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Abstract. The decay of organic matter in natural ecosystems is controlled by a network of
biologically, physically, and chemically driven processes. Decomposing organic matter is often
described as a continuum that transforms and degrades over a wide range of rates, but it is
difficult to quantify this heterogeneity in models. Most models of carbon degradation consider
a network of only a few organic matter states that transform homogeneously at a single rate.
These models may fail to capture the range of residence times of carbon in the soil organic
matter continuum. Here we assume that organic matter is distributed among a continuous
network of states that transform with stochastic, heterogeneous kinetics. We pose and solve an
inverse problem in order to identify the rates of carbon exiting the underlying degradation
network (exit rates) and apply this approach to plant matter decay throughout North
America. This approach provides estimates of carbon retention in the network without
knowing the details of underlying state transformations. We find that the exit rates are
approximately lognormal, suggesting that carbon flow through a complex degradation
network can be described with just a few parameters. These results indicate that the serial and
feedback processes in natural degradation networks can be well approximated by a continuum
of parallel decay rates.

Key words: carbon cycle; carbon degradation; decomposition; litter; microbial decay networks; plant
matter decay; soil organic carbon.

INTRODUCTION

The retention of particles in networks is associated

with problems in ecosystems modeling (van Veen et al.

1984, Parton et al. 1987, 1993, Jenkinson et al. 1990,

Sierra et al. 2011), drug kinetics (Faddy 1993, Matis

and Wehrly 1998, 1990), logistics (Kendall 1953),

industrial processing (Forrester 1961), and other fields

(Godfrey 1983). Flow diagrams (Forrester 1961),

Markov models (Matis and Wehrly 1990, Sierra et

al. 2011), and compartmental models (Godfrey 1983)

are used to model these networks, where information

flows from one compartment to another in parallel, in

series, or with feedback. Often, kinetic parameters and

the general structures of these systems are unknown.

These parameters can be identified by fitting model

outputs to dynamic data. However when the under-

lying network structure (e.g., the number of pools/

substrates, number of microbial species/communities

and their connectivity) is unknown then identifying

system parameters remains a challenge.

Here we investigate the retention of carbon in

terrestrial organic matter. Plant litter is initially

composed of many organic components that degrade

at different rates (Tenney and Waksman 1929, Min-

derman 1968, Burdige 2006, Lutzow et al. 2006, Berg

and McClaugherty 2007). As decomposition proceeds

however, organic matter is transformed. Various kinds

of extracellular enzymes break down polymers into

shorter chains (Allison 2012, Sinsabaugh and Follstad

Shah 2012), acids break free, and a diversity of

decomposers transform compounds into decomposer

biomass and other organic byproducts of the decom-

position process. These compounds may then interact

chemically (Lee et al. 2004, Berg and Laskowski 2006,

Lützow et al. 2006), forming humic and other hard-

to-degrade compounds degrade compounds (Eijsack-

ers and Zehnder 1990, Berg and McClaugherty 2007,

Paul 2007). Furthermore, particulate and dissolved

carbon bond and sorb to clays and minerals (Oades

1988, Mayer 1994, Hedges and Oades 1997, Vetter et

al. 1998, Nieder and Benbi 2008) forming organo-

mineral complexes that also affect decomposability. In

this manner, organic carbon is transformed from one

pool to another by means of both serial and feedback

processes.

Models of organic matter decomposition

The most commonly employed models of soil organic

matter decomposition include these serial and feedback

loops between various pools (van Veen et al. 1984,

Parton et al. 1987, 1993, Jenkinson et al. 1990), but the

network architecture is based purely on intuition about

decomposer food chains and empirical results regarding

the precursors for more recalcitrant soil organic matter.
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Other models treat soil organic matter as a continuum,

where transformations occur among a continuum of

states (Bosatta 1985, Ågren and Bosatta 1998, Sierra et

al. 2011). Recent degradation models include microbial

community dynamics and degradation reactions cata-

lyzed by extracellular enzyme concentrations (Schimel

and Weintraub 2003, Manzoni and Porporato 2007,

Allison 2012, Sinsabaugh and Follstad Shah 2012,

Gangsheng et al. 2013). The most advanced of these

models proceed in a manner consistent with the

mechanisms described above: a community of microbe

species expresses various extracellular enzymes, which

degrade a variety of substrates. The enzymatic reactions

in these models produce dissolved organic carbon

monomers, some of which are anabolically converted

to microbial biomass and some of which adsorb to soil

clays (Gangsheng et al. 2013), becoming soil organic

matter. Microbial biomass turns over and re-enters the

organic carbon pool as an available substrate. Some

models incorporate a spatial relationship between litter

and community (Allison 2012), however most do not. By

incorporating stoichiometric relationships between sub-

strate and decomposer, these models also are able to

couple the dynamics of nutrients such as nitrogen. These

models, however, have some limitations. The kinetics of

carbon degradation in these models relies exclusively on

local concentrations of enzymes and Michaelis-Menten

or Reverse Michaelis-Menten kinetics (Schimel and

Weintraub 2003, Moorhead and Sinsabaugh 2006,

Manzoni and Porporato 2007, Allison 2012, Sinsabaugh

and Follstad Shah 2012, Gangsheng et al. 2013).

Enzyme production and local enzymatic concentrations,

however, are regulated (and limited) by a number of

environmental chemical signals (Allison et al. 2011,

Sinsabaugh and Follstad Shah 2012); yet the signal

pathways and dynamics of relevant environmental input

signals are not included in the models (Sinsabaugh and

Follstad Shah 2012). Furthermore, there is a cascade of

additional physical, chemical, and biological effects that

control enzyme concentration/kinetics once an enzyme

is released into the environment, such as enzyme

lifetime/denaturation, diffusion (Vetter et al. 1998,

Rothman and Forney 2007, Allison et al. 2011,

Sinsabaugh and Follstad Shah 2012), sorption (Mayer

1994), water potential, temperature, pH, and competi-

tive inhibition. As a result, measures of activation energy

can vary greatly for the same enzyme in similar soil

systems (Sinsabaugh and Follstad Shah 2012). Over 50

different enzymes are known to degrade cellulose alone

in cow rumen (Hess et al. 2011); orders of magnitude

more are likely responsible for decomposing the

diversity of compounds found in soil and litter.

Enzymatic diversity in these models (Allison 2012,

Sinsabaugh and Follstad Shah 2012, Gangsheng et al.

2013) is far less. The death rates and/or dormancy of

microbial populations is also heterogeneous and also not

well understood. Despite the number of advances in our

understanding of organic matter degradation systems

during the past decade, many of the limiting mechanisms

responsible for decomposition kinetics remain unchar-

acterized, and appropriate levels of abstraction have not

yet been determined. These problems collectively suggest

the need to estimate and model complex heterogeneous

transformations in the absence of complete physical

transport and biochemical information.

Here we test the limits of a simpler model of

organic matter decomposition and find that it

provides new insights for estimating and describing

decomposition dynamics. This paper makes three
principle contributions. First, we show that simple

models of parallel heterogeneous organic matter

decomposition (Boudreau and Ruddick 1991, Bolker

et al. 1998, Manzoni et al. 2009, Forney and Rothman

2012a) can also describe a transformation continuum

under certain assumptions. Decay rates from these

models represent rates of carbon exit from a

transformation network, rather than as isolated

spontaneous exponential decays. Next, we provide a

method for estimating the underlying kinetics of these
decomposition networks and pathways from decay

data. Finally, we use the kinetic patterns to interpret

properties of network structure.

Approach

Previously (Forney and Rothman 2012a) we utilized

a continuous model of decay heterogeneity to analyze

decay data from the Long-term Inter-site Decompo-

sition Experiment, (LIDET) (Harmon and Lidet 1995,

Gholz et al. 2000, Harmon 2007, Adair et al. 2008,

Cusack et al. 2009, 2010, Harmon et al. 2009). In that
model, organic matter is assumed to decay with

heterogeneous kinetics, described by a distribution of

first-order decay rate constants k. The fraction g(t) of

organic mass remaining is a superposition of expo-

nential decays:

gðtÞ ¼
Z ‘

0

pðkÞe�ktdk ð1Þ

where p(k) is a probability distribution having the

properties p(k) . 0 and
R ‘

0
pðkÞdk ¼ 1. By inverting

Eq. 1 we found that p(k) is on average lognormal.
Therefore, organic matter decomposition from the

LIDET study can be described by a two-parameter

lognormal continuum of parallel decay rates.

Here we show that Eq. 1 can also describe

decomposition proceeding through a complex network

of transformation and decay mechanisms. In this

manner, p(k) represents the distribution of Poisson

rates at which particles exit from all pathways in the

network. By estimating p(k) we capture the mass

dynamics of the system without needing to model the

details of transformations across the entire network.

