
MIT Open Access Articles

IDA: An implicit, parallelizable method for calculating drainage area

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Richardson, Alan, Christopher N. Hill, and J. Taylor Perron. “IDA: An Implicit, 
Parallelizable Method for Calculating Drainage Area.” Water Resour. Res. 50, no. 5 (May 2014): 
4110–4130. © 2014 American Geophysical Union

As Published: http://dx.doi.org/10.1002/2013wr014326

Publisher: American Geophysical Union (Wiley platform)

Persistent URL: http://hdl.handle.net/1721.1/97904

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/97904


RESEARCH ARTICLE
10.1002/2013WR014326

IDA: An implicit, parallelizable method for calculating
drainage area
Alan Richardson1, Christopher N. Hill1, and J. Taylor Perron1

1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge,
Massachusetts, USA

Abstract Models of landscape evolution or hydrological processes typically depend on the accurate deter-
mination of upslope drainage area from digital elevation data, but such calculations can be very computation-
ally demanding when applied to high-resolution topographic data. To overcome this limitation, we propose
calculating drainage area in an implicit, iterative manner using linear solvers. The basis of this method is a
recasting of the flow routing problem as a sparse system of linear equations, which can be solved using estab-
lished computational techniques. This approach is highly parallelizable, enabling data to be spread over multi-
ple computer processors. Good scalability is exhibited, rendering it suitable for contemporary high-
performance computing architectures with many processors, such as graphics processing units (GPUs). In
addition, the iterative nature of the computational algorithms we use to solve the linear system creates the
possibility of accelerating the solution by providing an initial guess, making the method well suited to itera-
tive calculations such as numerical landscape evolution models. We compare this method with a previously
proposed parallel drainage area algorithm and present several examples illustrating its advantages, including
a continent-scale flow routing calculation at 3 arc sec resolution, improvements to models of fluvial sediment
yield, and acceleration of drainage area calculations in a landscape evolution model. We additionally describe
a modification that allows the method to be used for parallel basin delineation.

1. Introduction

Hydrological flow routing models predict the path of surface runoff, and thus permit the delineation of
drainage networks. Flow routing calculations are required in applications ranging from investigations of ero-
sion and landscape evolution, where they are used to estimate flow discharge and fluvial sediment loads
[e.g., Syvitski et al., 2005], to precision agriculture, where they are a means of inferring soil wetness [Schmidt
and Persson, 2003]. The multiscale nature of drainage networks, in which convergent flows from hillslopes
join to form tributary networks, which eventually merge to form continent-scale river networks, implies that
accurate flow routing requires high-resolution data over large areas.

1.1. Drainage Area
One quantity that occurs frequently in hydrological calculations is the drainage area, A. The drainage area of
a patch of terrain refers to the horizontal (map-view) area of the landscape that drains to that patch. Equiva-
lently, it is the area of the landscape that is upslope from the patch. Drainage area can be estimated using
only information about flow directions that can be inferred from land surface elevations, and it is therefore
often used to estimate other quantities that are difficult to measure directly. It has been shown, for example,
that A is one of the main variables that influences sediment loads in large rivers [Milliman and Syvitski, 1992;
Mulder and Syvitski, 1996; Syvitski and Milliman, 2007]. Another use is in catchment analysis, where its corre-
lation with channel slope is interpreted as a signature of erosional processes [Willgoose et al., 1991] and the
transition from hillslope to valley morphology [Tarboton et al., 1991]. Drainage area is also commonly used
as a surrogate for quantities such as water discharge and channel width in landscape evolution models, a
set of approximations with strong empirical support that allow erosion and sediment transport rates to be
expressed in terms of the topography [e.g., Howard, 1994; Willgoose, 2005; Tucker and Hancock, 2010].

1.2. Need for Higher Resolution and Current Limitations
Flows accumulate downstream, making drainage area a fundamentally nonlocal quantity that can depend
on the topography in distant parts of the landscape. At the same time, flow directions depend sensitively

Key Points:
� Iterative methods can be used to

scalably calculate drainage area in
parallel
� Parallel computing is necessary to

exploit large scale high-resolution
DEMs
� The proposed method scales well to

large numbers of processors

Correspondence to:
A. Richardson,
alan_r@mit.edu

Citation:
Richardson, A., C. N. Hill, and J. T.
Perron (2014), IDA: An implicit,
parallelizable method for calculating
drainage area, Water Resour. Res., 50,
4110–4130, doi:10.1002/
2013WR014326.

Received 25 JUNE 2013

Accepted 25 APR 2014

Accepted article online 2 MAY 2014

Published online 21 MAY 2014

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4110

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2013WR014326
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


on local topography, making accurate determination of drainage area dependent on the resolution and
accuracy of the topographic data. In addition, calculations that involve drainage area also frequently use
local topographic quantities, such as slope or curvature, that depend even more sensitively on the fidelity
of the topographic data. Finer resolution topographic data generally allow more accurate calculation of rele-
vant topographic quantities, avoid the omission of small drainage basins and other fine-scale features when
performing large-scale calculations, and reduce the likelihood of significant flow routing errors.

Remotely sensed, high-resolution elevation data are already available at continent scale. Advances in the
acquisition of digital elevation model (DEM) data, the basis of many hydrological calculations, have led to
dramatic increases in the available resolution. Regional data sets, such as the USGS National Elevation Data-
set (NED) [Gesch et al., 2009], are available at horizontal resolutions down to 3 m in some locations, and the
widespread acquisition of airborne laser altimetry is expanding coverage at even finer resolutions to entire
states and countries [Glennie et al., 2013]. The SRTM [Farr et al., 2007] and ASTER [Hirano et al., 2003] projects
have created global DEMs with resolutions of less than 100 m, and even finer resolution is expected from
the TanDEM-X mission [Zink et al., 2008]. This rapid rise in data availability provides the opportunity to per-
form continent-scale flow routing calculations with unprecedented accuracy. As we explain in section 2, a
limiting factor in such calculations is the algorithm used to compute drainage area. Conventional algorithms
are restricted to execution on a single computer processor. Performance will therefore be significantly
degraded if it becomes necessary to consider terrains larger than the memory one processor can accommo-
date, as frequent disk access will be required. Use of a single processor also implies that the run time of the
conventional algorithms increases proportionally with terrain size.

As in the calculation of other hydrological quantities that rely on flow routing, such as hydrological proxim-
ity measures [Tesfa et al., 2011], attempts have been made to resolve these issues by proposing parallel
drainage area algorithms [e.g., Wallis et al., 2009; Bellugi et al., 2011; Braun and Willett, 2013]. As we show in
section 2.4, different parallel algorithms have different strengths that make them best suited to particular
problems or computational architectures.

1.3. New Contribution and Outline
In this paper, we propose performing flow routing calculations in an implicit, iterative manner using linear
solvers. This endows the computation with novel characteristics including good scalability to large numbers
of processors, and suitability for execution on modern computational platforms such as graphics processing
units (GPUs). In addition, our method’s iterative nature renders it particularly suitable for repeated calcula-
tions such as those performed by numerical landscape evolution models. We also demonstrate that this
algorithm can be adapted to delineate drainage basins with parallel computation.

Methods previously proposed for determining drainage area, and their limitations when applied to large
data sets, are discussed in section 2. The implicit, iterative approach that we propose is described in section
3, with implementation considerations in section 4. The performance of the method is analyzed in section 5.
Example calculations that demonstrate the advantages of this iterative approach and the potential scientific
advances it makes possible are presented in section 6.

2. Calculation of Drainage Area

2.1. Preprocessing of Digital Elevation Data
There are two steps that must be performed before the drainage area calculation can begin. Early implemen-
tations of these, and the calculation of A itself, are described by O’Callaghan and Mark [1984] and Jenson and
Domingue [1988]. The first is the hydrological conditioning of the input digital elevation model (DEM). This
involves several processes to render the data more suitable for hydrological applications, such as removing
spurious sinks from the data, which could cause flow paths in the model to artificially terminate early or be
routed incorrectly. The second step is the creation of the flow direction vector field. This specifies the direc-
tion in which runoff will flow in each cell (Figure 1). A simple algorithm for assigning flow directions is D8, or
‘‘steepest descent’’ [O’Callaghan and Mark, 1984], which routes all flow to the neighboring point to which
there is the steepest downward slope. More sophisticated algorithms split the flow between two or more
neighbors. An example is the D1 method [Tarboton, 1997], which divides flow among two adjacent neigh-
bors in proportion to each neighbor’s proximity to a calculated flow angle. The flow directions, determined by

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4111



whichever method was chosen,
are the input for the drainage
area calculation. For a discussion
of a modern preprocessing
implementation, see Metz et al.
[2011].

