvalue approaches

lim
K→∞

λLB(K;T ) =
3π

T
.

Thus, in the limit of K →∞, the L2-Xδ embedding constant for V∆t with a constant

time step is given by θδ =
√

T
3π ≈ 0.3257

√
T . Note that the embedding constant

scales weakly with the final time T . We also note that the optimal spatial wave

number behaves like k∗x →∞ as K →∞.

Unfortunately, for V∆t with non-constant time stepping, we cannot deduce the

embedding constant analytically. Here, we numerically demonstrate that the L2-Xδ
embedding constant is indeed bounded for all quasi-uniform meshes. In particu-

lar, we compute the embedding constant on temporal meshes characterized by the

number of elements, K, and a logarithmic mesh grading factor, q, where q = 0
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mesh grading factor, q

K -2 -1 0 1 2 3 4 5 7 10

2 0.3483 0.3379 0.3903 0.4783 0.5156 0.5550 0.5683 0.5760 0.5771 0.5773

4 0.3344 0.3252 0.3423 0.4623 0.5379 0.5692 0.5758 0.5771 0.5769 0.5760

8 0.3224 0.3164 0.3298 0.4629 0.5422 0.5696 0.5761 0.5772 0.5772 0.5771

16 0.3159 0.3148 0.3267 0.4635 0.5419 0.5692 0.5759 0.5772 0.5771 0.5772

32 0.3147 0.3145 0.3259 0.4636 0.5418 0.5691 0.5758 0.5771 0.5773 0.5773

64 0.3144 0.3144 0.3257 0.4636 0.5418 0.5691 0.5758 0.5771 0.5773 0.5773

128 0.3144 0.3144 0.3258 0.4636 0.5418 0.5691 0.5758 0.5771 0.5773 0.5773

Table 5. The variation in the L2-X embedding constant with the number of time intervals, K, and

the mesh grading factor, q, for T = 1.

corresponds to a uniform mesh, q > 0 implies that elements are clustered toward

t = 0. For q sufficiently large, the first temporal element is of order ∆t1 ≈ 10−qT .

Without loss of generality, we pick T = 1.

The result of the calculation is summarized in Table 5. First, the table confirms

that, on a uniform temporal mesh (q = 0), the embedding constant converges to

the analytical value of (3π)−1/2 ≈ 0.3257 as K increases. The embedding constant

increases with the mesh grading factor, q; however, the constant appears to asymp-

tote to 0.5773 as q → ∞. Thus, the numerical result suggests that the L2-Xδ is

bounded for all quasi-uniform meshes by 0.5773.

A.3. L4-Xδ Embedding

Recall that the L4-Xδ embedding constant is defined as

ρ ≡ sup
w∈X

‖w‖L4(I;L4(Ω))

‖w‖Xδ
,

To find the embedding constant we solve a nonlinear eigenproblem

(w, v)X − λ(w3, v) = 0, ∀v ∈ X
1− ‖w‖4L4(I;L4(Ω) = 0

and set ρ = λ
−1/2
min . This nonlinear eigenproblem is solved using a homotopy proce-

dure. Namely, we successively solve a family of problems,

(w, v)X − λ
(
(1− α)(w2, v) + α(w3, v)

)
= 0, ∀v ∈ X

1−
(

(1− α)‖w‖2L2(I;L2(Ω)) + α‖w‖4L4(I;L4(Ω))

)
= 0,

starting from α = 0, which corresponds to L2-Xδ embedding, and slowly increase

the value of α until α = 1, which corresponds to L4-Xδ embedding.

The numerical values of the embedding constant on different meshes is shown in

Table 6. Similar to the L2-Xδ embedding constant, the L4-Xδ embedding constant

increases with the number of temporal time steps, K, and the mesh grading factor,
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mesh grading factor, q

K -2 -1 0 1 2 3 4

2 0.4508 0.4308 0.5716 0.6479 0.6694 0.7211 0.7389

4 0.4333 0.4479 0.4955 0.6367 0.7227 0.7454 0.7520

8 0.4475 0.4962 0.4824 0.6242 0.7188 0.7537 0.7567

16 0.4958 0.4956 0.4791 0.6315 0.7174 0.7496 0.7626

32 0.4955 0.4955 0.4774 0.6295 0.7371 0.8084 -

64 0.4955 0.4955 0.4755 0.6283 0.7462 0.7808 -

Table 6. The variation in the L4-X embedding constant with the number of time intervals, K, and
the mesh grading factor, q, for T = 1.

q. Again, the embedding constant appears to be bounded. Based on the table,

we approximate the L4-Xδ embedding constant for any quasi-uniform mesh to be

bounded by ρ = 0.81.