We show that, for the case of the LIDET study, the

same lognormal decay rate distribution well approx-

imates the rates of exit from a stochastic network of
transformation processes. Interpreting the network as
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p(k) provides a unique way to visualize and pinpoint

key dynamic information regarding carbon in the

system and reveals the timescales of the retention of

organic carbon in decomposition systems. Dynamic

properties such as turnover time of organic carbon are

very sensitive to the heterogeneity of timescales

associated with underlying decay processes (Sierra et

al. 2011, Forney and Rothman 2012a).

The work presented here relates to previous efforts to

simplify degradation models by eigenvalue decomposi-

tion and diagonalization (Bolker et al. 1998). Bolker et

al. (1998) diagonalized small decomposition models such

as the CENTURY model, which assume organic matter

transforms between only a few different states. They

calculated system eigenvalues (diagonalized decay rates)

and interpreted the meanings of positive and negative

weights (or loadings) of the diagonalized exponential

decays. The CENTURY model was simplified by

reducing the number of parallel compartments and

parameters needed to equivalently describe organic

matter decay, and they suggested further simplifications

may be obtained by assuming a distribution of parallel

rates. Here, however, we consider transformations

between states that take place heterogeneously at a

distribution of rates. We build upon the previous work

by using the diagonalized parallel approach to describe

the heterogeneous organic matter transformation con-

tinuum and provide an inverse method for determining

its shape.

To achieve this goal we need to assume that

transformations are linear. This linearity assumption is

consistent with the following situations: that the soil

microbial community is essentially in a steady state upon

litterfall, and that any growth in microbial populations

on a particular substrate happens fast relative to the

litter turnover time of ;10 years (Forney and Rothman

2012a). Because transformation timescales for different

substrates can vary widely, we approximate them to an

order of magnitude by a first-order reaction, and allow

for many different rates of transformation for each

substrate compound. These rates may depend on

different types of enzymes, physical transport of enzyme

and substrate, and the enzyme concentration governed

by the various factors described above: enzyme lifetime,

signal pathways, and cost of enzyme production (Vetter

et al. 1998, Allison 2012), and steady-state sizes of

populations governed by predation, competition, and/or

other resources.

The remainder of our paper is organized as follows. In

the next section we introduce decomposition in terms of

network of heterogeneous reactions. We present a

simple two-state network as a simple illustration of the

methods used throughout the paper. In the following

section we introduce the-exit-rate function and show

how it describes a decay system with a continuum of

transformations. We next explore examples of compart-

mental decomposition systems where mass exchange

between compartments takes place at a distribution of

rates. We investigate the properties of heterogeneous

compartments in series and in feedback. This includes

investigating the behavior of the CENTURY terrestrial

respiration model (Parton et al. 1987) with compart-

ments that have heterogeneous kinetics. Here we also

consider the case of a more general stochastic system

composed of a continuum of plant litter, microbial, and

soil organic matter states. In the next section we

calculate the distribution of rates associated with the

LIDET data sets constrained so that these rates

represent the exit rates from a transformation network.

Finally, in the last section, we find that the distribution

of exit rates from the network is approximately

lognormal, and can be approximated by a parallel

system.

Definitions of the symbols and variables we use

throughout are presented in Table 1.

DEGRADATION AS A NETWORK OF TRANSFORMATIONS

We describe decomposition as a network of reactions

that transform organic carbon between a widely

dispersed network of states. Transformations to and

from each state occur at many rates depending on

physical and chemical conditions, decomposer commu-

nity, and other stochastic variables. In other words,

transformations are related to both bioavailability—

whether appropriate enzymes that can cleave the

substrate are available (Semple et al. 2004)—and bio-

accessibility—whether an appropriate decomposer can

physically access the substrate (Semple et al. 2004).

These transformations likely occur among a continuum

of soil organic matter (SOM) states (Carpenter 1981,

Bosatta 1985, Melillo et al. 1989, Ågren and Bosatta

1998, Sierra et al. 2011). With this in mind, we suggest

that organic matter transforms between a distribution of

states, at a distribution of rates.

We proceed by quantitatively tracking a carbon

atom on its journey through various states in a

decomposition network. For example, a carbon atom

might enter the system as an organic plant polymer

state (perhaps protected by lignin). It may then

transform to an unprotected polymer state and

eventually be released as a smaller polymer, dissolve,

sorb to a clay, be cleaved to a monomer, become part

of microbial structure, transform to another biological

structure, released as an enzyme, and/or interact

chemically with other environmental compounds.

Eventually, a microbe may completely oxidize the

organic carbon to CO2. We assume that each state

transformation is governed by a limiting environmen-

tal and/or ecological process operating in a steady

state. We consider two equivalent ways of describing

the movement and transformation of mass among

different states. One method is to use a deterministic

model, which describes the multi-state system by a set

of first-order linear differential equations. The other

method is to consider a stochastic model, where

particles have a given probability of transforming
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from one state to another over a small time period.

The two approaches are equivalent for the purpose of

describing overall mass dynamics of degradation

systems. Both types of models have been used to

model decomposition but often contain a small finite

number of states. The stochastic approach has been

implemented via both a Markov process (Sierra et al.

2011) and an absorbing Markov chain (Liang et al.

2010). The deterministic approach is more common,

usually implemented via compartmental models such

as CENTURY (Parton et al. 1987), Roth-C (Jenkin-

son et al. 1990), the carbon turnover model of Van

Veen and Paul(van Veen and Paul 1981), and many

others (Manzoni and Porporato 2009). These com-

partmental models are equivalent to continuous-time

Markov processes. In all of these models, transfor-

mations between states occur continuously in time at

the rates k. The main characteristic of Markov

processes is transformations of particles from one

state to another are memory-less (depend on only the

current state). In this paper we often use the

deterministic formulation to calculate dynamic prop-

erties of the system. However it is helpful to keep the

stochastic Markov interpretation in mind when

thinking of organic carbon transformations. We

provide stochastic interpretations when relevant.

Two-state example

Fig. 1 shows a pedagogical device where organic

matter exists in just two states: an initial state (fresh

litter organic component) and a transformed state

(chemically transformed structure, physically altered

micro environment, etc). We assume transformations

from the initial state occur at the first-order rate

constant k1, with probability f of transforming to the

second state, and probability (1 – f ) of transforming

TABLE 1. Summary of symbols and variables used throughout together with their explanations/definitions.

Symbol Definition

t time
G total system mass
G0 initial system mass
g fraction of initial mass remaining in the system; g ¼ G/G0

x vector of all state masses
xi, j mass of state j in pool i
n number of states per pool
ki, j rate of transformation out of state j in pool i
pi, j mass fraction entering pool i partitioned into state j
fi, j, l conversion fraction (fraction of mass transferred from state j in pool i, to pool l)

1�
X

j

fi; j; l fraction of mass going to the exit or absorbing state: inorganic carbon or leached carbon

A decay system matrix
y total number of pools in the network
z total number of states in the network
ki ith eigenvalue of the decay matrix A
K z 3 z eigenvalue matrix with diagonals ki

ui ith eigenvector of the decay system A
U z 3 z eigenvector matrix having columns ui
S z 3 z diagonal matrix with ith diagonal 1 ¼

X
j

ui; j

r vector containing the initial mass fractionation (weights) associated with the eigenvalues
ri initial mass fractionation onto the eigenvalues k of a decay system with a continuum of states (continuous

distribution of exit rates k; exit-rate function)
v(ln k) continuum of exit rates in log rate space (log exit-rate function)

FIG. 1. A two-state network. State A may be interpreted as
a fresh litter structure, and state B a transformed organic
structure. Particles leave the first state at a first-order rate k1.
These particles transfer to the second state with a probability f
and therefore transform at the rate f k1. Particles transfer from
the first state to the exit state, CO2, at the rate (1� f )k1. In this
simple model, particles transform from the second state only to
the exit state and do so at the rate k2.

DAVID C. FORNEY AND DANIEL H. ROTHMAN112 Ecological Monographs
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to the exit state (carbon dioxide). Carbon in the

second state then exits at the rate k2. The dynamics of

this simple system follow Eqs. 2 and 3, where xi is the

concentration or amount of carbon in state i:

dx1

dt
¼ �k1x1 ð2Þ

dx2

dt
¼ �k2x2 þ fk1x1: ð3Þ

Eqs. 2 and 3 can be more compactly written in matrix

form as

dx

dt
¼ Ax ð4Þ

where

x ¼ x1

x2

� �
; A ¼ �k1 0

fk1 �k2

� �
ð5Þ

having the initial condition x(0).

The solution x(t) is derived in Appendix A and is a

superposition of two exponential decays:

x ¼ a1u1e�k1t þ a2u2e�k2t ð6Þ

where ui are the eigenvectors of the system and ai are

the weights for each exponential decay.