2.2. Conventional Serial
Algorithm
The conventional drainage area
algorithm [Mark, 1988] uses
recursion to follow the drainage
path upslope from drainage out-
lets to drainage divides (or other
features that define the origins
of flow paths). Once the divide
points have been reached, they
set their drainage area equal to
their cell area, and execution
travels downstream again, with
the drainage area of each cell
being equal to the sum of the
drainage area of its immediate
neighbors that drain directly to
it, multiplied by the fraction of
their area that they contribute
to the cell, plus its own cell area.

This algorithm is elegant in its simplicity and efficient for problems of limited size, but its fundamentally
serial nature means that it must be run on a single computer processor. In practice, this limits the size of the
data set that can be considered, as both processing time and memory requirements will increase linearly
with the size of the problem domain.

2.3. Need for a New Algorithm
The rate of increasing data resolution, and therefore memory required, is faster than that of available
resources for single processors. At 0.5� resolution, as used in the STN-30p data set [V€or€osmarty et al., 2000],
less than 0.01 GB is needed to store drainage area data for North America from the Panama Canal to 60�N.
This rises to more than 1000 GB for the 12 m expected resolution of TanDEM-X data [Krieger et al.,
2007]. This is at least an order of magnitude greater than is typically available to a single processor in cur-
rent systems. The solution is to use multiple processors running in parallel. Doing so provides access to mul-
tiple times the memory and computational power of a single processor.

2.4. Previously Proposed Parallel Drainage Area Algorithms
Algorithms that were used in serial computations may no longer work for parallel execution, or may not be
efficient. It therefore becomes necessary to design new algorithms to exploit such computing resources. A
modification of the conventional recursive drainage area algorithm to permit parallel execution, and there-
fore enable the calculation on large landscapes at high resolution, was proposed by Wallis et al. [2009]. The
idea is to only calculate the drainage area for a cell after all of the cells that drain into it have already been
processed. This ensures that the required information, even if it is calculated by another processor, is avail-
able when it is needed. To do this, the method extends the conventional drainage area algorithm with a
dependency grid. For each cell, the dependency grid stores the number of immediate neighbors that drain
to that cell. When a cell is processed, the cells that it immediately drains to have their dependency number
decreased by one. Cells are added to the queue to be processed when their dependency grid value reaches
zero (none of the upstream cells remain to be processed). When the queue of a processor is empty (it has
no more cells that can be processed with the available information), it communicates with the processors
working on neighboring patches of the landscape. This allows information about flow across processor

Figure 1. Schematic diagram illustrating hypothetical flow paths between nine cells in a
digital elevation data set. Numbers are cell labels, and correspond to the subscripts in
equations (1) and (4). Arrows indicate flow paths.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4112



domain boundaries to be transferred between processors. The information received from neighboring pro-
cessors may allow additional cells to be processed. Alternating stages of computation and communication
continue until all of the cells in the landscape have been processed. This method, named ParallelArea, is
part of the TauDEM software package [Tarboton, 2013]. While ParallelArea eases the memory constraint on
problem size, the number of communication stages required will grow if more processors are used on a
landscape (as the domain size of each processor will decrease). Reported measurements indicate that on a
large cluster the runtime of the algorithm decreases as (number of processors)20.93 up to 48 processors, but
shows less consistent decreases in runtime for higher processor counts [Wallace et al., 2010]. This suggests
that the ParallelArea method scales very well up to moderate processor counts for a landscape of the size
tested (24,856 3 24,000 cells), but that it may not be possible to further reduce runtime by increasing proc-
essor counts beyond this.

Parallel drainage area algorithms have also been proposed by Bellugi et al. [2011] and Braun and Willett
[2013]. Like ParallelArea, both of these methods arrange the order in which cells are processed so that com-
putation begins at flow sources and progresses downslope, ensuring that whenever a cell is processed, the
information it relies upon (the upstream drainage area) is already available. Braun and Willett [2013] report
good scaling behavior on increasing numbers of cores of a single processor, obtaining a five times speed-
up over single core performance when running on eight cores. Such algorithms therefore appear to per-
form well when the terrain data set is small enough to fit into the memory of a single multiprocessor. Unlike
Wallis et al. [2009], the authors do not describe implementation on distributed memory systems. The use of
such systems, where processors have local memory and must communicate with other processors to access
the local memory of those processors, is essential to efficiently process large terrains that cannot fit into the
memory of a single multiprocessor. It is likely that the algorithm described by Braun and Willett [2013] could
be implemented in a way that is suitable for distributed memory systems, but given its similarity to Parallel-
Area, it is not clear whether it provides scalability that improves on the results reported by Wallace et al.
[2010]. In an unpublished experiment, the algorithm of Bellugi et al. [2011] scaled as (number of process-
ors)20.8 between 2 and 32 processors, decreasing to (number of processors)20.3 between 32 and 128 pro-
cessors, on a 128 3 106 pixel landscape (D. Bellugi, personal communication, 2013).

While these methods scale well for modest numbers of processors, scaling deteriorates as communication
overhead increases. The high-performance computing systems of the future are expected to consist of very
large numbers of processors [Shalf et al., 2011], so the current parallel algorithms may no longer be efficient.
We therefore undertook to devise an alternative approach which may be more suitable for many-core
architectures.

3. Implicit Drainage Area (IDA)

3.1. Implicit Formulation
The Implicit Drainage Area (IDA) algorithm reformulates the flow routing problem as a system of linear
equations. Consider the nine cell system shown in Figure 1. If an is the drainage area of cell n, bn is the area
of cell n, and wmn is a weight equal to the fraction of the area of cell m that drains to cell n, then the flow
paths shown in Figure 1 lead to a set of linear equations:

ai5bi i51; 3; 4; 7 (1a)

a25b21a1w12 (1b)

a55b51a1w151a2w251a4w451a7w75 (1c)

a65b61a3w361a5w561a8w861a9w96 (1d)

a85b81a7w78 (1e)

a95b91a8w89 (1f)

where the bi in each equation indicates that each cell receives drainage from itself in addition to any drain-
age from neighboring cells. For example, the drainage area of cell 9 in Figure 1 is calculated by adding the
portion of the area of cell 8 that drains to cell 9 (a8w89) to the area of cell 9 itself (b9). Most widely used flow

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4113



routing schemes can be writ-
ten in this way with an appro-
priate choice of weights, wmn.
In the simple ‘‘steepest
descent’’ or D8 algorithm
[O’Callaghan and Mark, 1984],
for example, each cell contrib-
utes flow to only one down-
slope neighbor, and therefore
all the nonzero weights are
equal to one. Multiple flow
direction (MFD) algorithms, in
which each cell may contribute
flow to multiple downslope
neighbors [e.g., Quinn et al.,
1991; Tarboton, 1997], as in the
example in Figure 1, are
accommodated by specifying
weights between zero and one
that sum to one for each cell:

X
n

wmn51 (2)

The value of wmn is deter-
mined by the flow direction
algorithm. It is the same as the
value that occurs in the con-
ventional drainage area algo-

rithm. For example, in a flow routing scheme in which a cell’s flow passes to all downslope neighbors in
proportion to slope, the weights for cell 8 in Figure 1 are:

w865
S86

S861S89
(3a)

w895
S89

S861S89
(3b)

w845w855w8750 (3c)

where Smn is the slope from cell m to cell n.

The linear system in equation (1) can be cast as a matrix equation:

1

2w12 1

1

1

2w15 2w25 2w45 1 2w75

2w36 2w56 1 2w86 2w96

1

2w78 1

2w89 1

2
666666666666666666664

3
777777777777777777775

a1

a2

a3

a4

a5

a6

a7

a8

a9

2
666666666666666666664

3
777777777777777777775

5

b1

b2

b3

b4

b5

b6

b7

b8

b9

2
666666666666666666664

3
777777777777777777775

(4)

where the elements left blank are zeros. This system has the form Wa5b, in which a is the vector of
unknown drainage areas, and can be solved with a suitable algorithm for calculating W21b. A similar

Figure 2. Hypothetical flow paths between nine cells in a digital elevation model, using the
same notation as Figure 1. In this example, D4/D8 flow routing is used, resulting in each cell
draining entirely to only one of its neighbors. Arrows indicate flow paths. The corresponding
system of equations for drainage area is shown in equation (5).

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4114



formulation has been proposed independently by S. Eddins of Mathworks, Inc. [Eddins, 2007], and
also by Schwanghart and Kuhn [2010], although these authors do not emphasize the ease of paralle-
lization when solving such a system in an iterative manner. This example describes a situation in
which a regular grid is used, but the method could equally be applied to any other form of mesh.
As in most drainage area calculations, all areas discussed in this paper are areas of the horizontal
projection of features, not their surface areas. However, there is nothing in this method that pre-
cludes its use for surface areas.