Appendix B. Comparison of Inf-Sup Lower Bound Construction

Procedures

This appendix details the relationship between the inf-sup lower bound constructed

using the procedure developed in Section 3.2.2 and the natural-norm Successive

Constraint Method (SCM) method.6 For convenience, we refer to our method based

on the explicit calculation of the lower and upper bounds of the correction factors

as “LU” and that based on the Successive Constraint Method as “SCM.” Both LU

and SCM procedures are based on the decompositiong

β(µ) ≡ inf
w∈X

sup
v∈Y

∂G(w, ũp, v)

‖w‖X ‖v‖Y
≥ inf
w∈X

∂G(w, ũp, Scw)

‖w‖X ‖Scw‖

≥
(

inf
w∈X

‖Scw‖Y
‖w‖X

)
︸ ︷︷ ︸

βc

·
(

inf
w∈X

∂G(w, ũp, Scw)

‖Scw‖2Y

)
︸ ︷︷ ︸

β̂c(µ)

,

where we have identified the inf-sup constant evaluated at the centroid by βc and

the correction factor by β̂c(µ). Note that the correction factor may be expressed as

β̂c(µ) = inf
w∈X

∂G(w, ũp, Scw)

‖Scw‖2Y
=

p+1∑
k=1

inf
w∈X

ψpk(µ)
∂G(w, uk, S

cw)

‖Scw‖2Y

=

p+1∑
k=1

inf
w∈X

ψpk(µ)
(Skw, uk, S

cw)Y
‖Scw‖2Y

.

Our LU method and SCM differ in the way they construct bounds of β̂c(µ).

gThe subscript j on the supremizer Scj (and later solution snapshots uj,k) that denotes the domain

number is suppressed in this appendix for notational simplicity.
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Let us recast our LU formulation as a linear programming problem, the language

in which the SCM is described. We compute a lower bound of the correction factor,

β̂cLB,LU(µ) ≤ β̂c(µ), ∀µ ∈ Dj , by first constructing a box in Rp+1 that encapsulates

the lower and upper bounds of contribution of each term of the correction factor,

i.e.

BLU =

p+1∏
k=1

[
inf
w∈X

(Skw, uk, S
cw)Y

‖Scw‖2Y
, sup
w∈X

(Skw, uk, S
cw)Y

‖Scw‖2Y

]
.

Then, we solve a (rather simple) linear programming problem

β̂cLB,UL(µ) = inf
y∈BUL

p+1∑
k=1

ψpk(µ)yk,

the solution to which is given by choosing either extrema for each coordinate of the

bounding box BLU based on the sign of ψpk(µ), as explicitly stated in Section 3.2.2.

Let us now consider a special case of SCM where the SCM sampling points are

the interpolation points, µk, k = 1, . . . , p+1, of the Nµ-p interpolation scheme. The

SCM bounding box is given by

BSCM =

p+1∏
k=1

[
−γk
βc
,
γk
βc

]
.

where

γk ≡ sup
w∈X

‖Skw‖Y
‖w‖X

.

Since the kernel of BLU is bounded by∣∣∣∣ (Skw, uk, Scw)Y
‖Scw‖2Y

∣∣∣∣ ≤ ‖Skw‖Y‖w‖X
‖w‖X
‖Scw‖Y

≤ sup
w∈X

‖Skw‖Y
‖w‖X

(
inf
w∈cY

‖Scw‖Y
‖w‖X

)−1

=
γk
βc
,

for k = 1, . . . , p+ 1, we have

BLU ⊂ BSCM.

Furthermore, as the SCM sampling points correspond to the interpolation points,

the SCM linear programming constraints

p+1∑
k=1

ψpk(µl)yk ≥ β̄c(µl), l = 1, . . . , p+ 1

simplify to (using ψpk(µl) = δkl)

yk ≥ β̄c(µk), k = 1, . . . , p+ 1,

where

β̄c(µk) = inf
w∈X

(Skw, uk, S
cw)Y

‖Scw‖2Y
.
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We recognize that the this constraint is in fact identical to the lower bound box

constraint of BLU. Thus, the space over which the SCM lower bound is computed,

DLB
SCM = {y ∈ BSCM : yk ≥ β̄c(µk), k = 1, . . . , p+ 1},

satisfies

BLU ⊂ DLB
SCM.

More specifically, DLB
SCM has the same lower bounds as BLU but has loser upper

bounds than BLU. Consequently, we have

inf
y∈DLB

SCM

p+1∑
k=1

ψpk(µ)yk = β̂cLB,SCM(µ) ≤ β̂cLB,LU(µ) = inf
y∈BUL

p+1∑
k=1

ψpk(µ)yk ≤ β̂c.

Thus, if the SCM sampling points are the same as the interpolation points of the

Nµ-p interpolation scheme, then our LU formulation gives a tighter inf-sup lower

bound than SCM.
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