Substituting the initial condition x(0) into Eq. 6

provides the weights ai. The total mass of the system,

G(t)¼ x1(t) þ x2(t) therefore decays as

G ¼ r1e�k1t þ r2e�k2t ð7Þ

where ri is determined by summing the states xi of Eq. 6:

r1

r2

� �
¼

X
i

u1;i 0

0
X

i

u2;i

2
64

3
75 a1

a2

� �
: ð8Þ

Here u1,i are the components i of the eigenvector u1 and

u2,i are the components i of the eigenvector u2, i ¼ 1, 2.

For the system (Eqs. 5), the values of ri are

r1 ¼ x1ð0Þ 1þ fk1

k2 � k1

� �
ð9Þ

r2 ¼ x2ð0Þ � x1ð0Þ
fk1

k2 � k1

: ð10Þ

The lesson of this elementary exercise is that although

the system contains two pools in series, its total mass

decays as if it were two pools in parallel (Bolker et al.

1998, Manzoni et al. 2009). The weights ri of each

exponential decay are related to both the eigenvectors

of the system and the initial conditions. Furthermore,

the rates of parallel decay reflect the rates of the

underlying serial pools. These properties are consis-

tent with all examples of decomposition networks

throughout the paper.

A continuum of transformations

We now suppose that pools of carbon are composed

of heterogeneous particles and that transformations

between pools occur over a distribution of rates. We

introduce this concept by fractionating each compart-

ment in the simple model of Fig. 1 into a distribution of

n states. These particle-states (pseudo-compartments

(Matis and Wehrly 1998)) transform at random rates

(Matis et al. 1989) as shown in Fig. 2.

The heterogeneous transformations shown in Fig. 2

may be represented by the set of 2n first-order

differential equations which includes all states:

dx1j

dt
¼ �k1jx1j þ JðtÞp1j j ¼ 1; . . . ; n

dx2j

dt
¼ �k2jx2j þ p2j

Xn

i¼1

f1ik1ix1i j ¼ 1; . . . ; n:

ð11Þ

Here, x1j is the mass associated with the jth state in

carbon pool 1, and x2j is the mass associated with the jth

state in carbon pool 2. The probability pij partitions mass

incoming to the ith pool into the state j and has values

such that
P

j pi j ¼ 1. If transformations are microbial, the

conversion fraction fij, represents a substrate utilization

(carbon uptake) efficiency (Manzoni and Porporato 2007,

Feng 2009, Manzoni et al. 2010). It is the probability that

carbon involved in the jth process will be transformed to

a microbial component, while (1 – fij) is the probability

that the carbon will be respired to CO2. The conversion

fraction fij can also be associated with more general losses

from the system, such as the leaching of carbon to

groundwater from certain states, or abiotic oxidation

such as photo-oxidation or ozone-oxidation (Carr and

Baird 2000). Allowing the transformation rates and

conversion fractions to be random provides a more

general and realistic description of complex heteroge-

neous decay networks.

We can write this dynamics of the linear system (Eqs.

11) in matrix form, just as we did in Eq. 4, as

dx

dt
¼ Axþ JðtÞp0 ð12Þ

where J(t) is the input of fresh dead organic matter to

the system and x and p0 are the concatenated vectors:

x ¼ x1

x2

� �
p0 ¼

p1

0

� �

x1 ¼

x11

..

.

x1j

..

.

x1n

2
6666664

3
7777775
; x2 ¼

x21

..

.

x2j

..

.

x2n

2
6666664

3
7777775
; p1 ¼

p11

..

.

p1j

..

.

p1n

2
6666664

3
7777775
: ð13Þ

The components of xi of pool i are the states xi, j and the

components of p1 are p1j. The vector p0 represents the
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initial fractionation of incoming fresh dead organic

matter into the network. The vectors x and p0 have

length z, the total number of states in the system.

Eq. 12 describes more generally any network of y

pools connected with distributed rates. In the more

general case, x ¼ [x1, x2, . . . xy]
> represents the states

within all pools and p0 contains the partition vectors pi
of all pools which initially receive mass, rescaled so thatP

j p0; j ¼ 1.

The solution to this system when the input J(t) is an

initial impulse of size G0 is

x ¼ G0 Ue�Kt U�1 p0 ð14Þ

as derived in Appendix B. The matrix U contains the

eigenvectors of A, ui:

U ¼ ½u1 u2 � � � uz� : ð15Þ

K is a diagonal matrix containing the eigenvalues of A:

K ¼

k1 0 � � � 0

0 k2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � kz:

2
6664

3
7775 ð16Þ

and e�Kt is the matrix exponential. The total mass

remaining in the decay system is

GðtÞ ¼
X

i

xiðtÞ: ð17Þ

Substituting the elements of x in Eq. 14 for xi in Eq. 17

provides the dynamics of the total mass remaining in the

system as a function of time:

gðtÞ ¼
X

i

rie
�ki t ð18Þ

where g(t) is the mass fraction remaining in the system

G(t)/G0 The decay (Eq. 18) is now expressed as a sum of

parallel exponential decays. The eigenvalues ki are the

rates at which carbon exits the decay network. The

weights ri are the elements of the vector

r ¼ SU�1 p0 ð19Þ

that partitions the incoming mass into the parallel

decays. Because all states xi are summed in order to

calculate g(t), the matrix S contains the sum of each

eigenvector ui (see Appendix B1)

S ¼

X
j

u1;j 0 . . . 0

0
X

j

u2; j . . . 0

..

. ..
. . .

. ..
.

0 0 . . .
X

j

uz; j

2
6666666664

3
7777777775
: ð20Þ

Since r derives from the projection of the initial state

vector p0 onto the eigenvectors, there is no reason for the

elements of the projected vector r to remain positive. We

find that these negative components are related to a time

lag rather than a decay. Furthermore, there is no

constraint on the system A to have real eigenvalues.

FIG. 2. Serial processes with distributed rates.
Transfers between pools of organic matter occur
over a distribution of rates. Ovals represent
macroscopic pools of organic matter, while boxes
represent the fractionation p of the preceding
pool into different states x that transform at
different rates k. Mass fractions f are transferred
to the next pools, while the fractions 1 � f are
mineralized or otherwise lost from the system. If
the processes are biotic, carbon may be respired
to CO2, and only a fraction of carbon is passed to
the next pool. Carbon in the first pool is
partitioned into states x1 by the fractionation
vector p1, with p1i determining the fraction of
mass going to state x1i. Each state transforms at a
random rate k1i and passes to pool two with the
probability f1i. Mass incoming to pool 2 is
partitioned into states x2 with mass fractions
specified by p2. All states decay at the random
rates k2i to CO2.
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However because eigenvectors come in complex conju-

gate pairs, values of ri cannot be complex. Nevertheless,

decomposition systems appear to be dissipative enough

that complex eigenvalues are not prevalent; we return to

complex eigenvalues in our discussion of feedback in

Example systems: Feedback processes.

We now note that the stochastic Markov description

of carbon dynamics aids the interpretation of carbon

movement throughout the decomposition network. The

probability Pij that a particle in state i at time 0 will be in

state j at time t is as follows (Matis and Wehrly 1998,

Matis et al. 1983):

PðtÞ ¼ eAt ¼ UeKt U�1 ð21Þ

where P is the z 3 z matrix with elements Pij, A is the

same matrix in Eq. 12 that contains the transition or

transformation rates k. U and K contain the eigenvec-

tors and eigenvalues of A. Similarly, the survival

probability at time t of particles that were initially

distributed among the states p0 at t ¼ 0 is equivalent to

the impulse response g(t) given by Eq. 18 (Faddy 1990,

Matis and Wehrly 1998). An additional insightful

property is that the mean residence time of particles in

state j that originated in state i is given by the elements

of the matrix A�1 (Matis et al. 1983, Matis and Wehrly

1998).

OBTAINING THE EXIT-RATE FUNCTION r(k) FROM A

NETWORK

Transformations between pools are more likely to

occur at a continuous distribution rather than a discrete

distribution of rates. Therefore it is natural to expect

there to be a continuum of exit rates k from the system.

The mass remaining in the system is then described by

the continuous superposition:

gðtÞ ¼
Z ‘

0

rðkÞe�ktdk ð22Þ

which is the continuous version of Eq. 18. The exit-rate

function r(k) provides the weights associated with the

rates that carbon exits the continuous-transformation

system. Details of the extrapolation of the discrete

network model to the continuum can be found in

Appendix C.

Eq. 22 shows that the mass lost from a decay system

can be interpreted as the Laplace transform of the exit-

rate function r(k). It indicates that the parallel descrip-

tion of organic matter decay is simply a projection of the

complete system onto the coordinates U. In this manner,

the impulse response is described in terms of the

eigenvalues of the underlying decay system. Eq. 22 is

equivalent to the original parallel decay Eq. 1 except

that r(k), like r, may be negative. Ultimately, we seek to

invert decay data in order to find the exit-rate

distribution r(k) for a litter-decay data set. But first,

we calculate and interpret r(k) for various examples of

network configurations.