The system in equation (4) is implicit because the drainage area of each cell is expressed in terms of the
unknown drainage areas of its neighbors. It is sparse because the matrix W contains only the diagonal terms
corresponding to the areas of individual cells and off-diagonal terms corresponding to at most eight (and
typically fewer) immediate neighbors of each cell.

The situation is simplified when cells drain entirely to only one neighbor, such as when D8 flow routing is
used. For the D8 system shown in Figure 2, assuming that the area of each cell is 1, the system correspond-
ing to equation (4) above would be:

1 0 0 21 0 0 0 0 0

0 1 21 0 21 0 0 0 0

0 0 1 0 0 21 0 0 0

0 0 0 1 0 0 21 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 21

0 0 0 0 0 0 1 21 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

2
666666666666666666664

3
777777777777777777775

a1

a2

a3

a4

a5

a6

a7

a8

a9

2
666666666666666666664

3
777777777777777777775

5

1

1

1

1

1

1

1

1

1

2
666666666666666666664

3
777777777777777777775

(5)

3.2. Solution Method
Posing the problem in the form of a sparse linear system renders the computation of drainage area similar
to many other scientific and engineering calculations. A significant body of work is dedicated to the solu-
tion of such problems [e.g., Saad, 2003]. This method therefore permits the application of such research and
future advances to the determination of drainage area. The system in equation (4) could be solved with a
direct method, such as Gaussian Elimination followed by back substitution. Such a method would be robust,
but not amenable to parallelization. Instead, we suggest a solution approach that uses a preconditioned
iterative method.

The iterative approach to solving a system of equations of the form Wa5b (where W is an M 3 N matrix,
a is an N 3 1 vector, and b is an M 3 1 vector) is to first use an initial guess for a, which we will call a0. The
residual is then r5b2Wa0. This can be used to improve the guess for a (with the exact procedure depend-
ing on the solver being used), giving rise to a new residual. Many different solvers are available when the
matrix W is positive definite ðaT Wa > 08a 2 RN; a > 0Þ and symmetric ðWT 5WÞ. When these criteria are
not met, as is the case in the implicit formulation of flow routing problems, the number of choices is
reduced.

Iterative methods allow the desired accuracy of the solution to be specified. The method will iterate until
the convergence condition is met. We use the condition that jjrjjjjbjj < Oð1310216Þ, which ensures that the
residual is small. If less accuracy is required, then a higher bound on the relative residual norm could be
used, resulting in the method terminating after fewer iterations.

Iterative methods are typically combined with a preconditioner [Benzi, 2002]. These attempt to instead solve
the system P21Wa5P21b, where P21W is a matrix with a lower condition number (a measure which indi-
cates the difficulty of solving the system) than W, resulting in faster convergence. A wide variety of solver-
preconditioner pairs are therefore available [Saad, 2003]. In sections 4 and 5, we discuss solvers that are
well suited to the systems typically encountered in drainage area computations.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4115



3.3. Hybrid Method
To exploit the speed of the conventional recursive method, it can be used to determine an approximation of
drainage area on the portion of a landscape stored on each processor, neglecting any flow received from out-
side that portion of the landscape. This estimate can then be used as an initial guess for the IDA method.

Performance can be further improved by recognizing that the serial algorithm calculates the correct drain-
age area for cells that do not receive flow from another processor. These cells can therefore be omitted
from the system of equations passed to the linear solver, greatly reducing memory requirements and
runtime.

The performance improvement does, however, come at the expense of additional effort required to imple-
ment the hybrid algorithm. Cells that are not correctly solved by the serial algorithm must be identified,
inserted into the reduced system, and then have their updated values copied back to the correct location
from the output of the linear solver. Rather than solving for ai5bi1

P
jfwji aj : j 2 immediate neighbors

that drain to i}, as described in section 3.1, the hybrid method solves the system composed of ai5al
i1P

jfwji aj2al
j

� �
: j 2 immediate neighbors in the same processor domain that drain to i and are down-

stream from a process boundary crossing} 1
P

kfwki ak : k 2 immediate neighbors that drain to i, are on the
other side of a processor boundary}. Here the superscript l (for ‘‘local’’) refers to the drainage area computed
for a point using the serial algorithm (and so neglecting flow across processor boundaries). This change to
the system solved is necessary to properly account for flow from cells that were correctly calculated by the
serial algorithm to those that were not. The algorithm accomplishes this by adding the change caused by
the inclusion of flow across processor boundaries

P
jfwji aj2al

j

� �
g1
P

kfwki akg
� �

to the value calculated
by the serial algorithm al

i

� �
. The edge contamination concept described by Tesfa et al. [2011] could aid the

identification of cells that do need to be passed to the solver.

As an example, we consider the flow paths shown in Figure 2 for the case when each column of the land-
scape is stored on a different processor. Processor 1 stores cells 1–3, 4–6 are on processor 2, and 7–9 are on
processor 3. After running the serial algorithm on each processor, cells 5, 7, 8, and 9 have the correct value.
Assuming each cell has unit area, the initial guesses for each cell at this stage (which correspond to the al

i

values above), are:

al
1 : 1

al
2 : 2

al
3 : 1

2
664

3
775

al
4 : 1

al
5 : 1

al
6 : 1

2
664

3
775

al
7 : 2

al
8 : 1

al
9 : 1

2
664

3
775 (6)

In this example, only cell 8 can be excluded from the reduced system, because cell 8 is the only cell with a
correct serial solution that does not drain across a processor boundary. The system corresponding to equa-
tion (5) of the regular IDA method is then:

1 0 0 21 0 0 0 0

0 1 21 0 21 0 0 0

0 0 1 0 0 21 0 0

0 0 0 1 0 0 21 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 21

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

2
666666666666666664

3
777777777777777775

a1

a2

a3

a4

a5

a6

a7

a9

2
666666666666666664

3
777777777777777775

5

al
1

al
22al

3

al
3

al
4

al
5

al
6

al
7

al
9

2
666666666666666664

3
777777777777777775

(7)

For example, the drainage area of cell 2 is calculated by adding the difference between the correct value for
cell 3 and the value computed for that cell by the serial algorithm a32al

3

� �
, and the value of cell 5, which

was computed correctly by the serial algorithm a55al
5

� �
, to the value calculated for cell 2 by the serial algo-

rithm al
2

� �
. Note that in the steepest descent example in Figure 2, the weights are all equal to 1.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4116



3.4. Drainage Basin Delineation
The iterative method for computing drainage area can be adapted to delineate drainage basins without
computing the drainage areas of all points within the basins. The objective of this operation is to begin
with a set of outlet points, such as points along a coast, and identify the collection of points that drains to
each outlet. This yields a mask that allows properties of basins, such as size, shape, and average slope, to be
determined for each basin.

The canonical serial basin separation algorithm [Mark, 1988] starts from the outlets, assigning each a unique
number. It then recursively identifies all upstream points of each outlet, similarly to the conventional serial
drainage area algorithm, and fills these points with the outlet’s unique value.

To solve the basin separation problem in parallel, it can be reformulated as a system of equations Wu5b
and then solved in a similar way to the IDA algorithm. As with the canonical case, the outlets must first be
identified. The entries in the b vector corresponding to these points are set to unique values, while the rest
are set to zero. The W matrix has ones on the diagonal and 2 1

n in Wi,j, if cell i directly drains to cell j, where
n is the number of immediate neighbors that cell i drains to. All other elements of W are zero. As the system
of equations is solved, the unique values will propagate upstream from the outlets. When the solver com-
pletes, the u vector will contain an entry for each cell equal to the unique value of the outlet to which that
cell ultimately drains, or zero if it does not drain to any of the requested outlets. As with the canonical
method for basin separation, flow direction schemes that permit a cell to drain to more than one of its
neighbors, such as D1 [Tarboton, 1997], complicate basin separation as they permit a single cell to ulti-
mately drain to more than one outlet. With the proposed method, the basin number of cells upstream from
the cell where a divergent flow occurs would be set equal to the sum of the basin numbers of the cells
immediately downstream from the divide, potentially making it difficult to identify the basins that such cells
are part of.

As an example, we use the landscape and associated flow paths shown in Figure 2. All of the cells in this
landscape drain through the two outlets: cells 1 and 2. We associate unique numbers with these two out-
lets, o1 and o2, respectively. The application of basin delineation will set the u value for each cell to the
unique number corresponding to the outlet to which it drains. The linear system of equations for this exam-
ple is:

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 21 1 0 0 0 0 0 0

21 0 0 1 0 0 0 0 0

0 21 0 0 1 0 0 0 0

0 0 21 0 0 1 0 0 0

0 0 0 21 0 0 1 0 0

0 0 0 0 0 0 21 1 0

0 0 0 0 0 21 0 0 1

2
666666666666666666664

3
777777777777777777775

u1

u2

u3

u4

u5

u6

u7

u8

u9

2
666666666666666666664

3
777777777777777777775

5

o1

o2

0

0

0

0

0

0

0

2
666666666666666666664

3
777777777777777777775

(8)

4. Implementation

4.1. Advantages of the Implicit, Iterative Formulation
The advantage of the formulation we present in section 3 is not only the availability of established solvers
for sparse, linear systems, but also the ease of parallelization. Optimized, parallel iterative solvers and pre-
conditioners are widely available in libraries, such as PETSc [Balay et al., 2012] and HYPRE [Falgout et al.,
2012]. Once the matrices have been constructed, they need only be passed to such a library to be solved in
parallel.