EXAMPLE SYSTEMS

In this section we calculate and interpret the exit-rate

function r(k) for four examples of network configura-

tions: (1) serial networks, (2) feedback networks, (3) the

CENTURY degradation model which contains parallel,

serial, and feedback processes, and (4) an amorphous

network containing a continuum of interconnected

states. These examples help to develop an intuition for

interpreting r(k).

Calculating r(k) from a network with heterogeneous states

and distributed rates

In each of these cases, we prescribe a network

configuration and calculate the exit-rate distribution

r(k) associated with it. To numerically determine r(k)

associated with a given network, we use a Monte Carlo

simulation with N trials in order to estimate a mean r(k).

This is discussed in detail in Appendix D. Because we

assume rate heterogeneity is wide, we change variables

from k ! ln k and calculate v(ln k), which is equivalent

to r(k) in ln k space.

v(ln k) and r(k) are related by the equation v(ln k) ¼
r(k)[d ln k�1/dk]. The mass fraction remaining expressed

in terms of v(ln k) is

gðtÞ ¼
Z ‘

�‘

vðlnkÞe�ktd lnk: ð23Þ

Serial pools

Here we calculate and interpret r(k) resulting from

multiple pools connected in series. We first consider

two pools in series as shown in Fig. 2. The mass

entering each pool is partitioned into different rates

by the distributions p1(k) and p2(k). In this and the

remaining examples we choose the distributions to be

lognormal. We assume this based on the finding that

decay rates are lognormally distributed (Forney and

Rothman 2012a) and the related suggestion that

organic matter quality may be lognormally distributed

(Bosatta and Ågren 1991). We then use a Monte Carlo

simulation to randomly sample 32 rates from each

distribution, assemble the connectivity matrix A, and

then calculate its eigenvalue decomposition and

associated r. We repeat this process ;10 000 times

to generate an ensemble of initial eigen-decay state

vectors r. We follow the procedure outlined in

Appendix D to estimate the ensemble average v(ln

k). Fig. 3A reveals that the average v(ln k) is smooth,

has one inflection point, and becomes negative in the

faster portion of the spectrum. The positive region of

v(ln k) resembles the lognormal distribution associat-

ed with the slower transformations in the serial

network.

When a network consists of pools in series, the full

system matrix A can be written as a lower triangular

matrix, because information only flows in one direction.

A relevant property of the triangular matrix A is that its
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diagonals, which represent the rates of state transfor-

mations, are also its eigenvalues. Therefore the exit rates

are closely related to the underlying transformation

rates in the system.

Because mass must pass through both a slow and fast

pool before exiting, a negative mode appears in r(k)

around the rates of the fast pool. This occurs because the

system eigenvalues are still the diagonals of A, but

matter cannot exit the system at the rapid rates of the

fast pool. To compensate, the weights r(k) take on

negative values at these faster rates, indicating a lag or

delay at those time scales.

We repeat this process for systems containing three

and four lognormal pools in series with varying mean

and variance of In k. The exit-rate functions for these

systems are presented in Fig. 3B and C. We find that the

number of modes can reflect the number of kinetically

distinct compartments in the network. The sign of the

modes however is related to the mass loss, or conversion

fraction f, associated with transfers from that pool. If

enough mass exits the system from a pool, the function

v(ln k) may remain positive over the rates ln k associated

with that pool. If little mass is lost and more mass is

transferred at rates ln k, negative modes may be

associated with those rates. The negative mode signifies

a lag time associated with those processes. Because rate

distributions of pools may overlap, the number of

modes in the distribution r(k) indicates a lower bound

on the number of macroscopic processes in series. The

exact number of serial processes can be estimated from

r(k) and g(t) by using the ‘‘phase function method’’

(Zhou and Zhuang 2006) when decay data have high

resolution near t ¼ 0 (Zhou and Zhuang 2007).

This approach fails however, as do the standard

popular compartmental terrestrial decomposition mod-

els, when there is a long lag time, or inoculation time,

before the onset of decomposition. A long lag time may

result from highly serial processes or when no transfor-

mations occur, such as when an organic substrate is

being inoculated. Purely serial processes with random

rates result in a system with a generalized Erlang

distribution of residence times (Faddy 1990, Neuts

1995). Because of the large lag or delay time associated

with long chains of purely serial processes, Monte Carlo

simulations show large rapid fluctuations in the weights

of the projected eigen-decay states r and fail to generate

a stable mean r(k). However, if a large lag time actually

represents an inoculation time where no transformations

occur, modeling this waiting time via many serial

transformation processes is likely inappropriate. Rather,

we suggest modeling the inoculation time with a simple

lag time parameter, a, by transforming time to t*¼ t – a.

Feedback processes

Feedback loops are fundamental to decomposition

systems since decomposers recycle old organic matter

into new biomass that remains part of the soil organic

matter decomposition system. We suggest that feedback

between carbon pools takes place stochastically at

different rates, as shown in Fig. 4A. In this section we

consider simple arrangements of pools in feedback to

generate the system matrix A and calculate its eigenvalue

FIG. 3. Exit-rate functions v(ln k) associated with distrib-
uted serial processes. To generate each plot, each pool is
fractionated among 32 states that decay at rates randomly
chosen from a distribution pi(k) associated with the ith pool.
We estimate the exit-rate function v(ln k) using the Monte-
Carlo procedure given in Obtaining the exit-rate function
r(k). . .. All mass is allocated in the first pool at t ¼ 0 and
mass only exits the system from the final pool in the series; f¼ 1
for all transformations. (A) v(ln k) corresponding to two pools
in series. Carbon leaves the first pool at a distribution of rates
p1(k) and leaves the second pool according to the distribution
p2(k). p1(k) is lognormal with a mean and variance of log k
equal to 0 and 1, respectively. p2(k) is lognormal with a mean
and variance of log k equal to�1 and 1, respectively. We used
8000 realizations of the discrete exit-rate vector r to approxi-
mate the continuous function v(ln k). (B) Three pools in series.
Flows out of each pool are set by the distributions p1(k), p2(k),
and p3(k). The mean and variance of log k for each distribution
is as follows: p1, 0 and 1; p2,�1 and 1; p3, 1 and 1; 10 000 trials.
(C) Four pools in series. Flows out of each pool are given by
the same distributions p1, p2, p3 in (B). The flow out of the
fourth pool is set by p4, which is lognormal with a mean and
variance of log k equal to 3 and 1; 10 000 trials.
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decomposition, using the same procedure outlined in

Obtaining the exit-rate function. . ., to identify the exit

rates associated with feedback decay.

The exit-rate functions of three different feedback

loops are shown in Fig. 4B–D. We first consider two

pools in series connected by two lognormal distribu-

tions of rates p1 and p2, with a conversion fraction f ¼
0.5 associated with each transformation. The rates

drawn from p1 are two natural orders of magnitude (a

factor of e2) slower than the rates drawn from p2. In

the first case, Fig. 4B, incoming mass first enters the

slowly decaying pool and then feeds into the faster

pool. The exit-rate function v(ln k) is shifted slightly

left of p1(which has a mean ln k of 0) since particles

may cycle through the system more than once before

exit. In Fig. 4C the pools are switched with the fast

pool decaying first followed by the slow pool. Because

50% of the mass exits after the fast pool, the signal

from the fast pool becomes strong, appearing as a

second mode in the exit-rate function. The order of

transformations may therefore influence the eigenstate

distribution r(k). Fig. 4D shows the exit rates

associated with three pools in series, with 70% of

mass retained at each transformation (30% lost to

CO2). The medium and slow modes dominate, while

the fast mode highlights the serial nature of the

system.

Systems with feedback have a full A matrix and

eigenvalues that may be complex (Bolker et al. 1998).

Decays with complex eigenvalues take the shape of an

exponentially damped oscillation. Real components of

the eigenvalues represent exponential decay rates, while

the imaginary components represent the frequencies of

sinusoidal oscillations. However, in the test models of

Fig. 4, the system matrices A are diagonally dominant.

Most eigenvalues approximate the diagonals of A and

,1% are actually complex. Furthermore, those which

are complex typically have an imaginary component,

=(k), less than 10% of the real component <(k),
indicating a damping ratio (Greenberg 1998):

FIG. 4. Feedback processes with distributed rates. (A) Feedback between two pools with distributed rates. (B) Exit-rate
function of two carbon pools in feedback. Pool C1 decays with 32 random rates sampled from a distribution p1 and pool C2 decays
with 32 random rates sampled from a distribution p2. p1 and p2 are both lognormal with a mean and variance of log rates as follows:
p1, 0, 1; p2, 2.5, 1. All states have the same conversion fraction f¼0.5. Only a few eigenvalues are complex, indicating oscillations in
some eigenstates. However in those cases, imaginary components were less than 5% of the decay rates. This figure uses an ensemble
of 8000 randomly generated trials of r. (C) Exit-rate function of two pools in feedback, with rate distributions p1 and p2 opposite of
(A). The mean and variance of log rates of these distributions are p1, 2.5, 1, and p2, 0, 1. All states have f¼ 0.5. Changing the order
of C1 and C2 strongly influences v(log k). There are 4000 trials. (D) Exit-rate function of three carbon pools in feedback. The three
distributions p1, p2, and p3 are lognormal with a mean and variance of log k as follows: p1, 0,1 ; p2, 2.5, 1; p3,�2.5, 1. All states have
f¼ 0.7; 4000 trials.
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These decays are approximately critically damped

(Greenberg 1998) and exhibit essentially no oscillation.