The implementation of the central component of the IDA method, solving the system of equations, there-
fore requires relatively little programming effort. The construction of the input matrices and an initial guess,

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4117



if desired, are the only steps that may require some effort, but as long as the flow directions of each cell’s
neighbors are available, this is likely to be simpler than the parallel implementation of some other drainage
area algorithms.

PETSc, HYPRE, and hand-coded central processing unit (CPU) and graphics processing unit (GPU) versions
of the code were created. Of these options, HYPRE provided the easiest implementation but offered fewer
choices of solver and preconditioner than PETSc. We found that the slightly more difficult development
experience when using PETSc was justified by the ease of testing many different solver and preconditioner
combinations, together with its ability to run on GPUs in addition to CPUs. The results we show in the
remainder of this paper were therefore generated from the PETSc implementation, unless otherwise noted.
This code may be downloaded from the online repository of the Community Surface Dynamics Modeling
System (CSDMS) [CSDMS, 2013]. Optimizations are possible when the algorithm is hand-coded, as described
below, and so this may be preferable for production codes.

4.2. Construction of the W Matrix
As mentioned above, when a linear solver and preconditioner library, such as PETSc, is used, the only step
that remains to be implemented in the regular IDA algorithm is the construction of the W matrix. This can
be accomplished with the following algorithm, where Ny is the number of cells in the y direction (often
North-South) of the local process domain, Nx is the number of cells in the x direction (often East-West), and
wi;j

i1p;j1q is the fraction of flow contributed from the cell at (i 1 p, j 1 q) to the cell at (i, j), which may be zero.

Cells may contribute flow across process domain boundaries, which will be manifested as trying to set
the value of an element outside of the local NxNy 3 NxNy matrix. Libraries such as PETSc provide
functions for constructing the local portions of sparse matrices, including the ability to set these nonlocal
elements.

Once the construction of the W matrix is complete, the area of each cell is stored in the b vector for regular
IDA, or set as described in section 3.3 for the hybrid method. The a vector is set to the initial guess of each
cell’s drainage area, if available. These inputs are then provided to the preconditioned solver, which will
store the final drainage area solution in a, completing the IDA algorithm.

4.3. Choice of Solver
The performance of the IDA algorithm is strongly dependent on the choice of solver and preconditioner.
Many iterative solvers and preconditioners are only suitable for specific forms of coefficient matrices. As we
note in section 3, the matrix in this case is not symmetric or positive definite, which reduces the number of
choices.

The conjugate gradient method [Hestenes and Stiefel, 1952] is a popular linear solver, but cannot be used
for this system for the aforementioned reasons. Other Krylov subspace methods can be used, however,

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4118



such as GMRES (generalized minimal residual method) [Saad and Schultz, 1986] and BiCGSTAB (biconjugate
gradient stabilized method) [van der Vorst, 1992]. Non-Krylov solvers are also available, including the
Richardson method [Richardson, 1910].

The choice of preconditioner similarly presents several options. The Jacobi preconditioner, one of the sim-
plest methods, approximates the coefficient matrix by its diagonal. It is therefore most suitable for diago-
nally dominant matrices. That is not true of the drainage area system, rendering this a poor choice. The
successive over-relaxation (SOR), incomplete LU factorization (ILU), additive Schwarz method (ASM), and
algebraic multigrid (AMG) preconditioning methods are all potential candidates. For a broad discussion of
linear solvers and preconditioning methods, see Saad [2003].

We tested various solver-preconditioner combinations available in PETSc by processing a 4000 3 4000 cell
area of the United States (approximately covering the region from 35�N, 117�W to 52�N, 100�W) on eight
processor cores using the 15 arc sec flow direction data set from the HydroSHEDS project [Lehner et al.,
2008]. For each combination, we recorded the wall clock time required for the calculation to converge.
Solver-preconditioner combinations that did not run due to incompatibility with the flow routing matrix
equation were noted, and calculations that did not converge within 15 min were terminated. The results,
including runtimes for combinations that successfully converged, are presented in Figure 3. For the solver-
preconditioner combinations that were successful, we performed the same calculation on two processor
cores to examine scaling behavior. The results of this informal scaling analysis are shown in Figure 4.

Several of the solvers converged for a variety of preconditioners. The Richardson solver [Richardson, 1910]
converged with the greatest number of preconditioners (8 out of 13), followed by the FGMRES [flexible gen-
eralized minimal residual method) [Saad, 1993] and GCR (generalized conjugate residual) [Widlund, 1978]. In
general, the Richardson and TFQMR (transpose-free quasi-minimal residual method) [Freund, 1993] methods
provided the fastest runtimes. Richardson also exhibited superior scaling, approaching linear scaling for

Figure 3. Runtime of IDA on a 4000 3 4000 landscape extracted from the 15 arc sec HydroSHEDS North America data set, using eight
processing cores and a variety of solver-preconditioner combinations. We use PETSc’s naming conventions for these solvers and precondi-
tioners. Certain combinations failed to run, probably due to assumptions of the methods, such as matrix symmetry, being violated. Other
combinations ran but did not converge within the 15 min limit imposed. A large variation in runtime is observed for those combinations
that did run and converge. A single Intel Xeon 5570 with 24 GB of memory was used, together with PETSc 3.4.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4119



several preconditioners. We found that the combination of the Richardson solver and the Euclid precondi-
tioner, part of the external HYPRE package [Falgout et al., 2012], exhibited the best scaling behavior. The
Richardson solver is a simple method that updates the guess by using the equation aj115aj1xðb2WajÞ,
for the j 1 1 iteration, where x is a scalar that we left at PETSc’s default of 1. Euclid is an incomplete LU fac-
torization preconditioning method. Such methods factor the W matrix into upper triangular and a lower tri-
angular components, while attempting to preserve sparseness [Hysom and Pothen, 2001]. We therefore use
Richardson-Euclid in all subsequent performance results presented in this paper, unless otherwise noted. It
is possible that combinations not tested may yield better scalability, and that scalability may be affected by
the computer hardware in use. It is also possible that the optimum combination may depend on the charac-
teristics of the terrain. To test this, we ran a selection of solver-preconditioner pairs with five terrains of the
same size centered at randomly selected coordinates in North America, with the condition that no more
than 20% of the terrain be covered by ocean. Although runtime differed by up to 20% between the differ-
ent landscapes, there was almost no variation in the relative times of the different solver-preconditioner
combinations.

4.4. Memory Requirements
To accommodate the working space required for the linear solver, a larger amount of memory may be
required for IDA compared to other parallel drainage area calculation methods. Nevertheless, as with other
parallel drainage area methods, the memory requirements of IDA are divided among the number of pro-
cessors participating, and so larger problem sizes can be considered by increasing the number of process-
ors. The hybrid IDA method has significantly reduced memory requirements compared to the regular
version, as only the cells that could not be calculated by the serial algorithm are considered by the linear
solver.

One of the largest memory requirements of IDA is due to the storage of the W matrix. One method of stor-
ing this matrix is to notice that it has nine nonzero diagonals, of which one (the main diagonal) is always 1
and so can be incorporated into the equations rather than stored. The W matrix could therefore be stored

Figure 4. Speed-up of the IDA runtime on the same 4000 3 4000 landscape as in Figure 3, using a variety of solver-preconditioner combi-
nations, when increasing the number of processing cores from 2 to 8. Many of the combinations are observed to obtain close to the linear
four times speed-up, but the Richardson-Euclid combination slightly exceeds this, achieving super linear speed-up. A single Intel Xeon
5570 with 24 GB of memory was used.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4120



as an 8 3 N matrix, where N is the number of elements in the landscape. Even in this compressed matrix,
the vast majority of elements will still be zero (as flow is in general only contributed by a small number of a
cell’s neighbors), and so further compression is possible by storing in other formats such as compressed
row storage (CRS) [see Tewarson, 1973, for a description]. CRS is the storage format used by default by
PETSc. While the W matrix contains N 3 N elements, exploiting its sparse nature therefore results in storage
requirements only growing linearly with N.