Including the oscillatory components in the solution

only changes the mass loss by a negligible amount and

therefore only the real components of the eigenvalues

are plotted on the horizontal axis of Fig. 4B–D. A

multivariate r(k) in complex rate space could be plotted;

however the imaginary components do not reveal any

further information about the decay in such systems and

only complicate the picture.

Real soil carbon systems are also highly dissipative

(Manzoni and Porporato 2007) as the conversion

fraction, or substrate utilization (carbon uptake) effi-

ciency, is small to moderate such that 0.1 , f , 0.7

(Manzoni and Porporato 2007, Manzoni et al. 2008,

2010, Feng 2009), indicating that significant mass losses

are associated with transformations. This property is

reflected in calibrated models of decomposition net-

works (van Veen and Paul 1981, Jenkinson et al. 1990,

Parton et al. 1993). As a result, both the Roth C and

CENTURY models exhibit real eigenvalues for a wide

range of system parameters (Bolker et al. 1998). We now

proceed to investigate the CENTURY model with

heterogeneous compartments.

Assembling compartmental models with distributed rates

Larger compartmental models with heterogeneous

kinetics can be created by connecting pools to each other

in parallel, series, and feedback with a distribution of

rates. Contemporary compartmental models of soil

organic matter decomposition (van Veen and Paul

1981, Parton et al. 1987, Jenkinson et al. 1990) typically

connect pools with a single rate constant and do not

account for a continuum of transformations.

By fractionating each compartment into a distribution

of particle-states, the residence time of carbon in the

pool is no longer exponentially distributed (Matis et al.

1989, Matis and Wehrly 1990). In fact, a compartment

with any residence-time distribution can be approximat-

ed by fractionating that compartment into an appropri-

ate arrangement of sub-states in series, parallel and/or

feedback (Faddy 1990, Matis and Wehrly 1998). The

residence time distribution associated with the passage

through a network of linear compartments, Markov

process, etc. is called ‘‘a distribution of phase type’’

(Faddy 1990, Neuts 1995, Matis and Wehrly 1998).

Compartmental models containing pools with arbitrary

residence-time distributions are called ‘‘semi-Markov

models’’ (Matis and Wehrly 1990, 1998) and have been

applied in fields such as pharmacokinetics (Matis et al.

1989, Matis and Wehrly 1990, 1998, Faddy 1990, 1993)

to characterize heterogeneous absorption timescales and

predict the concentration of a drug remaining in the

body. We have assumed in this section that each

compartment contains particle-states that are in parallel.

The inversion method presented in Analyzing LIDET

data allows for more general particle-state configura-

tions.

Exit rates from the CENTURY model

Here we investigate the exit-rate function of the

CENTURY model (Parton et al. 1987), assuming each

compartment transfers carbon with a distribution of

rates. In this modification of CENTURY, transfers

occur among five carbon pools. Likely ranges of

turnover times suggested for each pool are (Parton et

al. 1987): (1) structural litter, 1–5 yr; (2) metabolic litter,

0.1–1 yr; (3) active soil, 1–5 yr; (4) slow soil, 20–40 yr;

and (5) passive soil, 200–1500 yr. Their inverse provides

a suggested range of turnover rates. Although pools

likely have dispersed kinetics, the CENTURY model is

highly parameterized in order to specify exact single

rates of transfer between pools as a function of soil, litter

type, and environmental conditions. Previously, an

eigenvalue decomposition of the CENTURY model

has revealed the model to behave as a parallel system

(Bolker et al. 1998) for most conditions, seldom having

negative values of r and complex rates k.
Fig. 5 shows exit-rate functions from the CENTURY

model (Parton et al. 1987) assuming pools have

heterogeneous kinetics. The exit-rate function associated

with case 1 is calculated by randomly assigning

lognormal rates to 32 sub-compartments in each pool,

assuming that the range of suggested turnover rates

(Parton et al. 1987) represents four standard deviations

of log k. The mean of log k for each pool is assumed at

the center of the suggested ranges. We use a Monte

Carlo simulation as described in Appendix D to

calculate the exit-rate function r(k) from N ¼ 5000

trials. The exit-rate function v(ln k) given these assump-

tions is shown as the green line in Fig. 5B. Each mode

corresponds to a pool in the CENTURY model shown

in Fig. 5B. This version of CENTURY has five pools,

but only four modes are present in v(ln k) because pools

1 and 3 have the same suggested turnover times and

therefore have similar eigenvalues. We then increase the

variance of rates within the compartments and recalcu-

late the exit distribution to show what happens as

heterogeneity increases within each pool. The resulting

exit-rate distributions associated with three changes in

the variance are shown in Fig. 5. As the variance within

each compartment increases, the properties of specific

individual transformations in the network become less

important, and for wide heterogeneity only a smooth

continuum of rates prevails. Adding kinetic heterogene-

ity information counterintuitively reduces model param-

eterization, as the smooth exit-rate functions can be

likely be described with fewer parameters than the base

pools in CENTURY.

Considering that soil organic matter is a continuum,

we suggest that proper parametrization of the exit-rate

function in terms of decomposition controls such as
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substrate quality, climate, soil properties, may lead to

more robust and accurate predictions of organic matter

decay and turnover times. Prior results (Forney and

Rothman 2012a) suggest that all rates in the decay rates

scale similarly with changes in temperature and mois-

ture. Because decomposition networks are dissipative,

transformation rates in the network should also scale by

the same amount with environmental change. This is

consistent with the dependence of rates on temperature

and moisture in the CENTURY model (Parton et al.

1993, 1987). The sensitivity of climatic parameters to

transformation rates is discussed further in Comparing

the exit-rate function. . . , below. A straightforward

method to approximate the control of litter composition

on the CENTURY exit-rate function is to apply the

CENTURY-based effects of lignin and cellulose on rates

to the median rates of each pool. With additional

experimental verification, the relationships between pool

variance and nitrogen and lignin content (Forney and

Rothman 2012a) may also be applied. The exit-rate

function can then be calculated from pools with

composition-dependent parameters.

Amorphous networks

In this section we remove the concept of pools and

consider soil as a mixed continuum of plant matter,

microbial, and other transformed soil organic matter

states. This is depicted in Fig. 6A. Initial litter states may

transform to microbial or soil organic matter states at

rates given by the distribution q1, microbial states

transfer to other microbial and soil organic matter

states at rates given by qm, and soil organic matter states

transfer to other soil organic matter states and microbial

states at rates given by qs.
We calculate the exit-rate function v(log k) for a

network composed of a number of litter, microbial, and

soil organic matter states. Processes leading to a

microbial state have a conversion fraction f ¼ 0.4,

consistent with estimates of substrate utilization (carbon

uptake) efficiency (Manzoni and Porporato 2007,

Manzoni et al. 2008, 2010, Feng 2009). The rates

associated with litter, microbial, and soil organic matter

states are randomly pulled from the lognormal distri-

butions q1, qm, and qs with parameters specified in the

caption of Fig. 6B. States are also connected randomly

for each trial to generate the system matrix A. As

FIG. 5. Exit-rate function from the CENTURY model (Parton et al. 1987) assuming that pools have heterogeneous kinetics.
(A) Architecture of the CENTURY Model. The model contains five pools: 1, structural; 2, metabolic; 3, active; 4, slow; 5, passive.
(B) The log of the exit-rate function v(ln k) associated with four different choices of the rate variances ri; v(ln k) is calculated using
the Monte Carlo method described in Appendix D. For each case, each pool has rates that are lognormally distributed. The mean
log rate of each pool (li ) is set to the mean of the log of the turnover rates suggested in the text. For all cases, l1¼�0.80, l2¼ 1.15,
l3¼ 0.80, l4¼�3.34, l5¼�6.31. The variance of each pool r2

i is set as follows. Case 1, solid green line: ri is set equal to the range
of log rates for each pool divided by 4: r1¼ 0.40, r2¼ 0.58, r3¼ 0.40, r4¼ 0.17, r5¼ 0.50. The range of suggested rates therefore
span four standard deviations. Case 2, dashed black line: ri are the same as case 1 except r4 is increased to r4¼ 0.52, roughly the
same size as the other pools. Case 3, solid red line: all ri are increased by a factor of 2, r1¼0.80, r2¼1.15, r3¼0.80, r4¼1.04, r5¼
1.00. Case 4, dot dashed blue line: ri are further increased: r1 ¼ 1.61, r2 ¼ 2.30, r3 ¼ 1.60, r4 ¼ 2.08, r5 ¼ 2.01. The range of
suggested rates spans one standard deviation. For all cases, we assume plant matter to be surface litter with a lignin fraction of 0.16
and nitrogen fraction of 0.008. We also set the soil to have a combined silt and clay content of 0.75. These values determine the
parameters associated with the fractionations between the pools in the CENTURY model (Parton et al. 1987).
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described in Appendix D, we perform an eigenvalue

decomposition to find the exit-rate vector r for N ¼
10 000 random configurations of rates and connections

in the network. We plot the rescaled sum of all exit rates

v(log k) in Fig. 6B. Again we find that the A matrix is

diagonally dominant, leading to eigenvalues that are

approximately the same as the rates of the state

transformations themselves. For this particular choice

of parameters, v(log k) is roughly unimodal.

ANALYZING LIDET DATA

The previous sections discussed how the exit-rate

function r(k) relates to an underlying heterogeneous

linear decay network A. The function r(k) contains all of

the information regarding mass loss from such a

network. Because actual degradation networks are

complex, modeling them well enough to forward-

calculate a complete picture of r(k) is nearly impossible.

With only limited knowledge of the mechanisms and

network structure, attempts at characterizing these

networks require a large amount of empirical studies,

approximations, heuristics, intuition, and curve fitting

(Parton et al. 1987, 1993). Instead we suggest simply

identifying r(k) directly. We obtain r(k) by inverting

mass loss data from the LIDET data set (Harmon 2007).

The inversion is constrained so that r(k) represents a

network of distributed serial, parallel, and/or feedback

processes. To do so, we proceed with the log-trans-

formed version of the exit-rate function v(ln k) and Eq.

23. Because Eqs. 22 and 23 are a Laplace transform, the

function v(ln k) is obtained by calculating the inverse

Laplace transform of g(t). However, the inverse Laplace

transform is ill posed (Hansen 1987, 1994, Lamanna

2005), meaning solutions v(ln k) are highly sensitive to

data noise (Forney and Rothman 2012b). Regulariza-

tion methods (Hansen 1987, 1994, Lamanna 2005) are

commonly used to calculate the inverse Laplace

transform of noisy data by seeking solutions with

minimal degrees of freedom. Here we use Tikhonov

regularization (Hansen 1987, Press et al. 1992) to

identify an optimally smooth solution that best fits the

data. We have previously applied this technique to Eq. 1

in order to identify the rate probability distributions p(k)

associated with litter-decay data sets (Forney and

Rothman 2012a, b). Here r(k) is not required to be a

probability distribution, but its shape is nevertheless

physically constrained. The physical constraints on the

decay system are that the system mass cannot be

negative:

gðtÞ � 0 ð24Þ

and the mass cannot increase,

FIG. 6. (A) Transformation network between randomly configured litter, microbial, and soil organic matter states. Matter is
initially allocated in litter states and is transformed to either microbial or other soil organic matter states. Transformation of carbon
compounds to microbial states requires energy, and a fraction of carbon is converted to microbial structures via biosynthesis
pathways ( f , 1) while the remaining carbon is oxidized to carbon dioxide or other inorganic products via respiration pathways.
While transformations between soil organic matter states may be microbially mediated, this carbon is not processed internally by
the microbial cell and therefore does not take part in respiration ( f ¼ 1). (B) Exit-rate function v(ln k) for N ¼ 10 000 randomly
configured networks consisting of 32 litter states, 32 microbial states, and 32 soil organic matter states (solid blue line). Mass flows
initially from litter to microbial and soil organic matter states. Any flow to a microbial state has a conversion fraction f¼0.4. Litter
states are randomly assigned from a lognormal distribution ql (green dashed line) having a mean and standard deviation of log
rates of 0 and 1, respectively. Microbial states are randomly assigned from a random distribution qm (magenta dashed line) having
a mean and standard deviation of log rates of�1 and 1.5, respectively, and soil organic matter states are assigned from a random
lognormal distribution qs (black dashed line) having a mean and standard deviation of log rates of �2 and 2, respectively. The
distributions ql, qm, and qs have been rescaled in the y direction for clarity.
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dgðtÞ=dt � 0: ð25Þ

To efficiently implement these constraints, we use the

following approximations:

gðtÞ. 0 :

Z K

�‘

vðlnkÞd lnk . 0 ð26Þ

dgðtÞ=dt , 0 :

Z K

�‘

�kvðlnkÞd lnk , 0: ð27Þ

When v(ln k) is wide, e�kt in Eq. 23 approximates a low-

pass filter on v(ln k) at the rate K ¼ 1/t; setting the

integration limit to K¼ 1/t approximates v(ln k)e�kt well

when v(ln k) is wide. When v(ln k) is not very wide, the

constraints (26) and (27) are conservative approxima-

tions to (24) and (25). A proof is provided in Appendix

E. With these approximations in mind, we evaluate the

integral (27) at many limits Ki within the bounds of the

function v(ln k) (see Appendix E) to ensure mass does

not increase at any time t. Although the constraints (24)

and (25) could be exactly evaluated, we implement

constraints (26) and (27) for computational expedience.

Inversion of a LIDET data set

A decay time series from a LIDET data set is shown

in Fig. 7A. The inversion v(ln k) of the data is shown as

the red line in Fig. 7B. The inversion has one inflection

point and becomes negative at fast k. In the negative

region, mass is not exiting the system at those rates;

rather the system exhibits lag or serial transfer at those

rates because more mass is sequentially transforming at

those rates than is exiting the system.

The exit-rate function v(ln k) in Fig. 7B may derive

from a dissipative network comprised of a continuum of

states that transform and decay at a continuum of rates.

It may also similarly derive from a network of

heterogeneous compartments. We test the hypothesis

that this exit-rate function results from two or three

heterogeneous pools in series. We first consider a two-

pool serial network with lognormally distributed rates.

The rates of transformation from pool 1 to pool 2 are

described by the lognormal parameters l1 and r1. Mass

leaves the system from pool 2 at lognormally distributed

rates parameterized by l2 and r2. We assume mass

transfers between pool 1 and pool 2 with a single

conversion fraction f, although a distribution of

conversion fractions f1j2 associated with each state could

also be assumed.

We then use MATLAB’s ‘‘nlinfit.m’’ function to fit

the parameters l1, l2, r1, r2, and f to the to the exit-rate

function v(ln k) that was inverted from the decay data.

To do so, for a given value of li, ri we discretize the

pools over the domain of the inversion. We then use the

eigenvalue decomposition of the discrete system to

calculate the exit-rate function associated with those

values of l1, l2, r1, r2, and f and compare it to the

inversion. We find the parameters l1¼�0.18, r1¼ 0.42,

l2¼�2.11, r2¼ 0.63, f¼ 1.0 best fit the v(ln k) from the

inversion. The exit-rate function corresponding to these

parameters is plotted as the green line in Fig. 7B. The

conversion fraction f ¼ 1 physically suggests the first

compartment represents some distribution of inocula-

tion rates, since all mass transfers to a second

decomposition state without loss. Decay then proceeds

heterogeneously in the second compartment. Because

this transformation is loss-less, the pools may be

reversed; the inoculation processes may be slow, whereas

the inoculated decomposing state may decay fast. Since

these compartments have heterogeneous kinetics, each

compartment itself may represent a complex sub-

network of reactions, transformations, and or other

processes (Matis and Wehrly 1998).

We then consider a three-pool serial model with

lognormal transformations. Mass exits the first pool at

lognormal rates with parameters l1 and r1 and may

transform to the second pool with conversion fraction

f12 or to the third pool with conversion fraction f13.

FIG. 7. Decay data and exit-rate function v(ln k) of a LIDET data set. (A) LIDET mass loss data (circles), mass loss prediction
from the inversion (red line), two serial compartments (green), and three serial compartments (blue). (B) The red line is the exit-rate
function calculated from the LIDET data set in panel (A). The green line is the exit-rate function corresponding to the best-fitting
two-compartment serial network with lognormally distributed transformation rates. (C) The red line is the same as in panel (A).
The blue line is the exit-rate function from the best-fitting three-compartment serial network with lognormally distributed
transformation rates.
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Mass exits the second pool at lognormal rates with

parameters l2 and r2 and transforms to the third pool

with conversion fraction f23. (Again, we assume here for

simplicity that the conversion fractions fijl of all states xj
associated with transfers from pool i to pool l are

constant and use the shorter notation fil.) Mass exits the

third pool at lognormal rates with parameters l3 and r3.