As prepackaged solutions, libraries such as PETSc may implement general optimizations, but typically do
not take advantage of optimization opportunities specific to the system they are being used to solve. In the
case of the drainage area calculation, such optimizations include noticing that when D8 flow directions are
being used, the elements of the W matrix can be stored as single bit Boolean values, rather than in floating-
point format. Such optimizations can significantly reduce memory requirements and potentially improve
performance. We have implemented such optimizations in a hand-written GPU code and found that they
do improve performance compared to general library implementations. For a 2000 3 2000 landscape and
running on an Nvidia GeForce GTX 480 GPU using the BiCGSTAB solver [van der Vorst, 1992], our hand-
coded implementation is 5% faster than the PETSc implementation. Nevertheless, the results we present in
subsequent sections were obtained using PETSc, unless otherwise noted.

The memory requirements of IDA will depend on the solver and preconditioner used. The BiCGSTAB solver,
for example, requires approximately 7 3 N elements, in addition to the memory to store the W matrix
(which will depend on the storage format used, as discussed above, but should be smaller than 8 3 N ele-
ments). The Richardson solver [Richardson, 1910], on the other hand, can be implemented with only 3 3 N
elements plus the storage for W.

5. Performance Analysis

One of the advantages of IDA is that the number of communication stages, when processors communicate
with each other to transfer data from the boundaries of their domains to neighbors, is almost independent
of the number of processors. This compares favorably to methods such as ParallelArea, where increasing
the number of processors will lead to a larger number of communication stages. For such methods, using a
large number of processors may therefore result in communication overhead dominating the reduced run-
time. We therefore expect that IDA will scale well, even to many processors. We examine the scaling behav-
ior by measuring the time to calculate the drainage area of the contiguous USA at 15 arc sec resolution
(20,640 3 8880 pixels) using different numbers of processors. The flow directions data set of the hydrologi-
cally preconditioned USGS HydroSHEDS project [Lehner et al., 2008], which we discuss in greater detail
below, is used. The timing measurements we show therefore only correspond to the application of the IDA
algorithm: calculating the drainage area. We performed the computation on a distributed memory cluster
with one 12 core Intel Xeon X5650 and 48 GB of memory per node, connected by an InfiniBand intercon-
nect. The runtime variation with number of processors is shown in Figure 5. Even at 192 processing cores,
the method is still able to improve performance by increasing processor count. The runtime could be
reduced by using the conventional serial algorithm on each processor’s local domain (neglecting flow
between processor domains), and providing this to the solver as an initial guess. On a sample data set of
5000 3 5000 cells per processor, with between two and five processing cores, we observed a speed-up of
about 20% through the use of this modification, independent of the number of cores. Omitting the cells
that are correctly solved by the serial algorithm, yielding the hybrid method described in section 3.3, further
improves performance. The scaling plot for the hybrid IDA method and TauDEM is presented in Figure 6. It
is apparent that the hybrid is significantly faster than regular IDA. This speed-up, more than 100 times in
this experiment, suggests that the more complicated implementation is likely to be justified for most appli-
cations. On a sample 4000 3 4000 cell data set, running on 8 cores, employing the hybrid method reduces
the linear solver system from 16 3 106 to about 55 3 103 elements (a 290 times reduction), so the dramatic
performance improvement is not surprising. As with the regular case, the scaling of the hybrid method
computation time does not diverge dramatically from ideal (linear) scaling. Likewise, continued perform-
ance improvements are obtained with increasing processing core count, even at 192 cores. TauDEM initially
improves performance as the number of processing cores is increased, but after 96 cores the runtime stead-
ily increases. It is possible that for this landscape and computer cluster, this is the point at which the

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4121



additional communication
stages required by reducing
each core’s domain size
outweigh the benefits of
increased total processing
power.

An additional form of per-
formance scaling measure-
ment, known as weak
scaling, examines the varia-
tion in computation run-
time as the total problem
size increases, while keep-
ing the problem size per
processor fixed. We add a
450 3 450 cell tile to the
landscape for each addi-
tional processing core used.
The results of this experi-
ment for the hybrid method
and TauDEM are shown in

Figure 7. The computation runtime of hybrid IDA is observed to only increase by two times when calculat-
ing the drainage area on a landscape eight times as large (0.18 s for a 1800 3 2700 landscape, compared to
0.32 s for a 10,800 3 3600 landscape). In comparison, the computation time of TauDEM increases by 22
times over the same range. For a smaller number of processing cores and larger tiles per processing core
(1000 3 1000 cells), shown in Figure 8, TauDEM provides almost ideal scaling of computation time, while
hybrid IDA’s computation time increased by 2.4 times when calculating the drainage area on a landscape
four times as large.

The major strength of IDA, both the regular and hybrid versions, is the close to ideal strong scaling that con-
tinues to large numbers of processors. This suggests that the method is well suited to many-core comput-
ing resources, and that it enables problems to be solved faster by simply increasing the number of
processors. If its scaling behavior continues to even larger numbers of processors, a point may be reached

at which the regular IDA
method provides runtimes
that are competitive with
other methods. The hybrid
IDA algorithm significantly
reduces the threshold at
which the method becomes
attractive. Indeed, for all of
our experiments, the com-
putation time of the hybrid
IDA method was shorter
than that of the ParallelArea
algorithm implemented in
TauDEM. A weakness of IDA
compared to ParallelArea is
its poorer weak scaling for
small numbers of processing
cores. Considering this result
in combination with the
strong scaling performance
suggests that IDA is most

Figure 5. The computation runtime of the IDA algorithm using the Richardson-Euclid solver-pre-
conditioner combination on the 20,640 3 8880 cell HydroSHEDS North America data set. Intel
Xeon X5650 CPUs with 48 GB of memory were used, connected by an InfiniBand network. Per-
fect, linear scaling is shown for reference.

Figure 6. The computation runtime of the hybrid IDA algorithm and ParallelArea algorithm, as
implemented in TauDEM 5.2, on the same landscape as in Figure 5. Intel Xeon X5650 CPUs with
48 GB of memory, connected by an InfiniBand network, were used. The TauDEM times are
those reported as ‘‘Compute time’’ by that code, while the IDA measurements are the sum of
the local serial calculation and the linear solver runtime.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4122



suitable for situations when a
large number of processing cores
are available. Given their similar-
ity to ParallelArea, the methods
described by Bellugi et al. [2011]
and Braun and Willett [2013] may
be expected to perform similarly
to that algorithm.

We anticipate that the perform-
ance of drainage area algorithms
for very large numbers of process-
ors will become increasingly rele-
vant as computer hardware
architectures evolve. The highly
parallelizable nature of iterative
linear solvers renders them appro-
priate for execution on modern
many-core architectures, such as
graphics processing units (GPUs).
Furthermore, such methods typi-
cally involve the repeated applica-
tion of the same operations on

every element of the domain, another characteristic necessary for good GPU performance. It has been shown
by Naumov [2012] that speed-ups of several times over the runtime obtained with CPUs are possible. Indeed,
our hand-written GPU implementation of IDA performed up to 30 times faster than our CPU version running
on one core, as shown in Figure 9. Significant speed-ups (greater than ten times for a 2000 3 2000 cell land-
scape) were also observed with our PETSc-based implementation of IDA, when switching from CPU to GPU
execution. This suggests that the IDA method may be particularly suited to such computational platforms.
The computations performed by the linear solver are similar in nature in the regular and hybrid IDA algo-
rithms, and so the hybrid algorithm should exhibit comparable GPU performance.

Thus, the advantage of the present implementation of regular and hybrid IDA over the conventional recur-
sive algorithm is the ability to overcome memory limitations and to exploit the additional computational

power of multiple processors.
The advantage over previously
proposed parallel algorithms is
the potentially greater scalability
to large numbers of processors
and its suitability for execution
on GPU-like architectures.

There are many more linear
solvers and preconditioner
methods than those that were
tested, and so there are poten-
tially more appropriate combi-
nations than Richardson-Euclid.
It is also likely that the solution
time could be reduced through
the imposition of constraints
based on the physical nature of
the flow routing problem. One
obvious constraint is that of pos-
itivity, as drainage area cannot
be negative.

Figure 7. The variation in computation runtime of hybrid IDA using Richardson-Euclid,
and TauDEM 5.2, as the total problem size increases while the problem size per processor
(450 3 450) remains fixed. The landscape tested was extracted from the 15 arc sec
HydroSHEDS data set covering North America. A distributed memory cluster consisting
of Intel Xeon X5650 CPUs with 48 GB of memory, connected by an InfiniBand network,
was used.

Figure 8. The weak scaling of hybrid IDA using Richardson-Euclid, and TauDEM 5.2, using
a 1000 3 1000 cell landscape tile per processing core. The landscape the tiles were
extracted from, and the computing resources used, were the same as those of Figure 7.
Only two processing cores on each node were used, to ensure that the effects of internode
communication were included in the results.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4123



6. Example
Applications

The ability to process
large landscapes at
high resolution creates
the opportunity to per-
form investigations
that are challenging
using the conventional
drainage area algo-
rithm on widely avail-
able computer
resources. Examples
include continent-scale
flow routing, which we
demonstrate in section
6.1, and the ability to
perform terrain analysis
calculations that use
flow routing over large
spatial extents while
simultaneously resolv-

ing local topographic characteristics such as slope gradients, as examined in section 6.2. Another applica-
tion where the IDA algorithm is particularly promising due to the iterative nature of the computational
methods is in landscape evolution modeling, as illustrated in section 6.3.