The parameters that best fit the inversion v(ln k) are l1¼
�0.12, r1 ¼ 0.50, l2 ¼�2.11, r2 ¼ 0.64, l3 ¼ 0.56, r3 ¼
0.40, f12¼0.99, f13¼ 0, f23¼0.20. Pools 1 and 2 from the

three-pool network have similar properties as pools 1

and 2 from the two-pool network and represent a

distributed inoculation time pool followed by a hetero-

geneous decomposition pool. No mass is transferred

from pool 1 to pool 3. However, the parameter-fitting

procedure identifies that 20% of the mass exiting the

second pool enters a third pool having turnover times

distributed between ;90 and 450 days. These turnover

times are consistent with measured estimates of soil

microbial turnover having substrate utilization efficiency

of about 0.2 (Cheng 2009). We therefore suggest this

pool is microbial. The exit-rate function calculated from

the three pool network is the blue line in Fig. 7C. It

provides a marginally better fit to the inversion than the

two pool network of Fig. 7B. Even more realistic values

may be encountered if we allow for feedback between

pool 2 and 3. Decay prediction from the inversion and

best fitting two- and three-compartment models are

indistinguishable and plotted as the solid lines in Fig.

7A. The best-fitting distributions of transformation rates

between the pools could be calculated using an

additional inversion technique. However, this approach

may be excessive as (1) the true underlying network

architecture remains unclear and (2) the exit-rate

function v(ln k) itself contains all information regarding

mass loss from the network. Nevertheless, understand-

ing the distributions of the underlying transformations

might provide additional clues to how environmental

and compositional drivers affect the overall exit-rate

function v(ln k).

Inversion of 232 LIDET data sets

We proceed to calculate the regularized inverse for

232 LIDET data sets. We consider only the 237 LIDET

data sets that contain five data points with replicates. Of

those 237 we find five have insignificant mass loss after

the first data point and we do not attempt to describe

those data sets (Forney and Rothman 2012a). We find

that the 232 inversions are either unimodal, bimodal,

trimodal, or quadrimodal. Examples of each are shown

in Fig. 8. We find that 38 are unimodal, 170 are bimodal,

12 are trimodal, and 7 are quadrimodal. Of the 38

unimodal solutions, 14 contain just one rate and decay

exponentially. These are determined by calculating the

nonnegatively constrained, unregularized inverse of the

data (Forney and Rothman 2012a, b) and then checking

whether that inverse contains just one rate and fits the

data better than the regularized estimate of v(ln k).

The 12 trimodal v(ln k) can all be approximated by a

simpler solution. Because the third mode of these data

sets is a positive mode located at extremely fast rates, the

entire mode decays to a negligibly small fraction by the

time of the first measurement. In fact, for all of these

solutions, the mass associated with this mode has

decreased to approximately the double precision limit

by the first data point and is effectively zero (Forney and

Rothman 2012b). Therefore, this mass is experimentally

equivalent to an instantaneous loss or leaching of mass.

We thus suggest that the mass of the third mode is most

simply represented by an instantaneous leaching of mass

at t ’ 0 (Forney and Rothman 2012b). The inversion

and its approximation (with the mass located at an

infinite rate constant) is shown in Fig. 9A. Fig. 9C shows

that the decay predicted from the trimodal v(ln k) and

the leached-fraction approximation provide an equiva-

lent prediction of mass loss over the duration of the

experiment.

Most of the quadrimodal results can also be

simplified. Six of the seven data sets contain mass in

two slow modes that exhibit negligible decay over the

duration of the experiment. The total mass of these slow

modes can therefore be equivalently represented by a

constant inert mass fraction. An example of a quad-

rimodal distribution and its inert mass fraction approx-

imation (located at the slowest rate in the domain) is

shown in Fig. 9B. Fig. 9D shows the quadrimodal

v(ln k) and its inert-mass fraction approximation predict

the same decay over the duration of the experiment.

COMPARING THE EXIT-RATE FUNCTION v(ln k) TO A

DISTRIBUTION OF RATES q(ln k)

In our previous study (Forney and Rothman 2012a)

we identified the qualitative effects of climatic and

compositional variables on the mean and variance of

the nonnegative rate distribution q(ln k) We found that

environment changes the mean, l, of ln k. Composition

is correlated with both the mean and variance, r2, of

ln k and therefore affects the faster rates of the

distribution. We suggest that climatic and composi-

tional variable may be similarly related to v(ln k). To

evaluate that hypothesis, we proceed to compare the

general mass-constrained exit-rate function v(ln k) to

the nonnegatively constrained exit-rate function

q(ln k).

Continuous distributions of decay rates have been

used to model the degradation of organic matter

(Boudreau and Ruddick 1991, Bolker et al. 1998,

Rothman and Forney 2007, Manzoni et al. 2009, Feng

2009, Forney and Rothman 2012a). We have previously

identified that the distribution associated with plant

matter decay is on average lognormal (Forney and

Rothman 2012a). Although positive rate distributions

are physically consistent with a continuum of parallel

first-order decays, they may also represent the exit-rate

function associated with a network of possible decay

states as seen above in Example systems: Exit rates from
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the CENTURY model and Amorphous networks. The

nonnegative constraint on q(ln k) results in a completely

monotone (essentially concave-up) decay (Forney and

Rothman 2012a). However, the nonnegative constraint

also restricts the configurations of possible decomposi-

tion networks that may best fit the data.

We find that for most LIDET data sets the

distribution q(ln k) is typically consistent with the

positive region of v(ln k) Fig. 10A shows a compar-

ison of a typical bimodal exit-rate function to the rate

distribution q(ln k) resulting from the nonnegative

inversion associated with the data set shown in Fig.

10C. For this and a majority of the other the LIDET

data sets, the negative region is typically located at

fast rates and only has an effect on very early

degradation times before the first measurement. The

positive region explains most of the decay. Therefore

a completely positive rate distribution often predicts

the litterbag decay data just as well as an exit-rate

function with negative components as seen in Fig.

10C. However, some data sets are more sigmoidal and

exhibit a delay before decay proceeds, as shown in

Fig. 10D. In this case, the negative region of the exit-

rate function is spread over rates associated with the

timescale of the noticeable delay, whereas the best-

fitting q(ln k) is just a delta function at one rate (Fig.

10B). Allowing for a range of serial processes, such as

decomposer community growth and sequential enzy-

matic activity, therefore better captures the sigmoidal

shape of the decay.

In Fig. 10E we compare the root mean-square error

(RMSE) of the decay predicted from q(ln k) and v(ln k)

for 191 LIDET data sets. Fig. 10E plots the cumulative

number of data sets having a RMSE less than the value

shown on the horizontal axis. The general exit-rate

function v(ln k), shown in red, fits the data slightly better

than the positively constrained q(ln k) shown in blue.

The mean RMSE associated with v and q are 0.053 and

0.056, respectively. For comparison, the mean RMSE of

the best-fitting multi-pool models is 0.050, however these

solutions are highly sensitive to noise (Forney and

Rothman 2012b). The fits are similar because many of

the LIDET data sets contain little to no noticeable lag

time and the decay kinetics are mostly captured in the

positive region of q(ln k). The R2 of fitting exit-rate

functions to the entire LIDET data set is 0.96; this value

is high compared to other studies (Adair et al. 2008)

FIG. 8. Four different classes of exit-rate functions v(ln k) found among 232 LIDET data sets: (A) unimodal (38 data sets); (B)
bimodal (170 data sets); (C): trimodal (12 data sets); (D): quadrimodal (7 data sets).
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because the exit-rate functions are allowed to take

arbitrary shape for each data set.

Fig. 11 compares the mean lq and variance rq of the

log rate distribution q(ln k) to the mean lvþ and

standard deviation rvþ of the positive portions of the

exit-rate function v(ln k). Shown are the 191 LIDET

data sets, which are well described by a distribution of

decay rates (Forney and Rothman 2012a). To provide a

relevant comparison to q(ln k) and in order to calculate

a mean and variance, we rescale the positive portion of

v(ln k) so that it integrates to 1. Fig. 11A shows that the

means lq and lvþ are highly correlated with one another.

Fig. 11B also indicates that the standard deviations of

the two distributions are also highly correlated. The

spread in rvþ at rq ¼ 0 is associated with data sets

similar to Fig. 10B; these data sets are best fit by a single

rate when the exit-rate function is constrained to be

nonnegative, but better fit by an exit-rate function

resulting from a more general network of transforma-

tions. The additional outliers rvþ . rq are due to the

presence of multiple positive modes in v(ln k) but not
q(ln k).