6.1. Continent-Scale Flow Routing
To improve understanding of global freshwater supplies, the World Wildlife Fund initiated the
HydroSHEDS project [Lehner et al., 2008], which produced a hydrologically corrected version of SRTM
data [Farr et al., 2007] at resolutions of 30, 15, and 3 arc sec, including elevations and flow directions.
The drainage areas calculated from this data set are also available, but only at 30 and 15 arc sec resolution.
We are not aware of any continent-scale drainage area computations that have been performed with the 3
arc sec version of this data set. The probable reason for this is the difficulty of processing this volume of
data with the conventional serial algorithm. Such a calculation is possible with the IDA method, however,
and so the HydroSHEDS flow directions were used to produce a 3 arc sec (approximately 90 m) drainage
area map of North America from the Panama Canal to 60�N, a grid with dimensions of 104,400 3 63,600.
The calculation was performed by dividing the landscape into three pieces which were solved for local flow
using the conventional serial algorithm to construct an initial guess, as described above. The flow between
these three sections was then accounted for by running IDA on 130 Nvidia M2070 GPUs at the Keeneland
Computing Facility at the Georgia Institute of Technology. We used our own GPU implementation, rather
than PETSc, due to its reduced memory requirement, as described in section 4.4. The drainage area map,
which is available from the CSDMS repository [CSDMS, 2013], is used to perform the analyses in the next
section.

Most basins were entirely contained within one of the pieces solved with the conventional serial algorithm.
The initial guess passed to IDA for these basins was therefore correct and so the application of IDA left their
drainage area unchanged. To verify that the basins split between two pieces during the serial solve were
correctly joined by IDA, we separately solved one such basin, that of the Nelson River, with the serial solver.
The resulting drainage area was within machine precision of that obtained with IDA.

6.2. Slope Versus Relief for Estimating Erosion Rates and Sediment Yields
Previous work has shown a strong correlation between A and average long-term suspended sediment
load Qs [Milliman and Syvitski, 1992], which is expected: for a given erosion rate, larger basins should
produce more sediment. A link has also been established between the maximum topographic relief of
a basin, R, and Qs [Mulder and Syvitski, 1996]. This may be because maximum relief acts as an

Figure 9. Speed-up of IDA when running on GPUs compared to CPUs. Landscapes ranging in size
from 1000 3 1000 cells to 4000 3 4000 were extracted from the 15 arc sec HydroSHEDS North Amer-
ica data set and used as input, with a hand-written BiCGSTAB code used as the solver. As this data set
uses D8 flow directions, the W matrix was stored using single-bit Boolean values, as described in sec-
tion 4.4, for both the CPU and GPU implementations. Two cases are shown: one GPU compared to
one CPU core, and two GPUs compared to two CPU cores. Nvidia GeForce GTX 480 GPUs, and an Intel
Xeon E5520 CPU, were used.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4124



approximate surrogate for aver-
age slope, which should influ-
ence hillslope erosion rates as
well as fluvial transport
capacity. Such an approximation
might not be valid, however, in
river basins with nonuniform
topography where the maxi-
mum relief is not representative
of the average basin slope, or
in comparisons between basins
with different relationships
between local slopes and basin
relief. Using slope rather than
relief may therefore yield better
estimates of sediment yield, but
calculating the slope between
cells at resolutions typically
used for continent-scale drain-
age area computations, often
several kilometers, may not pro-
duce meaningful values,
because this point spacing is
longer than typical hillslope
lengths. On the other hand, it
is typically not feasible to calcu-
late continent-scale A at a reso-
lution that is also suitable for
slope calculations due to the
computational limitations that
motivated this paper. Many
studies have therefore
employed the approximation of
only using relief, which does
explain a significant fraction of
the variance in sediment yields
from large rivers [e.g., Syvitski
et al., 2005].

We tested whether improved
estimates of continent-scale flu-
vial sediment yields can be
obtained by calculating both

slope and drainage area at a finer resolution than previous efforts that relied on relief. The sub-90 m resolu-
tion of the HydroSHEDS data set is sufficiently fine that meaningful slopes can be measured for some land-
scape features, as shown in Figure 10.

By employing the basin separation method described in section 3, with outlets specified to be all points
along the coast, we identified which basin each point on the landscape belongs to, and used this mask,
together with the drainage network, to calculate the average slope Sav in each basin.

Using 63 rivers that were coregistered with the MF11 database [Milliman and Farnsworth, 2011], incorporat-
ing predam data where available (11 of the rivers), multiple linear regression of log-transformed data was
used to determine a relationship between Qs and (A, Sav), and between Qs and (A, R). The resulting equa-
tions were Qs51020:31A0:77S1:22

av and Qs51024:0A0:44R1:21, with Qs in kg/s, A in km2, and R in meters. Because
S � RA21

2, the larger power dependence on A is expected when the model uses average slope, rather than

Figure 10. (top) Differences in calculated drainage area and (bottom) slope for a portion
of the (left) 15 arc sec and (right) 3 arc sec HydroSHEDS data set covering Ireland’s Galtee
Mountains and Glen of Aherlow at 52.4�N, 8.19�W. The difference in drainage area is
apparent from the absence of several rivers from the 15 arc sec result. The difference in
slope is particularly noticeable in the magnitudes (see color scales), with the 15 arc sec
result significantly gentler than the 3 arc sec result, and the inability of the 15 arc sec
data to resolve important features such as the steep slope above the corrie lakes, clearly
resolved at y 5 10,000 on the 3 arc sec image.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4125



maximum relief. However, that does not entirely explain the difference in the exponents on A. A compari-
son between observed Qs and the value predicted by these equations is shown in Figure 11. Using Sav

rather than R improves the correspondence between predicted and observed values of Qs. The (A, R) model
was found to explain 61% of the variance in the data, whereas the (A, Sav) model explained 65%. While
these are both lower than the 67% that Mulder and Syvitski [1996] observed with an (A, R) model, this differ-

ence can be explained by the use
of different data sets. When only
the 11 predam measurements
were used in the regression, the
(A,Sav) and (A, R) models had R2

values of 94% and 92%,
respectively.

For the particular application of
predicting the average coastal
sediment flux of large basins, the
reduction in accuracy caused by
using a coarser grid to determine
A is likely to be small, as it will
probably not change the calcu-
lated total drainage area of each
basin significantly. For smaller
basins, where a single cell of a
coarse grid may be a substantial

Figure 11. A comparison of observed and predicted sediment load (Qs) for a model in which Qs is a power function of drainage area (A)
and maximum relief (R), and another model in which Qs is a power function of drainage area (A) and average basin slope (Sav).

Figure 12. The total coastal sediment load in the region from the Panama Canal to 60�N
predicted by the (A, Sav) model in Figure 11, binned by basin area. Approximately one
third of the sediment flux is produced by basins that are below the resolution of 300 data
sets.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4126



fraction of the basin size, using a high-resolution drainage area grid becomes more important. Calculating
upstream drainage area at a similar resolution to Sav is also necessary when predicting average sediment
flux at a point inside a basin, such as during landscape evolution simulations. In such situations, interpolat-
ing a coarse A to the resolution of the landscape elevation and Sav grid can introduce dramatic errors, such
as assigning the large A of a river channel to the cells of neighboring valley slopes with large Sav. We focus
on the average coastal sediment flux of small basins in what follows.

We use the (A, Sav) model to predict Qs for all of the basins in the 3 arc sec North America data set. The
result is shown in Figure 12. Applied to these data, the model predicts that the contribution of small basins
to total coastal sediment yield is non-negligible. A similar conclusion was reached by Milliman and Syvitski
[1992]. This example demonstrates how parallel flow routing calculations can be used to explore the influ-
ence of drainage basins that would not be resolved by coarser global data sets. The accuracy of this result
may be reduced by the lack of small rivers located in North and Central America in the MF11 database with
suspended sediment measurements. As these data were not used in the regression that created the model,
the model may not fit observations for such rivers well.

The (A, R) model is quite simplistic compared to others proposed more recently, such as BQART
[Syvitski and Milliman, 2007] and WBMsed [Cohen et al., 2011]. However, even these more recent
models use maximum relief rather than slope. With the advent of data at sufficiently fine resolution
to calculate slope on many landscape features, and methods such as IDA that permit drainage area
to be determined at the same resolution, it might be possible to further improve sediment flux mod-
els by replacing relief with slope.