We have previously found the distribution q(ln k) to be
well characterized by a lognormal distribution (Forney

and Rothman 2012a). The consistency of the calculated
exit-rate function v(ln k) with the calculated rate
distribution q(ln k) over moderate and large degradation

timescales suggests that in many cases the exit rates from
a degradation network can be well approximated by a

lognormal distribution. Furthermore, the high correlation
between lq and lvþ and between rq and rvþ suggests that

the trends observed between climatic factors, organic
matter composition, and kinetic parameters (Forney and

Rothman 2012a) also apply to the exit rates from a
decomposition network. For example, temperature and
moisture appear to affect lq but not rq and thus scale all

decay rates by the same factor. Therefore, because the
exit rates are closely associated with the transformation

rates in the decay network, we can say that climatic
factors like temperature and moisture similarly affect the

rates of all transformation processes. This finding

FIG. 9. Simplification of trimodal and quadrimodal data sets. (A) Example of a trimodal data set (gray) and its leached fraction
approximation (dashed black). (B) Example of a quadrimodal data set (gray) and its approximation with an inert fraction (dashed
black). Note the small negative mode between the two positive modes. (C) LIDET decay data (circles), predicted mass loss from the
trimodal v(ln k) (gray) and the approximation (dashed black). (D) LIDET decay data (circles), predicted mass loss from the
quadrimodal v(ln k) (gray) and its approximation (dashed black).
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contributes to the ongoing debate regarding the temper-

ature sensitivity of recalcitrant vs. labile organic matter

decay (Davidson and Janssens 2006, Adair et al. 2008,

Craine et al. 2010). Prior results (Forney and Rothman

2012a) also suggest that the faster pathways of the

decomposition network are limited by nitrogen and sulfur

and inhibited by lignin content, while more recalcitrant

pathways in the network are not significantly correlated

to initial organic nutrient content. In this manner,

looking at the response of the exit-rate function to

changes in environmental and chemical controls uncovers

information regarding the underlying biological path-

ways. However, more rigorous methods (Adair et al.

2008, Allison 2012) are needed to parameterize the modes

of the exit-rate function in terms of compositional and

environmental parameters.

FIG. 10. Comparison of the nonnegatively constrained exit-rate function q(ln k) (Forney and Rothman 2012a) to the mass-loss
constrained exit-rate function v(ln k). (A) Values of v(ln k) (red) and q(ln k) (blue) calculated from the inversion of the LIDET data
shown in panel C. (B) Values of v(ln k) (red) and q(ln k) (blue) calculated from the inversion of the LIDET data shown in panel
(D). (C) LIDET decay data (circles), predicted mass loss from v(ln k) (red) and q(ln k) (blue). (D) LIDET decay data (circles):
predicted mass loss from v(ln k) (red) and (ln k) (blue). (E) Root mean-square error (RMSE) of the decay predicted by v(ln k) (red)
and q(ln k) (blue). The vertical axis indicates the cumulative number of data sets having an RMSE less than the value shown on the
horizontal axis. There are 191 data sets.
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DISCUSSION AND CONCLUSIONS

These results suggest interpreting the continuum

formulation (Eq. 22) of organic matter decay not as a

distribution of components decaying in parallel, but

rather as a distribution of Poisson exit rates from an

underlying decay system. Carbon in any pathway of

the network may react and exit at random rates.

Kinetic heterogeneity associated with transformations

leads to dispersion in the rates of carbon exit. This

dispersion is characterized by the exit-rate function

v(ln k).

The v(ln k) from the LIDET data set is consistent

with a network containing two or more heterogeneous

pools. More likely however, these exit-rate functions

derive from a mixed continuum of states that

transform at a continuum of rates. Often, carbon

degradation through these complex networks are well

approximated by a distribution of positive parallel

rates. The presence of a negative v(ln k) indicates the

existence of serial or feedback processes, while

positive v(ln k) could represent parallel processes or

serial and feedback processes with mass loss. In this

manner, identifying v(ln k) is a coarse tool for

investigating degradation network architecture. The

v(ln k) obtained from litterbag studies however only

characterizes the portion of the decay network

associated with young soil organic matter (SOM)

transformations. More work is necessary in order to

probe the entire SOM network and the full domain of

the exit-rate function v(ln k). Nutrient dynamics may

also be included by coupling carbon kinetics to plant

and microbial stoichiometry (Manzoni and Porporato

2007, Manzoni et al. 2008, Sinsabaugh and Follstad

Shah 2012).

Fig. 12 summarizes the use and interpretation of the

exit-rate-function approach and compares it to standard

compartmental approaches for fitting and predicting

decay data. Compartmental approaches require tuning

the parameters associated with the compartments in

order to fit decay data and predict soil organic matter

dynamics. Because the exit-rate approach is an equiva-

lent representation of linear compartmental and contin-

uum transformation models, we advocate using the

simpler exit-rate function description, v(ln k), for both

system estimation and prediction of total SOM dynam-

ics.

Conclusions

Bolker et al. (1998) have questioned the advantages of

the diagonalized, eigenvalue approach over the standard

forward compartmental approach in soil degradation.

The exit-rate analysis via the inverse Laplace transform

is a powerful tool for analyzing carbon storage and mass

loss, as it accounts for particle heterogeneity and

transformations, but does not require detailed informa-

tion of all transformations. Thus, by describing degra-

dation at an appropriate level of model complexity, log

exit-rate function v(ln k) provides a clear visualization of

the mass dynamics of the system, as well as a simple

framework for analyzing the influence of biogeochem-

ical and environmental factors on respiration.

Ultimately, the heterogeneous continuum approach

here is related to the stochasticity of the various

underlying nonlinear mechanisms such as enzyme

kinetics (Schimel and Weintraub 2003, Moorhead and

Sinsabaugh 2006, Manzoni and Porporato 2007, Allison

2012, Sinsabaugh and Follstad Shah 2012), Lotka-

Volterra decomposer growth (Loreau 2001), environ-

mental signals and cues, sorption, physical transport,

and other chemical/biochemical/physical processes

(Smith 1979, Manzoni and Porporato 2009). Heteroge-

neous continuum models assume that observed nonlin-

ear decay dynamics result from heterogeneous

transformation mechanisms with dispersed, but linear

kinetics, while community based models focus on

nonlinear known, but incomplete mechanisms. Both

approaches include many assumptions and approxima-

tions of the true complex network of reactions

responsible for degradation. Incorporating various

FIG. 11. Comparison of kinetic properties of the exit-rate function v(ln k) and exit-rate distribution q(ln k). (A) The mean log
rate lvþ associated with v(ln k) plotted against the mean log rate lq of the distribution q(ln k). (B) The standard deviation of log
rates rvþ associated with v(ln k) plotted against the standard deviation rq of the distribution q(ln k). The lines have a slope of 1 and
intersect the origin. There are 191 data sets.
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nonlinear mechanisms into this approach will diffuse the

straightforward visualization and interpretation of these

first-order results, while incorporating heterogeneity/

stochasticity in community-based models will further

increase the complexity and uncertainty associated with

an already highly parameterized approach. Both ap-

proaches may later merge together as knowledge of the

underlying biology of decomposition continues to

rapidly expand. On a high level, this work represents a

simple approach to link—in one giant network—the

metabolic pathways of the soil metagenome to the

numerous decomposition pathways exterior to biologi-

cal cells.
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Ågren, G. I., and E. Bosatta. 1998. Theoretical ecosystem
ecology: understanding element cycles. First edition. Cam-
bridge University Press, Cambridge, UK.

Allison, S. D. 2012. A trait-based approach for modelling
microbial litter decomposition. Ecology Letters 15:1058–
1070.

Allison, S., M. Weintraub, T. Gartner, and M. Waldrop. 2011.
Evolutionary-economic principles as regulators of soil
enzyme production and ecosystem function. Pages 229–243
in G. Shukla and A. Varma, editors. Soil enzymology.

Volume 22 of Soil Biology. Springer-Verlag, Berlin, Ger-
many.

Berg, B., and R. Laskowski. 2006. Litter decomposition: a
guide to carbon and nutrient turnover. Elsevier, Amsterdam,
The Netherlands.

Berg, B., and C. McClaugherty. 2007. Plant litter: decomposi-
tion, humus formation, carbon sequestration. Second edition.
Springer-Verlag, Berlin, Germany.

Bolker, B. M., S. W. Pacala, and W. J. Parton. 1998. Linear
analysis of soil decomposition: insights from the century
model. Ecological Applications 8:425–439.

Bosatta, E. 1985. Theoretical analysis of decomposition of
heterogeneous substrates. Soil Biology and Biochemistry
17:601–610.
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SUPPLEMENTAL MATERIAL

Appendix A

Detailed solution to the two-state example problem (Ecological Archives M084-006-A1).

Appendix B

Solving a linear system in order to predict mass loss from a decomposition network (Ecological Archives M084-006-A2).

Appendix C

Extrapolating the discrete network to the continuum (Ecological Archives M084-006-A3).

Appendix D

Monte Carlo method for calculating r(k) from a network with heterogeneous states and distributed rates (Ecological Archives
M084-006-A4).

Appendix E

Proof that constraints on v are sufficient to guarantee dg/dt , 0 (Ecological Archives M084-006-A5).

Supplement

MATLAB codes for the inversion algorithm and the heterogeneous CENTURY model (Ecological Archives M084-006-S1).

Data Availability

The LIDET data that we used for the study are publicly available in Harmon (2007): http://andrewsforest.oregonstate.edu/data/
abstract.cfm?dbcode=TD023

The data were filtered for analysis by the process described in Forney and Rothman (2012a).
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