Figure 13. (top) The number of iterations required for convergence of the IDA algorithm in each time step of a landscape evolution model
simulation, with and without using the solution from the previous time step as an initial guess for the current time step. The results for
every 20th time step are shown for early times, with progressively larger intervals for later time steps to avoid crowding. (bottom) The
drainage area of the landscape after different numbers of time steps (using a log10 color scale, with darker grays indicating larger drainage
areas).

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4127



6.3. Landscape Evolution
Iterative methods permit an initial guess to be provided. If the initial guess is close to the solution, the num-
ber of iterations required for convergence can be significantly reduced. This suggests that the IDA method
may be particularly suitable for landscape evolution simulations, in which it is generally expected that flow
directions, and thus drainage area, will not exhibit large changes between time steps. The drainage area
solution from the previous time step could therefore be used as an initial guess.

To demonstrate this idea, we use the IDA method to calculate drainage areas for the elevation field at each
successive time step of a landscape evolution simulation. Starting from a smooth ridge with a small amount
of superimposed random noise, we use a finite difference approximation of a nonlinear advection-diffusion
equation describing river incision and soil creep [Perron et al., 2008, 2009, 2012] to model the evolution of
the landscape due to erosion and soil transport with a time step duration of 100 years. The solution vector
a in the iterative linear solver of the IDA method is set equal to the solution from the previous time step.
The solver therefore begins its search for the new solution from this point in the solution space. When the
landscape does not change greatly between time steps, the drainage area is likely to also remain almost
unchanged. The number of iterations required to converge on the new solution should therefore be lower
than when the landscape undergoes large changes between time steps. If the drainage network does not
change between iterations, the initial guess will be correct and the solver will return immediately.

The results are examined in Figure 13. Initially, the landscape lacks complex flow paths, resulting in IDA con-
verging on the solution within a few iterations of the solver. During the early stages of the simulation fol-
lowing this, as drainage networks invade the domain and change rapidly (between points A and B in the
figure), the drainage area calculation using the initial guess value always requires fewer iterations to con-
verge on the solution, but the difference is modest. This is probably because the new drainage area calcu-
lated in each iteration is substantially different from the previous solution. Once the drainage networks are
established and change more gradually as they approach a steady state (the interval between points C and
D, which constitutes most of the simulation), the number of iterations required when using a guess value is
approximately half that required when no guess value is used, resulting in a faster computation of the
drainage area. The number of iterations required will depend on the number of cells that need to be
updated. If the landscape is dominated by a single river basin, and a change in the drainage network occurs
near the source of that river, then a large percentage of the cells in the landscape will need to be updated.
In this situation, the number of iterations will not be significantly reduced by providing an initial guess. If
there is no change in the drainage network from the previous time step, then the solver will calculate a
zero initial residual and so will not run any iterations.

The attractiveness of this approach will depend on the problem size and the number of processors being
employed. Despite the advantages of using a parallel, iterative method, for small problems the conventional
serial algorithm is still likely to be faster. As the problem size increases, the greater computing power of par-
allel methods will outweigh the higher overhead of such approaches. For problems large enough to require
a many-core, distributed-memory computing platform, the scalability of IDA and suitability for execution on
GPU-like architectures may give it the advantage. The threshold at which IDA becomes competitive will be
lower for landscape evolution problems, due to IDA’s ability to exploit information from the previous time
step through an initial guess.

7. Conclusions

In this paper, we propose using an implicit, iterative algorithm for calculating drainage area (IDA) that
matches current and expected future computer architecture. The algorithm formulates the calculation as a
system of linear equations. This system can then be solved with a preconditioned iterative solver. By avoid-
ing the recursive nature of other drainage area algorithms and taking advantage of widely available, paralle-
lizable linear solvers, IDA is well adapted for parallel processing. We demonstrate that the IDA algorithm
exhibits good scaling to large numbers of processors. This suggests that it is well suited to large, high-
resolution data sets. The conventional serial algorithm may be fastest for small data sets, and queue-based
parallel algorithms are potentially best suited to modest numbers of processors, but IDA’s continued per-
formance improvements even at large numbers of processors suggest that it might be an appropriate
method for many-core systems such as large GPU clusters. A hybrid approach, which combines the

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4128



efficiency of the serial calculation with IDA’s parallel scalability, reduces the problem size at which IDA
becomes competitive. The option to provide an initial guess to the iterative solver creates the possibility of
reducing the solution time when performing repeated flow routing calculations on similar terrain, such as
in numerical landscape evolution models, by using the solution from the previous step as an initial guess.
We anticipate that further performance improvements could be obtained through a judicious choice of
solver and preconditioner. With a small modification, this method can be used to delineate drainage basins
with the same suitability for parallel computation.

Applying the IDA algorithm to the HydroSHEDS 3 arc sec data set, we demonstrate the suitability of this
method for processing very large data sets. At such a resolution it is possible to obtain more meaningful val-
ues of topographic slope than with coarser grids, which in turn permits more accurate estimates of quanti-
ties such as large-scale erosion rates and sediment yields. With drainage area data at a scale that permits
meaningful slope calculations, it becomes possible to compare predictions of riverine suspended sediment
flux based on slope with predictions based on topographic relief, which is frequently used as a surrogate
for slope at coarse spatial resolutions. We show that an empirical model based on drainage area and slope
accounts for a larger fraction of the variance in a data set of continental sediment fluxes than a model rely-
ing only on drainage area and drainage basin relief. Calculating drainage area at high resolution allows us
to apply this relationship to predict average coastal sediment flux for small basins.

References
Balay, S., J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang (2012), Argonne National

Laboratory, PETSc Web page. [Available at http://www.mcs.anl.gov/petsc.]
Bellugi, D., W. E. Dietrich, J. Stock, J. McKean, B. Kazian, and P. Hargrove (2011), Spatially explicit shallow landslide susceptibility

mapping over large areas, in Fifth International Conference on Debris-flow Hazards Mitigation, Mechanics, Prediction and Assessment,
edited by R. Genevois, D. L. Hamilton, and A. Prestininzi, Casa Editrice Universita La Sapienza, Rome, 309–407 p., doi:10.4408/
IJEGE.2011-03.B-045.

Benzi, M. (2002), Preconditioning techniques for large linear systems: A survey, J. Comput. Phys., 182(2), 418–477.
Braun, J., and S. D. Willett (2013), A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial

incision and landscape evolution, Geomorphology, 180–181, 170–179, doi:10.1016/j.geomorph.2012.10.008.
Cohen, S., A. J. Kettner, J. P. Syvitski, and B. M. Fekete (2011), WBMsed, a distributed global-scale riverine sediment flux model: Model

description and validation, Comput. Geosci., 53, 80–93.
CSDMS (2013), Univ. of Colorado, Boulder, CSDMS Web page. [Available at http://csdms.colorado.edu.]
Eddins, S. (2007), Upslope area—Forming and solving the flow matrix, MathWorks. [Available at http://blogs.mathworks.com/steve/2007/

08/07/upslope-area-flow-matrix/.]
Falgout, R., T. Kolev, J. Schroder, P. Vassilevski, and U. M. Yang (2012), Lawrence Livermore National Laboratory, HYPRE Web page. [Avail-

able at https://computation.llnl.gov/casc/hypre/software.html.]
Farr, T. G., et al. (2007), The shuttle radar topography mission, Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.
Freund, R. (1993), A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14(2), 470–482,

doi:10.1137/0914029.
Gesch, D., G. Evans, J. Mauck, J. Hutchinson, and W. Carswell Jr. (2009), The national map: Elevation, U.S. Geol. Surv. Fact Sheet 3053.
Glennie, C., W. Carter, R. Shrestha, and W. Dietrich (2013), Geodetic imaging with airborne LiDAR: The Earth’s surface revealed, Rep. Prog.

Phys., 76(8), 086801.
Hestenes, M., and E. Stiefel (1952), Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand. U.S., 49(6), 409–436.
Hirano, A., R. Welch, and H. Lang (2003), Mapping from ASTER stereo image data: DEM validation and accuracy assessment, ISPRS J. Photo-

gramm. Remote Sens., 57(5–6), 356–370, doi:10.1016/S0924-2716(02)00164-8.
Howard, A. D. (1994), A detachment-limited model of drainage basin evolution, Water Resour. Res., 30(7), 2261–2285.
Hysom, D., and A. Pothen (2001), A scalable parallel algorithm for incomplete factor preconditioning, SIAM J. Sci. Comput., 22(6), 2194–

2215.
Jenson, S., and J. Domingue (1988), Extracting topographic structure from digital elevation data for geographic information system analy-

sis, Photogramm. Eng. Remote Sens., 54(11), 1593–1600.
Krieger, G., A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink (2007), TanDEM-X: A satellite formation for high-resolution

SAR interferometry, IEEE Trans. Geosci. Remote Sens., 45(11), 3317–3341.
Lehner, B., K. Verdin, and A. Jarvis (2008), New global hydrography derived from spaceborne elevation data, Eos Trans. AGU, 89(10), 93, doi:

200810.1029/2008EO100001.
Mark, D. M. (1988), Network models in geomorphology, in Modelling Geomorphological Systems, edited by M. G. Anderson, pp. 73–97, John

Wiley, N. Y.
Metz, M., H. Mitasova, and R. S. Harmon (2011), Efficient extraction of drainage networks from massive, radar-based elevation models with

least cost path search, Hydrol. Earth Syst. Sci., 15(2), 667–678, doi:10.5194/hess-15-667-2011.
Milliman, J. D., and K. L. Farnsworth (2011), River Discharge to the Coastal Ocean: A Global Synthesis, Cambridge Univ. Press, Cambridge, U. K.
Milliman, J. D., and J. P. Syvitski (1992), Geomorphic/Tectonic control of sediment discharge to the ocean: The importance of small moun-

tainous rivers, J. Geol., 100(5), 525–544.
Mulder, T., and J. P. Syvitski (1996), Climatic and morphologic relationships of rivers: Implications of sea-level fluctuations on river loads, J.

Geol., 104(5), 509–523.
Naumov, M. (2012), Incomplete-LU and Cholesky preconditioned iterative methods using CUSPARSE and CUBLAS, Tech. Rep. NVR-2012-

003, Nvidia. Santa Clara, Calif.

Acknowledgments
This work was partly supported by the
NSF Geomorphology and Land-Use
Dynamics Program under award EAR-
0951672 to J.T.P. and C.N.H. It
additionally used resources of the
Keeneland Computing Facility at the
Georgia Institute of Technology, which
is supported by the National Science
Foundation under contract OCI-
0910735. We are grateful to Dave Yuen
for fostering this effort through his
enthusiasm for GPU computing, Matt
Knepley for helpful discussions of
parallel algorithms, and to David
Tarboton and two anonymous
reviewers for critically reading the
manuscript and suggesting
improvements. Data from the
HydroSHEDS database [Lehner et al.,
2008] were used. The IDA code and
high-resolution drainage area map of
North America produced with it are
available from the CSDMS repository
[CSDMS, 2013].

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4129

http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.4408/IJEGE.2011-03.B-045
http://dx.doi.org/10.4408/IJEGE.2011-03.B-045
http://dx.doi.org/10.1016/j.geomorph.2012.10.008
http://csdms.colorado.edu
http://blogs.mathworks.com/steve/2007/08/07/upslope-area-flow-matrix/
http://blogs.mathworks.com/steve/2007/08/07/upslope-area-flow-matrix/
https://computation.llnl.gov/casc/hypre/software.html
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1137/0914029
http://dx.doi.org/10.1016/S0924-2716(02)00164-8
http://dx.doi.org/200810.1029/2008EO100001
http://dx.doi.org/10.5194/hess-15-667-2011


O’Callaghan, J. F., and D. M. Mark (1984), The extraction of drainage networks from digital elevation data, Comput. Vis. Graph. Image Pro-
cess., 28(3), 323–344, doi:10.1016/S0734-189X(84)80011-0.

Perron, J., W. Dietrich, and J. Kirchner (2008), Controls on the spacing of first-order valleys, J. Geophys. Res., 113, F04016, doi:10.1029/2007JF000977.
Perron, J., J. Kirchner, and W. Dietrich (2009), Formation of evenly spaced ridges and valleys, Nature, 460(7254), 502–505.
Perron, J. T., P. W. Richardson, K. L. Ferrier, and M. Lapôtre (2012), The root of branching river networks, Nature, 492(7427), 100–103.
Quinn, P., K. Beven, P. Chevallier, and O. Planchon (1991), The prediction of hillslope flow paths for distributed hydrological modelling

using digital terrain models, Hydrol. Processes, 5(1), 59–79, doi:10.1002/hyp.3360050106.
Richardson, L. (1910), On the approximate arithmetical solution by finite differences of physical problems involving differential equations,

with an application to the stresses in a masonry dam, Proc. R. Soc. London. Ser. A, 83(563), 335–336.
Saad, Y. (1993), A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14(2), 461–469.
Saad, Y. (2003), Iterative Methods for Sparse Linear Systems, Soc. for Ind. and Appl. Math., Philadelphia, Penn.
Saad, Y., and M. Schultz (1986), GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat.

Comput., 7(3), 856–869.
Schmidt, F., and A. Persson (2003), Comparison of DEM data capture and topographic wetness indices, Precis. Agric., 4, 179–192, doi:

10.1023/A:1024509322709.
Schwanghart, W., and N. J. Kuhn (2010), Topotoolbox: A set of Matlab functions for topographic analysis, Environ. Modell. Software, 25(6),

770–781, doi:10.1016/j.envsoft.2009.12.002.
Shalf, J., S. Dosanjh, and J. Morrison (2011), Exascale computing technology challenges, in High Performance Computing for Computational

Science—VECPAR 2010, Lecture Notes in Comput. Sci., vol. 6449, pp. 1–25, Springer, Berlin, doi:10.1007/978-3-642-19328-6_1.
Syvitski, J. P., and J. D. Milliman (2007), Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the

coastal ocean, J. Geol., 115(1), 1–19.
Syvitski, J. P., C. J. V€or€osmarty, A. J. Kettner, and P. Green (2005), Impact of humans on the flux of terrestrial sediment to the global coastal

ocean, Science, 308(5720), 376–380, doi:10.1126/science.1109454.
Tarboton, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water

Resour. Res., 33(2), 309–319, doi:10.1029/96WR03137.
Tarboton, D. G. (2013), Utah State University, TauDEM Web page. [Available at http://hydrology.usu.edu/taudem/taudem5.]
Tarboton, D. G., R. L. Bras, and I. Rodriguez-Iturbe (1991), On the extraction of channel networks from digital elevation data, Hydrol. Proc-

esses, 5(1), 81–100.
Tesfa, T. K., D. G. Tarboton, D. W. Watson, K. A. Schreuders, M. E. Baker, and R. M. Wallace (2011), Extraction of hydrological proximity meas-

ures from DEMs using parallel processing, Environ. Modell. Software, 26, 1696–1709.
Tewarson, R. P. (1973), Sparse Matrices, Math. Sci. and Eng., Elsevier Sci., Amsterdam.
Tucker, G. E., and G. R. Hancock (2010), Modelling landscape evolution, Earth Surf. Processes Landforms, 35(1), 28–50.
van der Vorst, H. (1992), Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM

J. Sci. Stat. Comput., 13, 631.
V€or€osmarty, C., B. Fekete, M. Meybeck, and R. Lammers (2000), Global system of rivers: Its role in organizing continental land mass and

defining land-to-ocean linkages, Global Biogeochem. Cycles, 14(2), 599–621.
Wallace, R. M., D. G. Tarboton, D. W. Watson, K. A. T. Schreuders, and T. K. Tesfa (2010), Parallel algorithms for processing hydrologic proper-

ties from digital terrain, in Sixth International Conference on Geographic Information Science, edited by R. Purves, and R. Weibel, Zurich,
Switzerland.

Wallis, C., R. M. Wallace, D. G. Tarboton, D. W. Watson, K. A. T. Schreuders, and T. K. Tesfa (2009), Hydrologic terrain processing using parallel
computing, in 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation, edited by R. S. Anderssen,
R. D. Braddock and L. T. H. Newham, pp. 2540–2545, Modell. and Simul. Soc. of Aust. and N. Z. and Intl. Assoc. for Math. and Comput. in
Simul., Cairns, Australia.

Widlund, O. (1978), A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 15(4), 801–812.
Willgoose, G. (2005), Mathematical modeling of whole landscape evolution, Annu. Rev. Earth Planet. Sci., 33, 443–459.
Willgoose, G., R. L. Bras, and I. Rodriguez-Iturbe (1991), A physical explanation of an observed link area-slope relationship, Water Resour.

Res., 27(7), 1697–1702.
Zink, M., G. Krieger, H. Fiedler, I. Hajnsek, and A. Moreira (2008), The TanDEM-X mission concept, in 7th European Conference on Synthetic

Aperture Radar (EUSAR), pp. 1–4, Berlin, Germany.

Water Resources Research 10.1002/2013WR014326

RICHARDSON ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 4130

http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://dx.doi.org/10.1029/2007JF000977
http://dx.doi.org/10.1002/hyp.3360050106
http://dx.doi.org/10.1023/A:1024509322709
http://dx.doi.org/10.1016/j.envsoft.2009.12.002
http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://dx.doi.org/10.1126/science.1109454
http://dx.doi.org/10.1029/96WR03137
http://hydrology.usu.edu/taudem/taudem5

	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l

